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1 Introduction

State-space models have been broadly applied to study macroeconomic and financial problems.

For example, they have been applied to model unobserved trends, to model transition from one

economic structure to another, to forecasting models, to study wage-rate behaviors, to estimate

expected inflation, and to model time-varying monetary reaction functions.

A state-space model typically consists of two equations, a measurement equation which links

the observed variables to unobserved state variables and a transition equation which describes the

dynamics of the state variables. The Kalman filter, which provides a recursive way to compute

the estimator of the unobserved component based on the observed variables, is a useful tool to

analyze state-space models.

In this paper, we show that a classic linear-quadratic-Gaussian (LQG) macroeconomic frame-

work which incorporates two new assumptions can still be analytically solved and explicitly

mapped to a state-space representation.1 The two assumptions we consider are model uncertainty

due to concerns for model misspecification (robustness) and state uncertainty due to limited in-

formation constraints (rational inattention). We show that the state-space representation of the

observable and unobservable can be used to quantify the key parameters by simulating the model.

We provide examples on how this framework can be used to study a range of interesting questions

in macroeconomics and international economics.

The remainder of the paper is organized as follows. Section 2 presents the general framework.

Section 3 shows how to introduce the model uncertainty and state uncertainty to this framework.

Section 4 provide several applications how to apply this framework to address a range of macroe-

conomic and international questions. In addition, it shows how this framework has a state-space

representation. And this state-space representation can be used to quantify the key parameters

in different models. Section 5 concludes.

2 Linear-quadratic-Gaussian State-space Models

The linear-quadratic-Gaussian framework has been widely used in macroeconomics. This spec-

ification leads to the optimal linear regulator problem, for which the Bellman equation can be

solved easily using matrix algebra. The general setup is as follows. The objective function has a

1Note that here “linear” means that the state transition equation is linear, “quadratic” means that the objective

function is quadratic, and “Gaussian” means that the exogenous innovation is Gaussian.
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quadratic form,

max
{xt}

E0

[ ∞∑
t=0

βtf(xt)

]
(1)

and the maximization is subjected to a linear constraint

g(xt, yt, yt+1) = 0, for all t (2)

where g(·) is a linear function, xt is the vector of control variables and yt is the vector of state

variables.

Example 1 (A small-open economy version of Hall’s permanent income model). Let xt =

{ct, bt+1}, yt = {bt, yt}, f(xt) = −1
2 (c− ct)2, g(xt, yt, yt+1) = Rbt + yt − ct − bt+1, where c is the

bliss point, ct is consumption, R is the exogenous and constant gross world interest rate, bt is the

amount of the risk-free foreign bond held at the beginning of period t, and yt is net income in

period t and is defined as output minus investment and government spending. Then this becomes

an small-open economy version of Hall’s permanent income model in which a representative agent

chooses the consumption to maximize his utility subject to the exogenous endowments. As the

representative agent can borrow from the rest of the world at a risk-free interest rate, the resource

constraint need not bind every period. If we remove this assumption, the model goes back to the

permanent income model studied in Hall (1978).

Example 2 (Barro’s tax-smoothing model). Barro (1979) proposed a simple rational ex-

pectations (RE) tax-smoothing model with only noncontingent debt in which the government

spreads the burden of raising distortionary income taxes over time in order to minimize their

welfare losses to address these questions. This tax-smoothing hypothesis has been widely used

(to address various fiscal policies) and tested. The model also falls well into this linear-quadratic

framework.2 Specifically, let xt = {τt, Bt+1}, yt = {Yt, Gt}, f(xt) = −1
2τ

2
t , g(xt, yt, yt+1) =

RBt +Gt − τtYt −Bt+1, where E0 [·] is the government’s expectation conditional on its available

and processed information set at time 0, β is the government’s subjective discount factor, τt is the

tax rate, Bt is the amount of government debt, Gt is government spending, Yt is real GDP, and

R is the gross interest rate. Here we assume that the welfare costs of taxation are proportional

to the square of the tax rate.3

In general, the number of the state variables in these models can be more than one. But in

order to facilitate the introduction of robustness we reduce the above multivariate model with

a general exogeneous process to a univariate model with iid innovations that can be solved in

2For example, see Huang and Lin (1993), Ghosh (1995), and Cashin et al (2001).
3Following Barro (1979), Sargent (1987), Bohn (1989), and Huang and Lin (1993), we only need to impose the

restriction, f ′ (τ) > 0 and f ′′ (τ) > 0, on the loss function, f (τ).
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closed-form. Specifically, following Luo and Young (2010) and Luo, Nie, and Young (2011a), we

rewrite the model described by (1) and (2) as

max
{zt,st+1}∞t=0

{
E0

[ ∞∑
t=0

βtf(zt)

]}
(3)

subject to

st+1 = Rst − zt + ζt+1, (4)

where both zt and st are single variables, and ζt+1 is the Gaussian innovation to the state transition

equation with mean 0 and variance ω2
ζ .

For instance, for Example 1, the mapping is

zt = ct,

st = bt +
1

R

∞∑
j=0

R−jEt [yt+j ] ,

ζt+1 =
1

R

∞∑
j=t+1

(
1

R

)j−(t+1)

(Et+1 − Et) [yj ] .

And for Example 2, the mapping is

zt = τt,

st = Et

bt +
1

(1 + n) R̃

∞∑
j=0

(
1

R̃

)j
gt+j

 ,
ζt+1 =

∞∑
j=0

(
1

R̃

)j+1

(Et+1 − Et) [gt+1+j ] ,

where R̃ = R/ (1 + n) is the effective interest rate faced by the government, n is the GDP growth

rate, bt and gt are government debt and government spending as a ratio of GDP.4

Finally, the recursive representation of the above problem is as follows.

v (st) = max
zt
{f(zt) + βEt [v (st+1)]} (5)

subject to:

st+1 = Rst − zt + ζt+1, (6)

given s0.

4n is assumed to be constant.
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3 Incorporating Model Uncertainty and State Uncertainty

In this section we show how to incorporate model uncertainty and state uncertainty into the

framework presented in the previous section.

3.1 Introducing Model Uncertainty

We focus on the model uncertainty due to a concern for model misspecification (robustness).

Hansen and Sargent (1995, 2007a) first introduce robustness (a concern for model misspecification)

into economic models. In robust control problems, agents are concerned about the possibility that

their model is misspecified in a manner that is difficult to detect statistically; consequently, they

choose their decisions as if the subjective distribution over shocks was chosen by a malevolent

nature in order to minimize their expected utility (that is, the solution to a robust decision-

maker’s problem is the equilibrium of a max-min game between the decision-maker and nature).

Specifically, a robustness version of the model represented by (5) and (6) are

v (st) = max
zt

min
νt

{
f(zt) + β

[
ϑν2

t + Et [v (st+1)]
]}

(7)

subject to the distorted transition equation (i.e., the worst-case model):

st+1 = Rst − zt + ζt+1 + ωζνt, (8)

where νt distorts the mean of the innovation and ϑ > 0 controls how bad the error can be.5

3.2 Introducing State Uncertainty

We consider the model with imperfect state observation (state uncertainty) due to finite information-

processing capacity (rational inattention or RI). Sims (2003) first introduced RI into economics

and argued that it is a plausible method for introducing sluggishness, randomness, and delay into

economic models. In his formulation agents have finite Shannon channel capacity, limiting their

ability to process signals about the true state of the world. As a result, an impulse to the economy

induces only gradual responses by individuals, as their limited capacity requires many periods to

discover just how much the state has moved.

5Formally, this setup is a game between the decision-maker and a malevolent nature that chooses the distortion

process νt. ϑ ≥ 0 is a penalty parameter that restricts attention to a limited class of distortion processes; it can

be mapped into an entropy condition that implies agents choose rules that are robust against processes which are

close to the trusted one. In a later section we will apply an error detection approach to calibrate ϑ.
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Under RI, consumers in the economy face both the usual flow budget constraint and information-

processing constraint due to finite Shannon capacity first introduced by Sims (2003). As argued

by Sims (2003, 2006), individuals with finite channel capacity cannot observe the state variables

perfectly; consequently, they react to exogenous shocks incompletely and gradually. They need to

choose the posterior distribution of the true state after observing the corresponding signal. This

choice is in addition to the usual consumption choice that agents make in their utility maximiza-

tion problem.6

Following Sims (2003), the consumer’s information-processing constraint can be characterized

by the following inequality:

H (st+1|It)−H (st+1|It+1)≤ κ, (9)

where κ is the consumer’s channel capacity, H (st+1|It) denotes the entropy of the state prior

to observing the new signal at t + 1, and H (st+1|It+1) is the entropy after observing the new

signal.7 The concept of entropy is from information theory, and it characterizes the uncertainty

in a random variable. The right-hand side of (9), being the reduction in entropy, measures the

amount of information in the new signal received at t + 1. Hence, as a whole, (9) means that

the reduction in the uncertainty about the state variable gained from observing a new signal is

bounded from above by κ. Since the ex post distribution of st is a normal distribution, N
(
ŝt, σ

2
t

)
,

(9) can be reduced to

log |ψ2
t | − log |σ2

t+1| ≤ 2κ (10)

where ŝt is the conditional mean of the true state, and σ2
t+1 = var [st+1|It+1] and ψ2

t = var [st+1|It]
are the posterior variance and prior variance of the state variable, respectively. To obtain (10),

we use the fact that the entropy of a Gaussian random variable is equal to half of its logarithm

variance plus a constant term.

It is straightforward to show that in the univariate case (10) has a unique steady state σ2.8

In that steady state the consumer behaves as if observing a noisy measurement which is s∗t+1 =

st+1 +ξt+1, where ξt+1 is the endogenous noise and its variance α2
t = var [ξt+1|It] is determined by

the usual updating formula of the variance of a Gaussian distribution based on a linear observation:

σ2
t+1 = ψ2

t − ψ2
t

(
ψ2
t + α2

t

)−1
ψ2
t . (11)

6More generally, agents choose the joint distribution of consumption and current permanent income subject to

restrictions about the transition from prior (the distribution before the current signal) to posterior (the distribution

after the current signal). The budget constraint implies a link between the distribution of consumption and the

distribution of next period permanent income.
7We regard κ as a technological parameter. If the base for logarithms is 2, the unit used to measure information

flow is a ‘bit’, and for the natural logarithm e the unit is a ‘nat’. 1 nat is equal to log2 e ≈ 1.433 bits.
8Convergence requires that κ > log (R) ≈ R− 1; see Luo and Young (2010) for a discussion.
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Note that in the steady state σ2 = ψ2 − ψ2
(
ψ2 + α2

)−1
ψ2, which can be solved as α2 =[(

σ2
)−1 −

(
ψ2
)−1
]−1

. Note that (11) implies that in the steady state σ2 =
ω2
ζ

exp(2κ)−R2 and

α2 = var [ξt+1] =
[ω2
ζ+R2σ2]σ2

ω2
ζ+(R2−1)σ2 .

We now incorporate state uncertainty due to RI into the RB model proposed in the last section.

There two different ways to do it. The simpler way is to assume that the consumer only has doubts

about the process for the shock to permanent income ζt+1, but trusts his regular Kalman filter

hitting the endogenous noise (ξt+1) and updating the estimated state. In the next subsection, we

will relax the assumption that the consumer trusts the Kalman filter equation which generates

an additional dimension along which the agents in the economy desire robustness.

The RB-RI model is formulated as

v̂ (ŝt) = max
zt

min
νt

{
f(zt) + βEt

[
ϑν2

t + v̂ (ŝt+1)
]}
, (12)

subject to the (budget) constraint

st+1 = Rst − zt + ωζνt + ζt+1 (13)

and the regular Kalman filter equation

ŝt+1 = (1− θ) (Rŝt − zt + ωζνt) + θ (st+1 + ξt+1) (14)

Notice that f(zt) is a quadratic function, so the model is in a linear-quadratic form. As to be

shown in the next section, we can explicitly solve the optimal choice for control variable zt and

the worst case shock νt. After substituting these two solutions into the transition equations for

st and ŝt, it can easily be shown that the model has a state-space representation.

3.2.1 Robust filtering under RI

It is clear that the Kalman filter under RI, (13), is not only affected by the fundamental shock

(ζt+1), but also affected by the endogenous noise (ξt+1) induced by finite capacity; these noise

shocks could be another source of the demand for robustness. We therefore need to consider this

demand for robustness in the RB-RI model. By adding the additional concern for robustness

developed here, we are able to strengthen the effects of robustness on decisions.9 Specifically,

we assume that the agent thinks that (14) is the approximating model. Following Hansen and

9Luo, Nie, and Young (2011a) use this approach to study the joint dynamics of consumption, income, and the

current account.
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Sargent (2007), we surround (14) with a set of alternative models to represent a preference for

robustness:

ŝt+1 = Rŝt − zt + ωηνt + ηt+1. (15)

where

ηt+1 = ϑR(st − ŝt) + ϑ(ζt+1 + ξt+1) (16)

and Et [ηt+1] = 0 because the expectation is conditional on the perceived signals and inattentive

agents cannot perceive the lagged shocks perfectly.

Under RI the innovation ηt+1, (16), that the agent distrusts is composed of two MA(∞)

processes and includes the entire history of the exogenous income shock and the endogenous

noise, {ζt+1, ζt, · · ·, ζ0; ξt+1, ξt, · · ·, ξ0}. The difference between (13)) and (15) is the third term; in

(13) the coefficient on νt is ωζ while in (15) the coefficient is ωη; note that with θ < 1 and R > 1

it holds that ωζ < ωη.

The optimizing problem for this RB-RI model can be formulated as follows:

v̂ (ŝt) = max
ct

min
νt

{
f(zt) + βEt

[
ϑν2

t + v̂ (ŝt+1)
]}

(17)

subject to (15). (17) is a standard dynamic programming problem and can be easily solved using

the standard procedure.

4 Applications

This section provides several applications of the framework developed in Section 3.10 In each

application, the model can be mapped into the general framework presented in the previous

section. Using these examples, we show how this framework can be analytically solved and can be

explicitly mapped to a state-space representation (Section 4.1). We also show that this state-space

representation plays an important role in quantifying the model uncertainty and state uncertainty

(Section 4.4). These applications show how model uncertainty (RB) and state uncertainty (RI or

imperfect information) alter the results from the standard framework presented in Section 2.

4.1 Explaining Current Account Dynamics

Return in to Example 1 in Section 2. The model is a small-open economy version of the permanent

income model. The standard model is represented by (5) and (6), while the model incorporating

10These illustrations are based on the research by Luo and Young (2010) and Luo, Nie and Young (2011a, 2011b,

2011c).
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model uncertainty and state uncertainty is represented by (12)-(14). (Notice that zt = ct and

f(xt) = −1
2 (c− ct)2.)

As shown in Luo et al (2011a), given ϑ and θ, the consumption function under RB and RI is

ct =
R− 1

1− Σ
ŝt −

Σc

1− Σ
, (18)

the mean of the worst-case shock is

ωηνt =
(R− 1)Σ

1− Σ
ŝt −

Σ

1− Σ
c, (19)

where ρs = 1−RΣ
1−Σ ∈ (0, 1), Σ = Rω2

η/ (2ϑ), ω2
η = var [ηt+1] = θ

1−(1−θ)R2ω
2
ζ .

Substituting (19) into (13) and combining with (14), the observed st and unobserved ŝt are

governed by the following two equations

st − ŝt =
(1− θ) ζt

1− (1− θ)R · L
− θξt

1− (1− θ)R · L
(20)

ŝt+1 = ρsŝt + ηt+1. (21)

where

ηt+1 = θR (st − ŝt) + θ (ζt+1 + ξt+1) (22)

Thus, it’s clear to see that (20) and (21) form a state-space representation the model in which

(20) is the measurement equation that links the observed variable st to unobserved variable ŝt

and (21) is the transition equation which describes the dynamics of ŝt.

Notice that Σ measures the effects of both model uncertainty and state uncertainty, which is

bounded by 0 and 1.11 As argued in Sims (2003), although the randomness in an individual’s

response to aggregate shocks will be idiosyncratic because it arises from the individual’s own

information-processing constraint, there is likely a significant common component. The intuition

is that people’s needs for coding macroeconomic information efficiently are similar, so they rely

on common sources of coded information. Therefore, the common term of the idiosyncratic error,

ξt, lies between 0 and the part of the idiosyncratic error, ξt, caused by the common shock to

permanent income, ζt. Formally, assume that ξt consists of two independent noises: ξt = ξt + ξit,

where ξt = Ei [ξt] and ξit are the common and idiosyncratic components of the error generated by

ζt, respectively. A single parameter,

λ =
var
[
ξt
]

var [ξt]
∈ [0, 1],

11See Luo, Nie, and Young (2011a) for the proof.
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can be used to measure the common source of coded information on the aggregate component (or

the relative importance of ξt vs. ξt).
12

Next, we briefly list the facts we focus on (Table 1). First, the correlation between the current

account and net income is positive but small (and insignificant when detrended with the HP

filter). Second, the relative volatility of the current account to net income is smaller in emerging

countries than in developed economies, although the difference is not statistically significant when

the series are detrended with the HP filter. Third, the persistence of the current account is smaller

than that of net income, and less persistent in emerging economies. And fourth, the volatility of

consumption growth relative to income growth is larger in emerging economies than in developed

economies.

Finally, let’s compare the model implications, as summarized in Table 2. First, we have seen

that in this case (λ = 1 and θ = 50%) the interaction of RB and RI make the model fit the

data quite well along dimensions (3) and (4), while also quantitatively improving the model’s

predictions along dimensions (1) and (2). Second, this improvement does not preclude the model

from matching the first two dimensions as well (i.e., the contemporaneous correlation between the

current account and net income and the volatility of the current account). For example, holding λ

equal to 1 and further reducing θ can generate a smaller contemporaneous correlation between the

current account and net income which is closer to the data. And holding θ = 50% and reducing

λ to 0.1 can make the relative volatility of the current account to net income very close to the

data.

4.2 Resolving The International Consumption Puzzle

The same framework can be used to address an old puzzle in the international economics literature.

That is, the cross-country consumption correlations are very low in the data (lower than the cross-

country correlations of outputs) while standard models imply the opposite.13

To show the flexibility of the general framework summarized by (5) and (6), we slightly deviate

from the assumption we used in the previous subsection (example 1) to introduce state uncertainty

(SU). We assume that consumers in the model economy cannot observe the true state st perfectly

and only observes the noisy signal

s∗t = st + ξt, (23)

12It is worth noting that the special case that λ = 1 can be viewed as a representative-agent model in which we

do not need to discuss the aggregation issue.
13For example, Backus, Kehoe, and Kydland (1992) solve a two-country real business cycles model and argue

that the puzzle that empirical consumption correlations are actually lower than output correlations is the most

striking discrepancy between theory and data.
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when making decisions, where ξt is the iid Gaussian noise due to imperfect observations. The

specification in (23) is standard in the signal extraction literature and captures the situation

where agents happen or choose to have imperfect knowledge of the underlying shocks.14 Since

imperfect observations on the state lead to welfare losses, agents use the processed information

to estimate the true state.15 Specifically, we assume that households use the Kalman filter to

update the perceived state ŝt = Et [st] after observing new signals in the steady state in which

the conditional variance of st, Σt = var t [st], has converged to a constant Σ:

ŝt+1 = (1− θ) (Rŝt − ct) + θ (st+1 + ξt+1) , (24)

where θ is the Kalman gain (i.e., the observation weight).16 Note that in the signal extraction

problem, the Kalman gain can be written as

θ = ΣΛ−1, (25)

where Σ is the steady state value of the conditional variance of at+1, vart+1 [at+1], and Λ =

vart [ξt+1] is the variance of the noise. Σ and Λ are linked by the following updating equation for

the conditional variance in the steady state:

Λ−1 = Σ−1 −Ψ−1, (26)

where Ψ is the steady state value of the ex ante conditional variance of at+1, Ψt = var t [at+1].

Multiplying ω2
ζ on both sides of (26) and using the fact that Ψ = R2Σ + ω2

ζ , we have

ω2
ζΛ
−1 = ω2

ζΣ
−1 −

[
R2
(
ω2
ζΣ
−1
)−1

+ 1
]−1

, (27)

where ω2
ζΣ
−1 =

(
ω2
ζΛ
−1
) (

ΛΣ−1
)
. Define the signal-to-noise ratio (SNR) at π = ω2

ζΛ
−1. We

obtain the following equality linking SNR (π) and the Kalman gain (θ):

π = θ

(
1

1− θ
−R2

)
. (28)

Solving for θ yields

θ =
− (1 + π) +

√
(1 + π)2 + 4R2 (π +R2)

2R2
, (29)

14It is worth noting that this assumption is also consistent with the rational inattention idea that ordinary people

only devote finite information-processing capacity to processing financial information and thus cannot observe the

states perfectly.
15See Luo (2008) for details about the welfare losses due to information imperfections within the partial equilib-

rium permanent income hypothesis framework.
16Note that θ measures how much uncertainty about the state can be removed upon receiving the new signals

about the state.
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where we omit the negative values of θ because both Σ and Λ must be positive. Note that given

π, we can pin down Λ using π = ω2
ζΛ
−1 and Σ using (25) and (29).

Combining (4) with (24), we obtain the following equation governing the perceived state ŝt:

ŝt+1 = Rŝt − ct + ηt+1, (30)

where

ηt+1 = θR (st − ŝt) + θ (ζt+1 + ξt+1) (31)

is the innovation to the mean of the distribution of perceived permanent income,

st − ŝt =
(1− θ) ζt

1− (1− θ)R · L
− θξt

1− (1− θ)R · L
(32)

is the estimation error, and Et [ηt+1] = 0. Note that ηt+1 can be rewritten as

ηt+1 = θ

[(
ζt+1

1− (1− θ)R · L

)
+

(
ξt+1 −

θRξt
1− (1− θ)R · L

)]
, (33)

where ω2
ξ = var [ξt+1] = 1

θ
1

1/(1−θ)−R2ω
2
ζ . Expression (33) clearly shows that the estimation error re-

acts to the fundamental shock positively, while it reacts to the noise shock negatively. In addition,

the importance of the estimation error is decreasing with θ. More specifically, as θ increases, the

first term in (33) becomes less important because (1− θ) ζt in the numerator decreases, and the

second term also becomes less important because the importance of ξt decreases as θ increases.17

Although the assumption we use to introduce state uncertainty is different, the general frame-

work is still the same. More importantly, the solution strategy is also the same. Basically, we can

explicitly derive the expressions for consumption and the worst-case shock and then substitute

them into (30). Together with (32), it forms a state-space representation of the model.

Table 3 reports the implied consumption correlations (between the domestic country and

ROW) between the RE, RB, and RB-SU models. There are two interesting observations in the

table. First, given the degrees of RB and SU (θ), corr (ct, c
∗
t ) decreases with the aggregation

factor (λ). Second, when λ is positive (even if it is very small, e.g., 0.1 in the table), corr (ct, c
∗
t )

is decreasing with the degree of inattention (i.e., increasing with θ). The intuition is that when

there are common noises, the effect of the noises could dominate the effect of gradual consumption

adjustments on cross-country consumption correlations.

As we can see from Table 3, for all the countries we consider here, introducing SU into the RB

model can make the model better fit the data on consumption correlations at many combinations

of the parameter values. For example, for Italy, when θ = 60% (60% of the uncertainty is removed

17Note that when θ = 1, var [ξt+1] = 0.
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upon receiving a new signal about the innovation to permanent income) and λ = 1, the RB-SU

model predicts that corr (ct, c
∗
t ) = 0.27, which is very close to the empirical counterpart, 0.25.18

For France, when θ = 90% and λ = 0.5, the RB-SU model predicts that corr (ct, c
∗
t ) = 0.46, which

exactly matches the empirical counterpart. Note that a small value of θ can be rationalized by

examining the welfare effects of finite channel capacity.19

4.3 Other Possible Applications

This linear-quadratic framework which incorporates model uncertainty (due to RB) and state

uncertainty (either due to RI or imperfect information) can be applied to study other topics as

well. We will briefly discuss several more in this subsection. We will not write down the model

equations again as we have shown in Section 2 and 3 that these models can be written in a similar

framework.

First, as shown in the previous section, model uncertainty due to RB is particularly promising

and interesting for studying emerging and developed small-open economies because it has the

potential to generate the different joint behaviors of consumption and current accounts observed

across the two groups of economies. This novel theoretical contribution can also be used to address

the observed U.S. Great Moderation in which the volatility of output changed after 1984. Specif-

ically, this feature can be used to address different macroeconomic dynamics (e.g., consumption

volatility) given that output volatility changed before and after the Great Moderation.

Second, inventories in the standard production smoothing model can be viewed as a stabiliz-

ing factor. Cost-mininizing firms facing sales fluctuations smooth production by adjusting their

inventories. As a result, production is less volatile than sales. However, in the data, real GDP is

more volatile than final sales measured by real GDP minus inventory investment. The existing

studies find supportive evidence that real GNP is more volatile than final sales in industry-level

data. The key question is that if cost-minimizing firms use inventories to smooth their produc-

tion, why is production more volatile than sales? In the future research, we can examine whether

introducing RB can help improve the prediction of an otherwise standard production smoothing

model with inventories on the joint dynamics of inventories, production, and sales.

Third, as shown in Luo, Nie, and Young (2011c), the standard tax-smoothing model proposed

by Barro (1979) cannot explain the observed volatility of the tax rates and the joint behavior of

18For example, Adam (2005) found θ = 40% based on the response of aggregate output to monetary policy

shocks. Luo (2008) found that if θ = 50%, the otherwise standard permanent income model can generate realistic

relative volatility of consumption to labor income.
19See Luo and Young (2010) for details about the welfare losses due to imperfect observations in the RB model;

they are uniformly small.
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the government spending and deficits. As shown in Example 2 of Section (2), the tax-smoothing

model used in the literature falls well into the linear-quadratic framework we described. It’s easy

to show that the same mechanisms presented in Section 4.1 and 4.2 will work in the tax-smoothing

model which incorporates model uncertainty and state uncertainty. Specifically, Luo, Nie, and

Young (2011c) shows that it can help the standard model to better explain the relative volatility

of the changes in tax rates to government spending and the comovement between government

deficits and spending in the data.

Fourth, this framework can also be extended to study optimal monetary policy under model

uncertainty and imperfect state observation. A central bank sets nominal interest rate to mini-

mize prices fluctuations and the output gap (i.e., the deviation of the output from the potential

maximum output level). Following the literature, the standard objective function of a central

bank can be described by a quadratic function which is a weighted average of the deviation of the

inflation from its target and the output gap.20 Therefore, the framework presented in this paper

can be used to study optimal monetary policy when a central bank has concerns that the model

is misspecified and it faces noisy data when making decisions.21

4.4 Quantifying Model Uncertainty

One remaining question from previous sections is how to quantify the incorporated degree of

model uncertainty.22 In this section, we will show how to use the state-space representation of st

and ŝt to simulate the model and calibrate the key parameters. For convenience and consistence,

we continue to use the small-open economy model described in Example 1 as the illustration

example.

Let model A denote the approximating model and model B be the distorted model. Define

pA as

pA = Prob

(
log

(
LA
LB

)
< 0

∣∣∣∣A) , (34)

where log
(
LA
LB

)
is the log-likelihood ratio. When model A generates the data, pA measures the

probability that a likelihood ratio test selects model B. In this case, we call pA the probability of

20For example, see Svensson (2000), Gali and Monacelli (2005), Walsh (2005), Leitemo and Soderstrom (2008a,b).
21For the examples of the model equations describing the inflation and output dynamics in a closed economy, see

Leitemo and Soderstrom (2008a).
22This includes the two versions of the model presented in previous sections which incorporates the model un-

certainty due to RB: one uses the regular Kalman filter; the other one assumes that the agent does not trust the

Kalman filter either (robust filtering).
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the model detection error. Similarly, when model B generates the data, we can define pB as

pB = Prob

(
log

(
LA
LB

)
> 0

∣∣∣∣B) . (35)

Following Hansen, Sargent, and Wang (2002) and Hansen and Sargent (2007b), the detection

error probability, p, is defined as the average of pA and pB:

p (ϑ) =
1

2
(pA + pB) , (36)

where ϑ is the robustness parameter used to generate model B. Given this definition, we can

see that 1 − p measures the probability that econometricians can distinguish the approximating

model from the distorted model.

Now we show how to compute the model detection error probability due to model uncertainty

and state uncertainty.

In the model with both the RB preference and RI, the approximating model can be written

as

st+1 = Rst − ct + ζt+1, (37)

ŝt+1 = (1− θ) (Rŝt − ct) + θ (st+1 + λξt+1) , (38)

and the distorted model is

st+1 = Rst − ct + ζt+1 + ωζνt, (39)

ŝt+1 = (1− θ) (Rŝt − ct + ωζνt) + θ (st+1 + λξt+1) , (40)

where we remind the reader that λ =
var[ξt]
var[ξt]

∈ [0, 1] is the parameter measuring the relative

importance of ξt vs. ξt.

After substituting the consumption function and the worst-case shock expression into (38)

and (40) we can put the equations in the following matrix form:[
st+1

ŝt+1

]
=

[
R −R−1

1−Σ

θR 1−R+R(1−θ)(1−Σ)
1−Σ

][
st

ŝt

]
+

[
ζt+1

θ (ζt+1 + λξt+1)

]
+

[
Σ

1−Σc
Σ

1−Σc

]
(41)

and [
st+1

ŝt+1

]
=

[
R − (R− 1)

θR 1− θR

][
st

ŝt

]
+

[
ζt+1

θ (ζt+1 + λξt+1)

]
. (42)

Given the RB parameter, ϑ, and RI parameter, θ, we can compute pA and pB and thus the

detection error probability as follows.

14



1. Simulate {st}Tt=0 using (41) and (42) a large number of times. The number of periods used

in the simulation, T , is set to be the actual length of the data for each individual country.

2. Count the number of times that log
(
LA
LB

)
< 0
∣∣∣A and log

(
LA
LB

)
> 0
∣∣∣B are each satisfied.

3. Determine pA and pB as the fractions of realizations for which log
(
LA
LB

)
< 0
∣∣∣A and log

(
LA
LB

)
> 0
∣∣∣B,

respectively.

4.5 Discussions: Risk-sensitivity and Robustness under Rational Inattention

Risk-sensitivity (RS) was first introduced into the LQG framework by Jacobson (1973) and ex-

tended by Whittle (1981, 1990). Exploiting the recursive utility framework of Epstein and Zin

(1989), Hansen and Sargent (1995) introduce discounting into the RS specification and show that

the resulting decision rules are time-invariant. In the RS model agents effectively compute expec-

tations through a distorted lens, increasing their effective risk aversion by overweighting negative

outcomes. The resulting decision rules depend explicitly on the variance of the shocks, producing

precautionary savings, but the value functions are still quadratic functions of the states.23 In HST

(1999) and Hansen and Sargent (2007), they interpret the RS preference in terms of a concern

about model uncertainty (robustness or RB) and argue that RS introduces precautionary savings

because RS consumers want to protect themselves against model specification errors.

Following Luo and Young (2010), we formulate an RI version of risk-sensitive control based

on recursive preferences with an exponential certainty equivalence function as follows:

v̂ (ŝt) = max
ct

{
−1

2
(ct − c)2 + βRt [v̂ (ŝt+1)]

}
(43)

subject to the budget constraint (6) and the Kalman filter equation 14. The distorted expectation

operator is now given by

Rt [v̂ (ŝt+1)] = − 1

α
logEt [exp (−αv̂ (ŝt+1))] ,

where s0| I0 ∼ N
(
ŝ0, σ

2
)
, ŝt = Et [st] is the perceived state variable, θ is the optimal weight on

the new observation of the state, and ξt+1 is the endogenous noise. The optimal choice of the

weight θ is given by θ (κ) = 1 − 1/ exp(2κ) ∈ [0, 1]. The following proposition summarizes the

solution to the RI-RS model when βR = 1:

23Formally, one can view risk-sensitive agents as ones who have non-state-separable preferences, as in Epstein

and Zin (1989), but with a value for the intertemporal elasticity of substitution equal to one.
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Proposition 1 Given finite channel capacity κ and the degree of risk-sensitivity α, the consump-

tion function of a risk-sensitive consumer under RI

ct =
R− 1

1−Π
ŝt −

Πc

1−Π
, (44)

where

Π = Rαω2
η ∈ (0, 1) , (45)

ω2
η = var [ηt+1] =

θ

1− (1− θ)R2
ω2
ζ , (46)

ηt+1 is defined in (16), and θ (κ) = 1− 1/ exp(2κ).

Comparing (18) and (44), it is straightforward to show that it is impossible to distinguish

between RB and RS under RI using only consumption-savings decisions.

Proposition 2 Let the following expression hold:

α =
1

2ϑ
. (47)

Then consumption and savings are identical in the RS-RI and RB-RI models.

Note that (47) is exactly the same as the observational equivalence condition obtained in the

full-information RE model (see Backus, Routledge, and Zin 2004). That is, under the assumption

that the agent distrusts the Kalman filter equation, the OE result obtained under full-information

RE still holds under RI.24

HST (1999) show that as far as the quantity observations on consumption and savings are

concerned, the robustness version (ϑ > 0 or α > 0, β̃) of the PIH model is observationally

equivalent to the standard version (ϑ = ∞ or α = 0, β = 1/R) of the PIH model for a unique

pair of discount factors.25 The intuition is that introducing a preference for risk-sensitivity (RS)

or a concern about robustness (RB) increases savings in the same way as increasing the discount

factor, so that the discount factor can be changed to offset the effect of a change in RS or RB

on consumption and investment.26 Alternatively, holding all parameters constant except the pair

24Note that the OE becomes
αθ

1 − (1 − θ)R2
=

1

2ϑ
,

if we assume that the agents distrust the income process hitting the budget constraint, but trust the RI-induced

noise hitting the Kalman filtering equation.
25HST (1999) derive the observational equivalence result by fixing all parameters, including R, except for the

pair (α, β).
26As shown in HST (1999), the two models have different implications for asset prices because continuation

valuations would alter as one alters (α, β) within the observationally-equivalent set of parameters.
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(α, β), the RI version of the PIH model with RB consumers (ϑ > 0 and βR = 1) is observationally

equivalent to the standard RI version of the model (ϑ =∞ and β̃ > 1/R).

Proposition 3 Let

β̃ =
1

R

1−Rω2
η/ (2ϑ)

1−R2ω2
η/ (2ϑ)

=
1

R

1−Rαω2
η

1−R2αω2
η

>
1

R
.

Then consumption and savings are identical in the RI, RB-RI, and RS-RI models.

5 Conclusions

In this paper we show that a state-space representation can be explicitly derived from a classic

macroeconomic framework which has incorporated model uncertainty due to concerns for model

misspecification (robustness or RB) and state uncertainty due to limited information constraints

(rational inattention or RI). We show the state-space representation can also be used to quan-

tify the key model parameters. Several applications are also provided to show how this general

framework can be used to address a range of interesting economic questions.

6 Appendix

6.1 Solving the Current Account Model Explicitly under Model Uncertainty

To solve the Bellman equation (7), we conjecture that

v (st) = −As2
t −Bst − C,

where A, B, and C are undetermined coefficients. Substituting this guessed value function

into the Bellman equation gives

−As2
t −Bst − C = max

ct
min
νt

{
−1

2
(c− ct)2 + βEt

[
ϑν2

t −As2
t+1 −Bst+1 − C

]}
. (48)

We can do the min and max operations in any order, so we choose to do the minimization first.

The first-order condition for νt is

2ϑνt − 2AEt [ωζνt +Rst − ct]ωζ −Bωζ = 0,

which means that

νt =
B + 2A (Rst − ct)

2
(
ϑ−Aω2

ζ

) ωζ . (49)
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Substituting (49) back into (48) gives

−As2
t−Bst−C = max

ct

−1

2
(c− ct)2 + βEt

ϑ
B + 2A (Rst − ct)

2
(
ϑ−Aω2

ζ

) ωζ

2

−As2
t+1 −Bst+1 − C

 ,

where

st+1 = Rst − ct + ζt+1 + ωζνt.

The first-order condition for ct is

(c− ct)− 2βϑ
Aωζ

ϑ−Aω2
ζ

νt + 2βA

(
1 +

Aω2
ζ

ϑ−Aω2
ζ

)
(Rst − ct + ωζνt) + βB

(
1 +

Aω2
ζ

ϑ−Aω2
ζ

)
= 0.

Using the solution for νt the solution for consumption is

ct =
2AβR

1−Aω2
ζ/ϑ+ 2βA

st +
c
(

1−Aω2
ζ/ϑ
)

+ βB

1−Aω2
ζ/ϑ+ 2βA

. (50)

Substituting the above expressions into the Bellman equation gives

−As2
t −Bst − C

= −1

2

(
2AβR

1−Aω2
ζ/ϑ+ 2βA

st +
−2βAc+ βB

1−Aω2
ζ/ϑ+ 2βA

)2

+
βϑω2

ζ(
2
(
ϑ−Aω2

ζ

))2

2AR
(

1−Aω2
ζ/ϑ
)

1−Aω2
ζ/ϑ+ 2βA

st +B −
2c
(

1−Aω2
ζ/ϑ
)
A+ 2βAB

1−Aω2
ζ/ϑ+ 2βA

2

− βA

 R

1−Aω2
ζ/ϑ+ 2βA

st −
−Bω2

ζ/ϑ+ 2c+ 2Bβ

2
(

1−Aω2
ζ/ϑ+ 2βA

)
2

+ ω2
ζ


− βB

 R

1−Aω2
ζ/ϑ+ 2βA

st −
−Bω2

ζ/ϑ+ 2c+ 2Bβ

2
(

1−Aω2
ζ/ϑ+ 2βA

)
− βC.

Given βR = 1, collecting and matching terms, the constant coefficients turn out to be

A =
R (R− 1)

2−Rω2
ζ/ϑ

, (51)

B = − Rc

1−Rω2
ζ/ (2ϑ)

, (52)

C =
R

2
(

1−Rω2
ζ/2ϑ

)ω2
ζ +

R

2
(

1−Rω2
ζ/2ϑ

)
(R− 1)

c2. (53)

Substituting (51) and (52) into (50) yields the consumption function. Substituting (??) into

the current account identity and using the expression for st yields the expression for the current

account.
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Table 1: Emerging vs. Developed Countries (Averages)

A: Emerging vs. Developed Countries (HP Filter)

σ(y)/µ(y) 4.09(0.23) 1.98(0.09)

σ(∆y)/µ(y) 4.28(0.23) 1.89(0.07)

ρ(yt, yt−1) 0.53(0.03) 0.66(0.02)

ρ(∆yt,∆yt−1) 0.28(0.05) 0.46(0.03)

σ(c)/σ(y) 0.74(0.02) 0.59(0.02)

σ(∆c)/σ(∆y) 0.71(0.02) 0.59(0.02)

σ(ca)/σ(y) 0.79(0.03) 0.85(0.04)

ρ(c, y) 0.85(0.02) 0.78(0.02)

ρ(cat, cat−1) 0.30(0.05) 0.41(0.03)

ρ(ca, y) −0.59(0.05) −0.35(0.04)

ρ
(
ca
y , y

)
−0.54(0.04) −0.36(0.04)

B: Emerging vs. Developed Countries (Linear Filter)

σ(y)/µ(y) 7.97(0.40) 4.79(0.22)

σ(∆y)/µ(y) 4.28(0.23) 1.89(0.07)

ρ(yt, yt−1) 0.79(0.02) 0.89(0.01)

ρ(∆yt,∆yt−1) 0.28(0.05) 0.46(0.03)

σ(c)/σ(y) 0.72(0.02) 0.58(0.02)

σ(∆c)/σ(∆y) 0.71(0.02) 0.59(0.02)

σ(ca)/σ(y) 0.54(0.03) 0.65(0.04)

ρ(c, y) 0.88(0.02) 0.85(0.02)

ρ(cat, cat−1) 0.53(0.04) 0.71(0.02)

ρ(ca, y) −0.17(0.06) −0.08(0.05)

ρ
(
ca
y , y

)
−0.32(0.05) −0.20(0.04)
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Table 2: Implications of Different Models (Emerging Countries)

Data RE RB RB+RI RB+RI RB+RI RB+RI

(θ = 0.9) (θ = 0.8) (θ = 0.7) (θ = 0.5)

(λ = 1)

ρ(ca, y) 0.13 1.00 0.62 0.57 0.56 0.56 0.58

ρ(cat, cat−1) 0.53 0.80 0.74 0.57 0.50 0.45 0.36

σ(ca)/σ(y) 0.80 0.71 0.49 0.52 0.55 0.59 0.79

σ(∆c)/σ(∆y) 1.35 0.28 0.90 0.89 0.89 0.91 1.36

(λ = 0.5)

ρ(ca, y) 0.13 1.00 0.62 0.59 0.58 0.59 0.64

ρ(cat, cat−1) 0.53 0.80 0.74 0.63 0.59 0.55 0.46

σ(ca)/σ(y) 0.80 0.71 0.49 0.50 0.52 0.53 0.64

σ(∆c)/σ(∆y) 1.35 0.28 0.90 0.85 0.81 0.79 0.99

(λ = 0.1)

ρ(ca, y) 0.13 1.00 0.62 0.61 0.60 0.61 0.67

ρ(cat, cat−1) 0.53 0.80 0.74 0.67 0.64 0.62 0.56

σ(ca)/σ(y) 0.80 0.71 0.49 0.49 0.50 0.51 0.57

σ(∆c)/σ(∆y) 1.35 0.28 0.90 0.84 0.79 0.75 0.82
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Table 3: Theoretical corr (c, c∗) from Different Models

Data RE RB RB+SU RB+SU RB+SU

(θ = 0.9) (θ = 0.6) (θ = 0.3)

Canada

(λ = 1) 0.38 0.41 0.33 0.27 0.17 0.12

(λ = 0.5) 0.38 0.41 0.33 0.31 0.26 0.23

(λ = 0.1) 0.38 0.41 0.33 0.32 0.32 0.32

Italy

(λ = 1) 0.25 0.54 0.50 0.42 0.27 0.19

(λ = 0.5) 0.25 0.54 0.50 0.48 0.41 0.36

(λ = 0.1) 0.25 0.54 0.50 0.50 0.50 0.49

UK

(λ = 1) 0.21 0.69 0.45 0.38 0.25 0.17

(λ = 0.5) 0.21 0.69 0.45 0.44 0.38 0.32

(λ = 0.1) 0.21 0.69 0.45 0.46 0.46 0.45

France

(λ = 1) 0.46 0.51 0.49 0.40 0.26 0.18

(λ = 0.5) 0.46 0.51 0.49 0.46 0.40 0.34

(λ = 0.1) 0.46 0.51 0.49 0.49 0.48 0.48

Germany

(λ = 1) 0.04 0.45 0.40 0.33 0.22 0.15

(λ = 0.5) 0.04 0.45 0.40 0.38 0.33 0.29

(λ = 0.1) 0.04 0.45 0.40 0.40 0.40 0.40
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