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Abstract

The U.S. Census Bureau publishes estimates of medians for several characteristics of new houses, with akey estimate
being sales price of sold houses. These estimates are calculated from data acquired from interviews of home builders
by the Survey of Construction (SOC). The SOC isamulti-stage probability survey whose sample designiswell suited
to the modified half-sample-replication (MHS) method of variance estimation. The literature supports applying the
MHS method to replicate sample medians to estimate the sampling variance of a median. There are several
computational advantages, however, to using grouped data to estimate medians, with linear interpolation being used
within the grouped-data interval containing the median. Using survey data and simulated finite populations, we
compared the effectsof nogrouping(i.e. the samplemedian), grouping with fixed-sizeintervals, and grouping with data-
dependent-sized intervals on medians and associated MHS variance estimates. We examined the mean squared errors
and mean absolute errors of the median estimates and the relative bias and stability of the variance estimates and the
coverage of the associated confidence intervals. We found that the data-dependent-sized intervals yielded variance
estimates with the smallest bias, the best stability, and the best confidence intervals.
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1 Introduction

The U.S. Census Bureau publishes estimates of medians for several characteristics of new houses, with akey estimate
being sales price of sold houses. These estimates are calculated from data acquired from interviews of home builders
by the Survey of Construction (SOC). The SOC isamulti-stage probability survey whose sample designiswell suited
to the modified half sample (MHS) replication method? for reasons outlined in Section 3.B. In the near future, the SOC
will move its current estimation and variance estimation systems to the Census Bureau's re-engineered post-data-
collection system, the Standardized Economic Processing System (StEPS). When this occurs, SOC will change from
itscurrent non-replicatevariance estimation procedureto the M HSrepli cation variance estimation procedure (Thompson,
1998). Because the SOC variance estimation methodology is changing, we decided to revisit the median-estimation
methodology for continuousdata. Our goal wasto find amedian-estimation method with good estimation and variance
estimation properties, given the MHS replication.

We considered two methods of median-estimation. The first method uses the sample weights to estimate medians via
empirical cumulative-distribution functions. The second method uses linear interpolation of grouped continuous data
to approximate the median. The latter method isimplement in VPLX (Variances from ComPLeX Survey, Fay (1995)),
the replicate variance estimation software package developed at the Census Bureau.

Direct calculation of sample medians can be computationally intensive because it requires separate sorts for each value
of agiven classificationvariable. Analternative estimation method isto group the continuous datainto discreteintervals
(called bins) and use linear interpolation over the interval containing the median. Provided that the data are
approximately uniformly distributed over theinterval containing the median, interpolation yiel dsagood approximation
while being considerably less computer resource-demanding. However, optimal bin widths and |ocations may differ by
domain and may change over time as the sample distributions change.

In this paper, we compare six methods of median-estimation, given MHS replication: the sample median and five
variationsusing linear interpolation. Section 2 providesabrief overview of the SOC design. Section 3 presents general
methodology. Section 4 describes the empirical results from four months of SOC data that motivated the simulation
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study presented in Section 5. Section 6 provides our conclusions and recommendations.
2. SOC Sample Design

The SOC universe contains two sub-populations: local areas that require building permits and local areas that do not.
The SOC sampl e-units sel ected fromthefirst sub-popul ation comprisethe Survey of the Use of Permits (SUP), and those
selected from the second sub-popul ation, the Nonpermit Survey (NP). The SUP sample comprises the mgjority of the
SOC estimate. Thetwo samplesaremulti-stage probability samplesstratified by variableswith high expected correlation
with the survey’ s key statistics: housing starts, completions, and sales.

The first stage of the SUP and NP sample selection is a subsample of 1980 design Current Population Survey (CPS)
Primary Sampling Units (PSUs), which are contiguous areas of land with well-defined boundaries. Thus, both surveys
are conducted in the same PSUs but are otherwise independent samples. The PSUs were stratified within region by
weighted 1980 population 16 years and older, weighted 1982 residential permit activity, and percent of housing in
nonpermit areas. When possible, strata consisted of PSUs from the same state with the same metropolitan status. One
PSU per stratum was selected. Self-representing (SR) PSUs were included in the sample with certainty (the stratum
consistsof one PSU). Nonself-representing (NSR) PSUswere selected with probability proportional to size (PPS) from
strata containing more than one PSU.

The second stage of SUP sample selectionisastratified systematic sample of permit-issuing placeswithin sample PSUs
(selected once adecade). These places were stratified by a weighted average of the ratio of permit-issuing activity in
year i to the total US permit activity inyeari (i = 78, 81, 82). In many cases, only one second stage unit was sel ected.
The third stage of SUP sample selection is performed monthly: each month, Field Representatives (FRs) select a
systematic sample of building permits from the permit officesin each sampled permit-issuing place. One-to-four-unit
building permitsare selected systematically in such away that an overall one-in-forty sampleisachieved; five-or-more-
unit building permitsareincluded with certainty. Thethird-stage samplesareindependent by month; thefirst and second
stages are not.

The second stage of NP sample selectionisastratified systematic sample of small land areas (1980 Census Enumeration
Districts, or EDs), stratified by 1980 Census population size. For the third stage of NP sample selection, field
representatives completely canvass all of the roadsin the sampled EDs (called segments). To reduce canvassing, afew
of the larger EDs were subsegmented and one subsegment selected, or large EDs were 1-in-2 subsampled. Currently,
there are atotal of seventy-one active nonpermit segments. All new housing units are included in the NP sample with
certainty.

Median estimates are derived from the pooled SUP and NP samples and are calculated using a post-stratified weight for
the SUP portion and an unbiased weight for the NP portion.

3. M ethodology
A. Median-Estimation Procedures
1 Sample Median

One procedure for estimating the median of apopulation is cal culate the sample median from ungrouped data, using the
sample weight to locate the median. This approach isrecommended in Kovar, Rao, and Wu (1988) and Rao and Shao
(1996). The procedure uses the following steps:

sort the sample observations in ascending order;
accumulate the sum of the associated survey weights;
select thefirst observation for which the associated sum of the weights exceedsfifty percent of thetotal weight.

2. Linear Interpolation



Another approach for estimating the median of a population isto group the sample data and interpolate for the sample
median. Woodruff (1952) provides the following formulafor linear interpolation of a sample median:

1 %N "9
M= F'CR) = I+ (S———)* (@) (2.2)
where F= the cumulative frequency of the characteristic using sample weights

1= lower limit of the bin containing the median
N = estimated total number of elementsin the population

cumulative frequency in al intervals preceding the bin containing the median

f, median class frequency (estimated total number of elements in the population of the interval
containing the median)

i= width of the bin containing the median

Thisisthe method used by the current SOC production variance estimation system for monthly estimates and is also
the linear interpolation method employed by VPLX.

We considered two options for setting the class size (bin widths) for the interpolation. The first option develops bins
based on the specific characteristic under consideration using the original data. The second option linearly transforms
the data to a standard scale and then uses a standard set of bins for every characteristic. We used the following linear
transformation:
X/ = Xx 1,000 (2.2)
9,

where Q; isthethird quartile of the sample distribution (estimated using the ordered observations and sample weight as
outlinedin Section 2.A.1). Theinterpolated median of the X~ ismultiplied by (Q./1000) to obtain an estimated median
onthe origina scale’. This procedureis equivalent to simply dividing the original sample from 0 to Q into x bins of
equal width and placing the remainder of the datainto one bin which, by design, is much larger than the others.

Thisprocedureisdesigned for symmetric or positively skewed distributions (usually the case with economic data). The
datain the last binis not used to estimate the median because it is greater than Q,, which is expected to be far from the
median. If we based the linear transformation on Q, (the first quartile), the bin containing the median might be very
closeto thelowest binin the distribution. In this case, the difference in variability between an interpol ated median and
the sample median would be small.

Using the original data to develop medians has the advantage of producing production ready estimates and SEs.
Determining the appropriate fixed bin width is difficult, however. Asthe bin widths get small (approach width 1), the
variance estimates become more unstable. As the bin widths increase, the bias of the estimate due to interpolation
increases. The “optimal” bin size balances variance estimate stability and bias. Unfortunately, the optimal bin width
may not remain constant between samples. Often, the distributions change over time, and the bins widths/locationsin
the sample should reflect this change in scale. Moreover, the optimal bin width may be different for different values of

3 |f the distribution contains negative values (e.g., adistribution of net income), then use

X" - x 1,000

- X )* ——=——— where X, isthefirst order statistic and Q;(X; - Xy isS
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calculated from the distribution of (X; - X ;)). To obtain an estimated median on the original scale,
multiply the interpolated median by (Q(X; - X(;)) /1000) and add X ;.
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aclassification variable: for example, the optimal bin width for the Midwest’ s sales priceis probably different from the
optimal bin width for the South’s sales price.

The desire to have the width of the bin depend on the sample motivated the linear transformation. The “standard” bin
widths used for the transformed data less than Q, are not standard on the untransformed scale: the bin width is data-
dependent. Using the linearly transformed data requires more bookkeeping in terms of scaling constants but easily
allows for changes in the scale and shape of the distribution.

Figures 1 through 4 illustrate the effect of the linear transformation on the bin widths and location for two distributions.
Figures 1 and 2 present a distribution that has a large spread of data values, including a few very large observations.
Figures 3 and 4 present a distribution consisting of primarily small data values.

Figure 1 presents a histogram of the original distribution for houses sold with conventional financing, with bin width of
$25,000 [Note: the bin size was selected purely for presentation convenience, since thisis along-tailed distribution].
The median of this distribution is $167,130, and Q, is $225,000. Figure 2 presents the histogram of the linearly
transformed distribution with bin width of 50. In this example, the transformed bins of width 50 are equivalent to bins
of width $11,250 on the original scale (($225,000/1000)*50). Recall that the original-data bin sizes considered are
$1,000 and $2,000. Thus, the transformed-data bins of width 4 would have a width of $900 on the original
untransformed scale. Notice the large “ spike” at the last bin, which contains al of the sample greater than Q,.

Thesefiguresalso illustrate the differencesin distribution of sample sizes across bins between the two methods. Using
fixed bin widths with the original data resultsin quite variable bin sample sizes (see Figure 1). In contrast, by design
the sample sizes within the data-dependent bins are much more uniform for all but the last bin (see Figure 2).
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Figure 1: Origina Distribution of Sales Price of Figure 2 Origina Distribution of Sales Price of
Houses Sold With Conventional Financing Houses Sold With FHA Loans
Bin Width = $25,000 Bin Width = $4,000

Figure 3 presentsahistogram of the original distribution of houses sold with FHA loans, with binwidth of $4,000 (again,
the bin width is chosen for presentation convenience). The median of thisdistribution is$108,280, and Q, is $124,990.
Figure 4 presents the histogram of the linearly transformed distribution with bin width of 50. In this example, the
transformed bins of width 50 are equivalent to bins of width $6,250 on the original scale, and the transformed-data bins
of width 4 would have approximate width $500 on the original untransformed scale.



Figure 3 Transformed Distribution of Sales Price Figure 4 Transformed Distribution of Sales Price

of Houses Sold With Conventiona Financing of Houses Sold With FHA Loans Using Bin
Using Bin Width = 50 Width = 50
Bin Width on Untransformed Scale = $11,250 Bin Width on Untransformed Scale = $6,250

Figures 1 through 4 demonstrate the flexibility of the bins developed for linearly-transformed data. The bin size on the
untransformed scal eexpandsor contracts, depending onthe spread of thedata. Moreover, the data-dependent bin sample
sizes are less variable compared to those associated with fixed bins.

To evaluate the first interpolation option (original -data-interpolated medians), we used two different sets of bin widths
(classification sizes): binsof size $2000 (the same bin width used in the current production variance estimation system)
and binsof size$1000. [Note: TheVPLX variance estimation software would not allow any bin size smaller than 1000
because the number of classes exceeded the allowable array range.] After examining several months of sales price
estimates for the total U.S., we assumed that median sales price would always be larger than $36,000 and smaller than
$550,000, so the first original-data classification is always (low - 35,999) and the last original-data classification is
always (550,000 - high): thisyields 257 bins of size $2000 or 514 bins of size $1000, plus one bin of size $36,000 and
one bin whose width depends on the largest observation in the sample. One obvious problem with the locations of these
binsisthe potential effect of inflation. It is conceivable that within special financing categories or certain regions, the
median sales price for houses sold could approach $550,000, and the interpolation would fail as a consequence.

To evaluate the second interpol ation option (transformed-data-interpol ated-medians), we used three different setsof bin
widths: bins of size 4, 25, and 50. The bins of size 4 were chosen to be analogous to the bins of size 2000 in terms of
the number of bins. There are 250 bins of size 4 for the transformed data less than Q,, and one larger bin containing
all data greater than Q,. The selection of widths 25 and 50 was somewhat arbitrary: we chose bin size 50 to get atotal
of twenty bins for the data less than Q,; and we chose bin size 25 to examine the effect of doubling the number of
bing/halving the width of the binsfor data lessthan Q,. The transformed-data median is always less than 1,000, so the
last transformed-data classification is always (1,000 - high). Thus, by definition the last bin contains up to twenty-five
percent of the data and is considerably wider than the other bins.

B. Variance Estimation

We used the Modified Half Sample (MHS) replication method (Fay, 1989 and Judkins, 1990) to estimate the variance
of amedian as supported in the literature (e.g. Rao, Wu, and Y ue (1992); Rao and Shao (1996); Kovacevic and Yung
(1997) for balanced repeated replication; and Judkins (1990) for MHS replication). MHSreplication isavariation of
the “traditional” balanced half-sample variance estimation described in Wolter (1985, pp. 110-152). Balanced half-
samplereplication (BRR) isavariance estimation method designed for atwo-PSU per stratum design. With BRR, ahalf-
samplereplicateisformed by selecting one unit from each pair and weighting the selected unit by 2 (so that it represents
both units). Thus, estimatesfor every PSU areincluded in each replicate although half are weighted by zero. Replicates



(half-samples) are specified using aHadamard matrix. See Wolter (1985, pp. 114-115) for adetailed description of the
replicate formation procedure using Hadamard matrices. MHS replication usesreplicate weightsof 1.5and 0.5in place
of the2and 0. The standard error for a median estimate using MHS replication is given by

R
SE(Md) = J %* s (Med, - Med) . 2.3)
r=1
wherether subscript refersto thereplicate r median estimate (r = 1, 2,...,R) and the 0 subscript refersto the full sample
the median estimate. This expression contains afour (4) in the numerator because the M SE of the replicate estimates
istoo small by afactor of 1/(1-0.5)%. See Judkins (1990).

Neither the SUP nor the NP designs are two-sample-unit-per-stratum designs. At the first stage, one PSU per stratum
isselected. The second and third stages are systematic samples, and often only one unit per stratum was selected at the
second stage. A common approach used to address the one sample-unit per stratum problemisto

“gplit” the SR sample-units into two panels per sample-unit using the original sampling methodology;

form collapsed strata by pairing two (or three) “similar” NSR sample-units; and

apply the half-sample approach in such a way that the elements contributing to the half samples are panels
within sample-unitsfor SR sample-units and are the first stage sample-units (PSUs) within collapsed stratafor
NSR sample-units.

The current SOC production variance system uses a Keyfitz estimator (a paired difference estimator) for NSR sample
and a approximate sampling-formula estimator for SR sample to produce level estimate variances (Luery, 1990).
Because SOC methodologists had already collapsed NSR strata for their paired difference estimator, a BRR-like
application was alogical extension of the pre-existing variance estimation structure. For MHS replication, we sort
permits within predetermined sample-unit groups in SR units by geography and authorization date and systematically
split the ordered sample into two panels as suggested in Wolter (1985, p. 131). Although thisis essentially the only
approach available for the SOC design, this method may not provide the correct variance estimates since units in both
panels are correlated (in the original half-sample method, the two PSUs in the stratum are assumed independent). For
more details on the replicate assignments, see Thompson (1998).

The SOC production system uses the Woodruff method (Woodruff, 1952) to estimate the standard error of a median.
The Woodruff method usesthe estimated SE of aproportion p (p = 0.50 for median-estimation) and projectstheinterval
(p* SE(p)) through the cumul ative frequency distributionto obtain thelower limit of a62.86 percent confidenceinterval
for the median (the SE(p) can be estimated using replicate methods). The SE of the median is then estimated by
subtraction. This methodology has had mixed success in the past according to SOC survey analysts.

4. Empirical Data Results

Initially, we used four months of SOC sample data to examine the variances of the median-estimation methodsfor sales
price of sold houses: March 1997, May 1997, June 1997, and July 1997. We produced medians by region and by type
of financing. We used the same weight used by the SOC production estimation and variance systems (post-stratified for
SUP sample and unbiased for NP sampl€), pooling both surveys' datato obtain medians. Each set of variance estimates
was produced using 200 replicates.

Wefound that the six median-estimation methods produced very similar estimates, but yielded three distinct sets of SEs:
one set for the sample median, one set for the original-data-interpol ated medians (fixed bin width), and one set for the
transformed-data-interpol ated medians (data-dependent bin width). There was no clear relationship between bin width
and SE estimates within the two sets of interpolated medians. Indeed, within type of data (original or transformed), the
SEswere all very close. Clearly, there was alinear transformation and an interpolation effect. None of the median-
estimation methodsyielded standard errorsresembling the published standard errors, so there wasno available argument
for publication consistency.



Moreover, there is some evidence that the Woodruff method publication SEs are underestimates or are at least
inappropriatefor the sampledesign used. Kovar, Rao, and Wu (1988) compared Woodruff SEsand BRR standard errors
and found that the two methodshad similar properties except for the case of stratified samples, wherethe strataare based
on highly correlated separate variables (such asthe SOC design). In this case, the Woodruff SE is often too small, and
they concluded that “the BRR...methods (sic) are more robust to different population structures, since the error is
extracted directly from the replicates.” When the production system Woodruff SEs used the directly-cal culated SE(p),
the Woodruff SEswere generally smaller than the replicate SEs.

The empirical results left usin a quandary. We had three distinct sets of variance estimates, and no “gold standard”
against which to measure them. Because our empirical results were inconclusive, we conducted a Monte Carlo
simulation study to eval uatethe properties of the MHSvariance estimates produced from the different median estimators.

5. Simulation Study Comparison
A. Procedure for Simulation Study

We created four finite artificial populations based on a data analysis of four SOC sample populations: one type-of-
financing population (Conventional Financing) and three regional populations (Midwest (Region 2), South (Region 3),
and West (Region 4)). These populations represented a variety of the types of SOC populations from which estimates
are produced. Note that the SOC type-of-financing population is not independent of the SOC-region popul ations.

To approximate the finite population of sales price for houses sold, we generated w;, records for each sample-unit_,
where w, is the sample weight associated with uniti. The distributions of sales price for single-unit sold houses could
be approximated by lognormal distributions. The lognormal distribution has the probability density function
1 1 1. - 0)-
1) = L exp(- L og¥ = O Oy g g <y <o
y - 0250 2

where 2 is the threshold parameter, . isthe scale parameter, and F is the shape parameter.

From our models, we generated four simulated finite bivariate populations with expected correlation D=0.6 using the
method outlined in Naylor et al (1968, p. 99). Thefirst of the two variablesin each population represented sales price
of sold houses and was obtained by generating a random normal variable with mean . and variance F* using the
parameters determined above, then exponentiating and shifting by the appropriate location parameters (2). The second
variable was used to form strata and first stage clusters. Thisvariable had amargina standard normal distribution and
was obtained by independently generating asecond standard random normal value, multiplyingit by 0.8, and adding this
term to 0.6 x the standard normal random variable used to generate the sales price variable. Percentiles, sample
skewness, and sample kurtosis of each simulated population’ s sales price variable were very closeto the corresponding
statisticsin the original population, especially when outliers were del eted using the resistant outer fences rule described

in Hoaglin and Iglewicz (1987). Each population’ssizewasthe N estimated from the sample populations.  Model

parameters, samplecorrelations (between simulated salespriceand stratifying variable), population size (N), and sample
sizes(n) arereportedin Table 1.

Table 1: Characteristics of Simulated Populations and Sample Sizes of Stratified Samples

Sales Price Correlation Population | Sample Size
Parameters (Stratifier, Size
Sales price)




Population Distribution 2 F H D N n
Conventional lognormal 27578 0.4895 11.84 0.57030 25150 500
Financing

Midwest lognormal 31801 0.5957 11.69 0.55835 6500 150
South lognormal 29414 0.5549 11.55 0.55929 14550 300
West lognormal 53781 0.5822 11.59 0.55525 11550 250

After generating the finite populations, we formed 50 equal sized strata in each population, then selected two sets of
samples for two different survey designs:

Thefirst designis patterned after the SUP sample of permitsfor four-or-less-housing unitsin SR permit offices
in SR PSUs (approximately 28% of the SOC sample). In this study, we selected 5000 stratified without-
replacement random samples from each simulated population using the same sampling rate in each stratum.
To perform MHS replication, we sorted the sample within each stratum by stratifying variable and then
systematically split the sample into two panels.

The second design is patterned after the SUP sample of permits for four-or-less-housing unitsin NSR permit
officesin SR PSUs and in SR permit officesin NSR PSUs (approximately 40% of the SOC sample). In this
study, we sel ected 5000 two-stage samplesfrom each simulated popul ation. Thefirst stageisstratified without-
replacement random sample of two PSUs per stratum (N, =5). The second stageisasystematic sample of units
within PSUs. Becauseall PSUs are the same size, this study does not take the SOC PPS sampling into account
and does not include the collapsing of first-stage units. The MHS replication uses the first-stage sample units
(PSUs) within the same strata. The replicate weights do not account for large sampling fractions at the first
stage of selection as recommended in Wolter (1984, p. 122), so all of the variance estimates are probably
upwardly biased.

Wedid not attempt to simulate the SUP sample of permitsfor four-or-less-housing unitsin NSR PSUs and NSR permit
offices (a three-stage sample, approximately 25% of the SOC sample); the SUP sample of permits for five-or-more
housing units (approximately 2% of the SOC sample); or the NP sample of EDs (approximately 5% of the SOC sample).
The three-stage sampl e, although non-negligiblein SOC, israrely used by other surveys at the Census Bureau, and the
other two sectors of the SOC design do not contribute enough to the estimates to warrant a separate investigation.

To examine the precision of each median-estimation procedure over repeated samples, we estimated empirical Mean
Squared Errors (M SE) and Mean Absolute Errors (MAE) from the 5000 samples for:

Svl .

102000:
101000:

T4
IT25:
I T50:

the sample median of each half-sample

interpolated medians using original data, bins of size 2000 (fixed bin width)

interpolated medians using original data, bins of size 1000 (fixed bin width)

interpolated medians using linearly transformed data, bins of size 4 (data dependent bin width)
interpolated medians using linearly transformed data, bins of size 25 (data dependent bin width)
interpolated medians using linearly transformed data, bins of size 50 (data dependent bin width)

Thelinear transformation was performed once for procedures 1 T4, IT25, and I T50. Theoriginal dataweretransformed
using the full sample Q,, and these transformed data were assigned to the half-samples (including replicate O, the full
sample). Table 2 provides the median and third quartile of each finite population, along with the bin widths on the
original scale for the transformed data.

Table 2: Median, Third Quartile, and Bin Widths on Original Scale for Transformed Simulated Data

Population Median Q; Bin Width

4 | 25 | 50




Conventional 167173 222263 889 5557 11113
Financing
Midwest 151312 210647 843 5266 10532
(Region 2)
South 133745 180868 723 4522 9043
(Region 3)
West 162130 214320 857 5358 10716
(Region 4)

We calculated M(.,), the empirical M SE of median-estimation procedurei as
E(Cri - Zi)2 _
r N o 2
5000 € CP) (5.1)
() + bias’(()

M)

where . ; is the estimated median for sampler and estimator i, {, isthe average of the .;, and . is the population

median. Thisisthe empirical M SE described in Judkins (1990).

We calculated the Mean Absolute Error (MAE) of each median-estimation procedurei as

E |Cri - Cp|
MAEQC) = I —— 5.2
©) 5000 (5.2)
as defined in DeGroot (1986, pp. 209-211).
To compare the variance estimation properties of the different median-estimation methods, we calculated an MHS

variance estimate (v;) corresponding to each median-estimation procedure i from 1000 of the 5000 samples. These
variance estimates were compared in terms of

(s v,/1000)

Relative bias .
M)
Relative stability [(x (v;— M(£))*/1000)]2/M(C)
j=1
Error Rate (number of sampleswhere (.,<2; or ., > 2,)/1000 where

2, isthelower end of a 90% confidence interval, and
2 isthe upper end of a 90% confidence interval

These criteria are used in Kovar, Rao, and Wu (1988) and in Rao and Shao (1996). Therelative bias is a measure of
the bias of the variance estimate as a proportion of the true MSE. The stability is a measure of the variance of the
variance estimates; it approximates a c.v. of the variance estimate v;. Note that the relative stability is not the relative
MSE defined in Wolter (1985, p. 297) which uses the squared-M SE in the denominator. With an “optimal” variance
estimator, both the relative bias and relative stability will be near zero, and the error rate will be ten percent.

B. Results

1 Comparison of Median-estimation Procedures



Table 3 presents the empirical root MSE, standard error, the bias, and the MAE for each median-estimation procedure
from both simulation studies. Each of these statistics was calculated from 5000 samples.

Table 3: Empirical Root MSE, Standard Error, Bias, and MAE for Median-Estimation Procedures

Population Median-Estimation | Unclustered Single-Stage Sample Clustered Two-stage Sample
Procedure
Root SE Bias MAE Root SE Bias MAE
MSE MSE
Conventional |SM 3345 3345 -12 2671 | 3389 3374 324 2733
Financing 102000 3320 3316 161 2698 3346 3341 189 2685
101000 3387 3368 -354 2642 3431 3420 -278 2774
IT4 3351 3340 273 2673 3378 3364 311 2719
IT25 3304 | 3293 276 2617 3337 3321 322 2664
IT50 3282 3265 329 2606 3305 3283 375 2636
Region 2 SM 6316 6287 -598 4966 6273 6228 -753 4959
Midwest 102000 6276 6275 -127 4992 6335 6207 | -1271 | 5029
101000 6343 6297 -767 4939 6526 6280 | -1774 | 5204
IT4 6372 6363 328 5004 | 6294 | 6228 -908 4979
IT25 6273 6272 127 4937 6270 6154 | -1199 | 4971
IT50 6220 6218 160 4936 6224 | 6114 | -1164 [ 4966
Region 3 SM 3670 3658 301 2931 3835 3752 796 3054
South 102000 3708 3669 539 2998 3796 3739 656 3011
101000 3742 3740 101 2941 3809 3804 212 3066
IT4 3718 3662 639 2951 3814 | 3736 766 3028
IT25 3699 3638 669 2924 | 3793 3711 787 2992
IT50 3692 3616 745 2912 3778 3680 856 2970
Region 4 SM 4385 | 4382 -140 3509 | 4394 | 4351 616 3506
West 102000 4425 | 4421 185 3578 | 4362 | 4339 449 3487
101000 4477 | 4469 -258 3530 | 4411 | 4410 -57 3535
IT4 4414 | 4403 318 3514 | 4383 | 4342 599 3494
IT25 4376 | 4364 315 3460 | 4334 | 4296 573 3439
IT50 4367 | 4350 391 3455 | 4320 | 4271 644 3436

These results reinforced our suspicions from the empirical data analysis described earlier. At least for sales price, al
six median-estimation procedures perform approximately equally well, with approximately equal root-M SEsand MAEs
between procedures in each population.

2. Comparison of MHS Replication Variance Estimation Properties of Median-Estimation Procedures
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When we examined the variance estimation properties for each procedure, the results were quite different. Aswith our
empirical dataanaysis, we had three very distinctive setsof results. Table 4 summarizesthethree different comparison
measures for the variance estimates in the four populations. The numerators for the relative bias and stability and the
coverageratesarebased on 1000 samples. Thedenominator for therelative biasand stability (“truth”) arebased on 5000
samples. An asterisk (*) in the last column of Table 4 indicates that the error rate is significantly different from the
nominal error rate of 0.10 using the normal approximation to the binomial distribution at the 90% confidence level.

Table 4: Relative Bias and Relative Stability for Variance Estimates, and Error Rates for 90% Confidence Intervals

Population  |Median-Estimation Unclustered Single Stage Design Clustered Two-stage Design
Procedure Relative | Relative Error Relative | Relative Error
Bias Stability Rate Bias Stability Rate
Conventional |SM 0.19 0.69 11.0% 0.11 0.58 15.1%*
Financing 102000 0.25 0.35 6.9%* 0.25 0.37 9.0%
101000 0.21 0.32 7.0%* 0.19 0.33 9.3%
IT4 0.06 0.25 10.0% 0.06 0.27 11.3%
IT25 0.07 0.25 10.9% 0.06 0.27 11.8%*
IT50 0.05 0.26 9.5% 0.05 0.28 12.1%*
Region 2 SM 0.57 1.24 7.3%* 0.41 1.07 7.9%*
Midwest 102000 0.33 0.44 6.9%* 0.23 0.35 8.6%
101000 0.30 0.42 7.0%* 0.17 0.30 8.7%
IT4 0.15 0.41 10.1% 0.14 0.41 11.5%*
IT25 0.16 0.40 9.8% 0.11 0.37 10.4%
IT50 0.15 0.42 9.0% 0.11 0.40 10.4%
Region 3 SM 0.30 0.88 12.4%* 0.15 0.71 11.1%
South 102000 0.31 0.42 6.7%* 0.28 0.39 7.5%*
101000 0.29 0.40 6.7%* 0.27 0.38 7.3%*
IT4 0.04 0.29 11.0% 0.01 0.28 10.8%
IT25 0.02 0.28 11.0% -0.01 0.27 11.3%
IT50 0.01 0.29 11.1% -0.02 0.28 11.9%*
Region 4 SM 0.39 0.98 8.9% 0.25 0.79 8.6%
West 102000 0.32 0.42 6.29%* 0.31 0.41 5.2%*
101000 0.29 0.39 6.2%* 0.28 0.38 5.2%*
T4 0.11 0.32 8.6% 0.10 0.31 7.6%*
IT25 0.10 0.31 9.4% 0.09 0.30 7.5%*
IT50 0.08 0.31 9.5% 0.08 0.31 8.3%*

Inboth studies, thevariance estimates of the transformed-data-interpol ated medians perform best interms of relative bias
and stability. Specificaly,

1 The variance estimates of the transformed-data-interpolated medians (174, IT25, IT50) have the smallest
relative bias. The differencein estimation method is quite pronounced in three of the four populations, where
the largest relative bias of the transformed-data-interpolated medians is less than one-half the size of the
smallest relative bias of the original-data-interpolated and sample medians. These results are surprisingly
strong for the two-stage clustered design, since the variance estimates are expected to be biased upwar ds (see
Section 5.A);
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The variance estimates of the interpol ated medians had the best stability. The variance estimates of the sample
median had the poorest stability in all four populations. This result was expected due to the smoothing effect
of interpolation. Again, thetransformed-data-interpolated mediansgenerally performed better thantheoriginal -
data-interpolated medians, although the difference is not as pronounced as in the case of relative bias.
Generadlly, the stability is close with all three bin widths for the transformed-data-interpol ated medians.

Theresultsfor each median-estimation procedure’ sconfidenceinterval coverage arenot asconsistent, varying by design.
With the single-stage unclustered design, the confidence intervals constructed from transformed-data-interpol ated
mediansand SEshavethebest coverage. |n each population, the data-dependent bins (all widths) yield closeto nominal
or better coverage; in fact, none of these error rates is statistically different from the nominal 10%. The confidence
intervalsconstructed from original-data-interpol ated mediansand SEsare extremely conservative. Here, the positivebias
in the variance estimates makes these intervals unnecessarily wide, thereby reducing the power to make interesting
findings. The coverage with the sample median is erratic.

Some of these coverage patterns are repeated in the two-stage clustered design. Again, the coverage with the sample
medianiserratic, and the coverageratesfor the confidenceinterval s constructed from original -data-interpol ated medians
are better than nominal (although only significantly better than nominal in two populations). The error rate pattern is
quite different for the transformed-data-interpolated medians. Inall but the Region 4 population, the coveragesratesfor
thethree procedures are worse than nominal. However, with bins of widths4 and 25, only one error rateis significantly
larger than 10%; for bins of width 50, two of these three error rates are significantly larger than 10%. All of the
interpol ated-data-medians have significantly smaller than nominal error ratesinthe Region 4 popul ation; consistent with
the other population’ s results, the error rates for the original-data-interpolated medians are the farthest from 10%.

In both studies, the transformed-data-interpolated medians have the best variance estimation properties in terms of
relative bias and relative stability by alarge margin, regardless of bin width. And, in both studies, the transformed-data-
interpolated medians using bins of width 4 or width 25 have excellent confidence interval coverage. Since the
transformed-data-interpol ated-medians using bins of width 50 or width 25 yielded the“ best” estimatorsin termsof root-
MSE and MAE in both studies, using linear interpolation on transformed data with bins of width 25 appears to be the
best median-estimation procedure in terms of estimation and variance estimation properties.

6. Conclusion

We explored the effect of using variations of two different methods of estimating the median sales price of sold houses:
direct estimation versus linear interpolation. Linear interpolation requires classifying continuous data into bins of
standard width. Thiswidth can be arbitrary, can differ greatly by domain, and may change as the sample distribution
changes over time. The linear transformation based on the third quartile appeared to correct this problem. With the
transformed data, the bins' widths and locations in the distribution change depending on the data.

Our empirical resultsindicated that the choice of method has a pronounced impact on the variance estimatesgiven MHS
replication. Our simulation study examined the properties of the different median-estimation procedures on the MHS
replicate variance estimates. In all four smulated populations, the transformed-data-interpolated medians (data
dependent bin widths) performed the best, usually by awide margin. Most critically, this method greatly reduces the
overestimation of the variance. Using bins of width 25 on the transformed scale (41 binstotal) yielded the best median
sales price estimates and variance estimates, given MHS replication and is our recommended method for the Survey of
Construction.

The recommended method has several advantages. First, it's adaptive. 1t works well for a variety of distributions,
because the bin widthsthemselves depend on the distribution at hand. Second, it saves computing resources by avoiding
sorting half-samples. Third, the data-dependent -intervalscan be easily incorporated into generalized survey-processing
software. Finaly, it gives better estimatesand MHS replicate variance estimates (at |east for sales price of sold houses).
We expect that these results are generalizable for other continuous distributions as well, although obviously this
conjecture should be tested on other data sets. Other areas for future research include examining the relationship
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between sample size and precision of the median estimates, examining alternative bin sizes, and exploring the robustness
of the recommended procedure with different replicate variance estimation procedures.
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