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Abstract

The U.S. Census Bureau publishes estimates of medians for several characteristics of new houses, with a key estimate
being sales price of sold houses.  These estimates are calculated from data acquired from interviews of home builders
by the Survey of Construction (SOC).  The SOC is a multi-stage probability survey whose sample design is well suited
to the modified half-sample-replication (MHS) method of  variance estimation.  The literature supports applying the
MHS method to replicate sample medians to estimate the sampling variance of a median.  There are several
computational advantages, however, to using grouped data to estimate medians, with linear interpolation being used
within the grouped-data interval containing the median.  Using survey data and simulated finite populations, we
compared the effects of  no grouping (i.e. the sample median), grouping with fixed-size intervals, and grouping with data-
dependent-sized intervals on medians and associated MHS variance estimates.  We examined the mean squared errors
and mean absolute errors of the median estimates and the relative bias and stability of the variance estimates and the
coverage of the associated confidence intervals.   We found that the data-dependent-sized intervals yielded variance
estimates with the smallest bias, the best stability, and the best confidence intervals.
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1. Introduction

The U.S. Census Bureau publishes estimates of medians for several characteristics of new houses, with a key estimate
being sales price of sold houses.  These estimates are calculated from data acquired from interviews of home builders
by the Survey of Construction (SOC).  The SOC is a multi-stage probability survey whose sample design is well suited
to the modified half sample (MHS) replication method2 for reasons outlined in Section 3.B.  In the near future, the SOC
will move its current estimation and variance estimation systems to the Census Bureau’s re-engineered post-data-
collection system, the Standardized Economic Processing System (StEPS).  When this occurs, SOC will change from
its current non-replicate variance estimation procedure to the MHS replication variance estimation procedure (Thompson,
1998).  Because the SOC variance estimation methodology is changing, we decided to revisit the median-estimation
methodology for continuous data.   Our goal was to find a median-estimation method with good estimation and variance
estimation properties, given the MHS replication. 

We considered two methods of median-estimation.  The first method uses the sample weights to estimate medians via
empirical cumulative-distribution functions.  The second method uses linear interpolation of grouped continuous data
to approximate the median.  The latter method is implement in VPLX (Variances from ComPLeX Survey, Fay (1995)),
the replicate variance estimation software package developed at the Census Bureau.

Direct calculation of sample medians can be computationally intensive because it requires separate sorts for each value
of a given classification variable.  An alternative estimation method is to group the continuous data into discrete intervals
(called bins) and use linear interpolation over the interval containing the median.  Provided that the data are
approximately uniformly distributed over the interval containing the median, interpolation yields a good approximation
while being considerably less computer resource-demanding. However, optimal bin widths and locations may differ by
domain and may change over time as the sample distributions change.  

In this paper, we compare six methods of median-estimation, given MHS replication:  the sample median and five
variations using linear interpolation.  Section 2 provides a brief overview of the SOC design.  Section 3 presents general
methodology.  Section 4 describes the empirical results from four months of  SOC data that motivated the simulation



2

study presented in Section 5.  Section 6 provides our conclusions and recommendations.

2. SOC Sample Design

The SOC universe contains two sub-populations: local areas that require building permits and local areas that do not.
The SOC sample-units selected from the first sub-population comprise the Survey of the Use of Permits (SUP), and those
selected from the second sub-population, the Nonpermit Survey (NP).  The SUP sample comprises the majority of the
SOC estimate.  The two samples are multi-stage probability samples stratified by variables with high expected correlation
with the survey’s key statistics:  housing starts, completions, and sales.

The first stage of the SUP and NP sample selection is a subsample of 1980 design Current Population Survey (CPS)
Primary Sampling Units (PSUs), which are contiguous areas of land with well-defined boundaries. Thus, both surveys
are conducted in the same PSUs but are otherwise independent samples.  The PSUs were stratified within region by
weighted 1980 population 16 years and older, weighted 1982 residential permit activity, and percent of housing in
nonpermit areas.  When possible, strata consisted of PSUs from the same state with the same metropolitan status.  One
PSU per stratum was selected. Self-representing (SR) PSUs were included in the sample with certainty (the stratum
consists of one PSU).  Nonself-representing (NSR) PSUs were selected with probability proportional to size (PPS) from
strata containing more than one PSU.

The second stage of  SUP sample selection is a stratified systematic sample of permit-issuing places within sample PSUs
(selected once a decade).  These places were stratified by a weighted average of the ratio of permit-issuing activity in
year i to the total US permit activity in year i (i = 78, 81, 82).  In many cases, only one second stage unit was selected.
The third stage of SUP sample selection is performed monthly:  each month, Field Representatives (FRs) select a
systematic sample of building permits from the permit offices in each sampled permit-issuing place.  One-to-four-unit
building permits are selected systematically in such a way that an overall one-in-forty sample is achieved; five-or-more-
unit building permits are included with certainty.  The third-stage samples are independent by month; the first and second
stages are not.  

The second stage of NP sample selection is a stratified systematic sample of small land areas (1980 Census Enumeration
Districts, or EDs), stratified by 1980 Census population size. For the third stage of NP sample selection, field
representatives completely canvass all of the roads in the sampled EDs (called segments).  To reduce canvassing, a few
of the larger EDs were subsegmented and one subsegment selected, or large EDs were 1-in-2 subsampled.  Currently,
there are a total of seventy-one active nonpermit segments.  All new housing units are included in the NP sample with
certainty.

Median estimates are derived from the pooled SUP and NP samples and are calculated using a post-stratified weight for
the SUP portion and an unbiased weight for the NP portion.

3. Methodology

A. Median-Estimation Procedures
1. Sample Median

One procedure for estimating the median of a population is calculate the sample median from ungrouped data, using the
sample weight to locate the median.  This approach is recommended in Kovar, Rao, and Wu (1988) and  Rao and Shao
(1996).  The procedure uses the following steps:

! sort the sample observations in ascending order;
! accumulate the sum of the associated survey weights;
! select the first observation for which the associated sum of the weights exceeds fifty percent of the total weight.

2. Linear Interpolation
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Another approach for estimating the median of a population is to group the sample data and interpolate for the sample
median.  Woodruff (1952) provides the following formula for linear interpolation of a sample median:

(2.1)

where F = the cumulative frequency of the characteristic using sample weights 
ll = lower limit of the bin containing the median

 =  estimated total number of elements in the population

cf = cumulative frequency in all intervals preceding the bin containing the median
fi = median class frequency (estimated total number of elements in the population of the  interval

containing the median)
i = width of the bin containing the median 

This is the method used by the current SOC production variance estimation system for monthly estimates and is also
the linear interpolation method employed by VPLX.

We considered two options for setting the class size (bin widths) for the interpolation.  The first option develops bins
based on the specific characteristic under consideration using the original data. The second option linearly transforms
the data to a standard scale and then uses a standard set of bins for every characteristic.  We used the following linear
transformation:

(2.2)

where Q3 is the third quartile of the sample distribution (estimated using the ordered observations and sample weight as
outlined in Section 2.A.1).  The interpolated median of the X'  is multiplied by (Q3/1000) to obtain an estimated median
on the original scale3.   This procedure is equivalent to simply dividing the original sample from 0 to Q3 into x bins of
equal width and placing the remainder of the data into one bin which, by design, is much larger than the others.  

This procedure is designed for symmetric or positively skewed distributions (usually the case with economic data).  The
data in the last bin is not used to estimate the median because it is greater than Q3., which is expected to be far from the
median.   If we based the linear transformation on Q1 (the first quartile), the bin containing the median might be very
close to the lowest bin in the distribution.  In this case, the difference in variability between an interpolated median and
the sample median would be small.  

Using the original data to develop medians has the advantage of producing production ready estimates and SEs.
Determining the appropriate fixed bin width is difficult, however.  As the bin widths get small (approach width 1), the
variance estimates become more unstable.  As the bin widths increase, the bias of the estimate due to interpolation
increases.  The “optimal” bin size balances variance estimate stability and bias.  Unfortunately, the optimal bin width
may not remain constant between samples.  Often, the distributions change over time, and the bins widths/locations in
the sample should reflect this change in scale.  Moreover, the optimal bin width may be different for different values of
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a classification variable:  for example, the optimal bin width for the Midwest’s sales price is probably different from the
optimal bin width for the South’s sales price.

The desire to have the width of the bin depend on the sample motivated the linear transformation.  The “standard” bin
widths used for the transformed data less than Q3 are not standard on the untransformed scale:  the bin width is data-
dependent.   Using the linearly transformed data requires more bookkeeping in terms of scaling constants but easily
allows for changes in the scale and shape of the distribution. 

Figures 1 through 4 illustrate the effect of the linear transformation on the bin widths and location for two distributions.
Figures 1 and 2 present a distribution that has a large spread of data values, including a few very large observations.
Figures 3 and 4 present a distribution consisting of primarily small data values.

Figure 1 presents a histogram of the original distribution for houses sold with conventional financing, with bin width of
$25,000 [Note: the bin size was selected purely for presentation convenience, since this is a long-tailed distribution].
The median of this distribution is $167,130, and Q3 is $225,000.  Figure 2 presents the histogram of the linearly
transformed distribution with bin width of 50.  In this example, the transformed bins of width 50 are equivalent to bins
of width $11,250 on the original scale (($225,000/1000)*50).  Recall that the original-data bin sizes considered are
$1,000 and $2,000.  Thus, the transformed-data bins of width 4 would have a width of $900 on the original
untransformed scale.  Notice the large “spike” at the last bin, which contains all of the sample greater than Q3.

These figures also illustrate the differences in distribution of sample sizes across bins between the two methods.  Using
fixed bin widths with the original data results in quite variable bin sample sizes (see Figure 1).   In contrast, by design
the sample sizes within the data-dependent bins are much more uniform for all but the last bin (see Figure 2). 

Figure 1: Original Distribution of Sales Price of
Houses Sold With Conventional Financing
Bin Width = $25,000

Figure 2 Original Distribution of Sales Price of
Houses Sold With FHA Loans
Bin Width = $4,000

Figure 3 presents a histogram of the original distribution of houses sold with FHA loans, with bin width of $4,000 (again,
the bin width is chosen for presentation convenience).  The median of this distribution is $108,280, and Q3 is $124,990.
Figure 4 presents the histogram of the linearly transformed distribution with bin width of 50.  In this example, the
transformed bins of width 50 are equivalent to bins of width $6,250 on the original scale, and the transformed-data bins
of width 4 would have approximate width $500 on the original untransformed scale.
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Figure 3 Transformed Distribution of Sales Price
of Houses Sold With Conventional Financing
Using Bin Width = 50
Bin Width on Untransformed Scale = $11,250

Figure 4 Transformed Distribution of Sales Price
of Houses Sold With FHA Loans Using Bin
Width = 50
Bin Width on Untransformed Scale = $6,250

Figures 1 through 4 demonstrate the flexibility of the bins developed for linearly-transformed data.  The bin size on the
untransformed scale expands or contracts, depending on the spread of the data.  Moreover, the data-dependent bin sample
sizes are less variable compared to those associated with fixed bins.

To evaluate the first interpolation option (original-data-interpolated medians), we used two different sets of bin widths
(classification sizes):  bins of size $2000 (the same bin width used in the current production variance estimation system)
and bins of size $1000.  [Note:  The VPLX variance estimation software would not allow any bin size smaller than 1000
because the number of classes exceeded the allowable array range.] After examining several months of sales price
estimates for the total U.S., we assumed that median sales price would always be larger than $36,000 and  smaller than
$550,000, so the first original-data classification is always (low - 35,999) and the last original-data classification is
always (550,000 - high): this yields 257 bins of size $2000 or 514 bins of size $1000, plus one bin of size $36,000 and
one bin whose width depends on the largest observation in the sample.  One obvious problem with the locations of these
bins is the potential effect of inflation.  It is conceivable that within special financing categories or certain regions, the
median sales price for houses sold could approach $550,000, and the interpolation would fail as a consequence.

To evaluate the second interpolation option (transformed-data-interpolated-medians), we used three different sets of bin
widths: bins of size 4, 25, and 50.  The bins of size 4 were chosen to be analogous to the bins of size 2000 in terms of
the number of bins.  There are 250 bins of size 4 for the transformed data less than Q3, and one larger bin containing
all data greater than Q3.  The selection of widths 25 and 50 was somewhat arbitrary: we chose bin size 50 to get a total
of twenty bins for the data less than Q3; and we chose bin size 25 to examine the effect of doubling the number of
bins/halving the width of the bins for data less than Q3.  The transformed-data median is always less than 1,000, so the
last transformed-data classification is always (1,000 - high).  Thus, by definition the last bin contains up to twenty-five
percent of the data and is considerably wider than the other bins. 

B. Variance Estimation

We used the Modified Half Sample (MHS) replication method (Fay, 1989 and Judkins, 1990) to estimate the variance
of a median as supported in the literature (e.g. Rao, Wu, and Yue (1992); Rao and Shao (1996); Kovacevic and Yung
(1997) for balanced repeated replication; and  Judkins (1990) for MHS replication).  MHS replication is a variation of
the “traditional” balanced half-sample variance estimation described in Wolter (1985, pp. 110-152).  Balanced half-
sample replication (BRR) is a variance estimation method designed for a two-PSU per stratum design.  With BRR, a half-
sample replicate is formed by selecting one unit from each pair and weighting the selected unit by 2 (so that it represents
both units).  Thus, estimates for every PSU are included in each replicate although half are weighted by zero.  Replicates
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(half-samples) are specified using a Hadamard matrix.  See Wolter (1985, pp. 114-115) for a detailed description of the
replicate formation procedure using Hadamard matrices.  MHS replication uses replicate weights of 1.5 and 0.5 in place
of the 2 and 0.   The standard error for a median estimate using MHS replication is given by

. (2.3)

where the r subscript refers to the replicate r median estimate (r = 1, 2,...,R) and the 0 subscript refers to the full sample
the median estimate.  This expression contains a four (4) in the numerator because the MSE of the replicate estimates
is too small by a factor of 1/(1-0.5)2.  See Judkins (1990).
  
Neither the SUP nor the NP designs are two-sample-unit-per-stratum designs.  At the first stage, one PSU per stratum
is selected.  The second and third stages are systematic samples, and often only one unit per stratum was selected at the
second stage.  A common approach used to address the one sample-unit per stratum problem is to

! “split” the SR sample-units into two panels per sample-unit using the original sampling methodology;
! form collapsed strata by pairing two (or three) “similar” NSR sample-units; and
! apply the half-sample approach in such a way that the elements contributing to the half samples are panels

within sample-units for SR sample-units and are the first stage sample-units (PSUs) within collapsed strata for
NSR sample-units.

The current SOC production variance system uses a Keyfitz estimator (a paired difference estimator) for NSR sample
and a approximate sampling-formula estimator for SR sample to produce level estimate variances (Luery, 1990).
Because SOC methodologists had already collapsed NSR strata for their paired difference estimator, a BRR-like
application was a logical extension of the pre-existing variance estimation structure.   For MHS replication,  we sort
permits within predetermined sample-unit groups in SR units by geography and authorization date and systematically
split the ordered sample into two panels as suggested in Wolter (1985, p. 131).  Although this is essentially the only
approach available for the SOC design, this method may not provide the correct variance estimates since units in both
panels are correlated (in the original half-sample method, the two PSUs in the stratum are assumed independent).  For
more details on the replicate assignments, see Thompson (1998). 

The SOC production system uses the Woodruff method (Woodruff, 1952) to estimate the standard error of a median.
The Woodruff method uses the estimated SE of a proportion p (p = 0.50 for median-estimation) and projects the interval
(p ± SE(p)) through the cumulative frequency distribution to obtain the lower limit of a 62.86 percent confidence interval
for the median (the SE(p) can be estimated using replicate methods).  The SE of the median is then estimated by
subtraction.  This methodology has had mixed success in the past according to SOC survey analysts.

4. Empirical Data Results

Initially, we used four months of SOC sample data to examine the variances of the median-estimation methods for sales
price of sold houses: March 1997, May 1997, June 1997, and July 1997.  We produced medians by region and by type
of financing. We used the same weight used by the SOC production estimation and variance systems (post-stratified for
SUP sample and unbiased for NP sample), pooling both surveys’ data to obtain medians.  Each set of variance estimates
was produced using 200 replicates.

We found that the six median-estimation methods produced very similar estimates, but yielded three distinct sets of SEs:
one set for the sample median, one set for the original-data-interpolated medians (fixed bin width), and one set for the
transformed-data-interpolated medians (data-dependent bin width).  There was no clear relationship between bin width
and SE estimates within the two sets of interpolated medians.  Indeed, within type of data (original or transformed), the
SEs were all very close.  Clearly, there was a linear transformation and an interpolation effect.  None of the median-
estimation methods yielded standard errors resembling the published standard errors, so there was no available argument
for publication consistency.
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Moreover, there is some evidence that the Woodruff method publication SEs are underestimates or are at least
inappropriate for the sample design used.  Kovar, Rao, and Wu (1988) compared Woodruff SEs and BRR standard errors
and found that the two methods had similar properties except for the case of stratified samples, where the strata are based
on highly correlated separate variables (such as the SOC design).  In this case, the Woodruff SE is often too small, and
they concluded that “the BRR...methods (sic) are more robust to different population structures, since the error is
extracted directly from the replicates.” When the production system Woodruff SEs used the directly-calculated SE(p),
the Woodruff SEs were generally smaller than the replicate SEs. 

The empirical results left us in a quandary.  We had three distinct sets of variance estimates, and no “gold standard”
against which to measure them.  Because our empirical results were inconclusive, we conducted a Monte Carlo
simulation study to evaluate the properties of the MHS variance estimates produced from the different median estimators.

5. Simulation Study Comparison

A. Procedure for Simulation Study

We created four finite artificial populations based on a data analysis of four SOC sample populations: one type-of-
financing population (Conventional Financing) and three regional populations (Midwest (Region 2), South (Region 3),
and West (Region 4)).  These populations represented a variety of the types of SOC populations from which estimates
are produced.  Note that the SOC type-of-financing population is not independent of the SOC-region populations.  

To approximate the finite population of sales price for houses sold, we generated  wi records for each sample-unit i,
where wi is the sample weight associated with unit i.  The distributions of sales price for single-unit sold houses could
be approximated by lognormal distributions.  The lognormal distribution has the probability density function

where 2 is the threshold parameter, . is the scale parameter, and F is the shape parameter.

From our models, we generated four simulated finite bivariate populations with expected correlation D=0.6 using the
method outlined in Naylor et al (1968, p. 99).   The first of the two variables in each population represented sales price
of sold houses and was obtained by generating a random normal variable with mean . and variance F2 using the
parameters determined above, then exponentiating and shifting by the appropriate location parameters (2).  The second
variable was used to form strata and first stage clusters.  This variable had a marginal standard normal distribution and
was obtained by independently generating a second standard random normal value, multiplying it by 0.8, and adding this
term to 0.6 × the standard normal random variable used to generate the sales price variable.  Percentiles, sample
skewness, and sample kurtosis of each simulated population’s sales price variable were very close to the corresponding
statistics in the original population, especially when outliers were deleted using the resistant outer fences rule described

in Hoaglin and Iglewicz (1987).  Each population’s size was the  estimated from the sample populations.   Model

parameters,  sample correlations (between simulated sales price and stratifying variable), population size (N), and sample
sizes (n)  are reported in Table 1.

Table 1:  Characteristics of Simulated Populations and Sample Sizes of Stratified Samples

Sales Price
Parameters

Correlation 
(Stratifier,

Sales price)

Population
Size

Sample Size
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Population Distribution 2 F H D N n

Conventional
Financing

lognormal 27578 0.4895 11.84 0.57030 25150 500

Midwest lognormal 31801 0.5957 11.69 0.55835 6500 150

South lognormal 29414 0.5549 11.55 0.55929 14550 300

West lognormal 53781 0.5822 11.59 0.55525 11550 250

After generating the finite populations, we formed 50 equal sized strata in each population, then selected two sets of
samples for two different survey designs:

! The first design is patterned after the SUP sample of permits for four-or-less-housing units in SR permit offices
in SR PSUs (approximately 28% of the SOC sample).  In this study, we selected 5000 stratified without-
replacement random samples from each simulated population using the same sampling rate in each stratum.
To perform MHS replication, we sorted the sample within each stratum by stratifying variable and then
systematically split the sample into two panels.

! The second design is patterned after the SUP sample of permits for four-or-less-housing units in NSR permit
offices in SR PSUs and in SR permit offices in NSR PSUs (approximately 40% of the SOC sample).  In this
study, we selected 5000 two-stage samples from each simulated population.  The first stage is stratified without-
replacement random sample of two PSUs per stratum (Nh =5).  The second stage is a systematic sample of units
within PSUs.  Because all PSUs are the same size, this study does not take the SOC PPS sampling into account
and does not include the collapsing of first-stage units.  The MHS replication uses the first-stage sample units
(PSUs) within the same strata.  The replicate weights do not account for large sampling fractions at the first
stage of selection as recommended in Wolter (1984, p. 122), so all of the variance estimates are probably
upwardly biased.

We did not attempt to simulate the SUP sample of permits for four-or-less-housing units in NSR PSUs and NSR permit
offices (a three-stage sample, approximately 25% of the SOC sample); the SUP sample of permits for five-or-more
housing units (approximately 2% of the SOC sample); or the NP sample of EDs (approximately 5% of the SOC sample).
 The three-stage sample, although non-negligible in SOC, is rarely used by other surveys at the Census Bureau, and the
other two sectors of the SOC design do not contribute enough to the estimates to warrant a separate investigation.

To examine the precision of each median-estimation procedure over repeated samples, we estimated empirical Mean
Squared Errors (MSE) and Mean Absolute Errors (MAE) from the 5000 samples for:

SM: the sample median of each half-sample
IO2000: interpolated medians using original data, bins of size 2000 (fixed bin width)
IO1000: interpolated medians using original data, bins of size 1000 (fixed bin width)
IT4: interpolated medians using linearly transformed data, bins of size 4 (data dependent bin width)
IT25: interpolated medians using linearly transformed data, bins of size 25 (data dependent bin width)
IT50: interpolated medians using linearly transformed data, bins of size 50 (data dependent bin width)

The linear transformation was performed once for procedures IT4, IT25, and IT50.  The original data were transformed
using the full sample Q3, and these transformed data were assigned to the half-samples (including replicate 0, the full
sample).  Table 2 provides the median and third quartile of each finite population, along with the bin widths on the
original scale for the transformed data.

Table 2: Median, Third Quartile, and Bin Widths on Original Scale for Transformed Simulated Data
Population Median Q3 Bin Width

4 25 50
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Conventional
Financing

167173 222263 889 5557 11113

Midwest
(Region 2)

151312 210647 843 5266 10532

South
(Region 3)

133745 180868 723 4522 9043

West 
(Region 4)

162130 214320 857 5358 10716

We calculated M(.i), the empirical MSE of median-estimation procedure i as

 (5.1)

where .ri is the estimated median for sample r and estimator i, is the average of the .ri, and  .p is the population

median.    This is the empirical MSE described in Judkins (1990).

We calculated the Mean Absolute Error (MAE) of each median-estimation procedure i as

(5.2)

as defined in DeGroot (1986, pp. 209-211). 

To compare the variance estimation properties of the different median-estimation methods, we calculated an MHS
variance estimate (vij) corresponding to each median-estimation procedure i from 1000 of the 5000 samples.  These
variance estimates were compared in terms of 

Relative bias

Relative stability 

Error Rate (number of samples where (.p< 2Li or .p > 2Ui)/1000 where
2Li is the lower end of a 90% confidence interval, and  
2Ui is the upper end of a 90% confidence interval

These criteria are used in Kovar, Rao, and Wu (1988) and in Rao and Shao (1996).  The relative bias is a measure of
the bias of the variance estimate as a proportion of the true MSE.  The stability is a measure of the variance of the
variance estimates; it approximates a c.v. of the variance estimate vi.  Note that the relative stability is not the relative
MSE defined in Wolter (1985, p. 297) which uses the squared-MSE in the denominator. With an “optimal” variance
estimator, both the relative bias and relative stability will be near zero, and the error rate will be ten percent.

B. Results

1. Comparison of Median-estimation Procedures
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Table 3 presents the empirical root MSE, standard error, the bias, and the MAE for each median-estimation procedure
from both simulation studies.  Each of these statistics was calculated from 5000 samples.

Table 3: Empirical Root MSE, Standard Error, Bias, and MAE for Median-Estimation Procedures

Population Median-Estimation 
Procedure

Unclustered Single-Stage  Sample Clustered  Two-stage Sample

Root
MSE

SE Bias MAE Root
MSE

SE Bias MAE

Conventional SM 3345 3345 -12  2671 3389 3374 324 2733

Financing IO2000 3320 3316 161 2698 3346 3341 189 2685

IO1000 3387 3368 -354 2642 3431 3420 -278 2774

IT4 3351 3340 273 2673 3378 3364 311 2719

IT25 3304 3293 276 2617 3337 3321 322 2664

IT50 3282 3265 329 2606 3305 3283 375 2636

Region 2 SM 6316 6287 -598 4966 6273 6228 -753 4959

Midwest IO2000 6276 6275 -127 4992 6335 6207 -1271 5029

IO1000 6343 6297 -767 4939 6526 6280 -1774 5204

IT4 6372 6363 328 5004 6294 6228 -908 4979

IT25 6273 6272 127 4937 6270 6154 -1199 4971

IT50 6220 6218 160 4936 6224 6114 -1164 4966

Region 3 SM 3670 3658 301 2931 3835 3752 796 3054

South IO2000 3708 3669 539 2998 3796 3739 656 3011

IO1000 3742 3740 101 2941 3809 3804 212 3066

IT4 3718 3662 639 2951 3814 3736 766 3028

IT25 3699 3638 669 2924 3793 3711 787 2992

IT50 3692 3616 745 2912 3778 3680 856 2970

Region 4 SM 4385 4382 -140 3509 4394 4351 616 3506

West IO2000 4425 4421 185 3578 4362 4339 449 3487

IO1000 4477 4469 -258 3530 4411 4410 -57 3535

IT4 4414 4403 318 3514 4383 4342 599 3494

IT25 4376 4364 315 3460 4334 4296 573 3439

IT50 4367 4350 391 3455 4320 4271 644 3436

These results  reinforced our suspicions from the empirical data analysis described earlier.  At least for sales price, all
six median-estimation procedures perform approximately equally well, with approximately equal root-MSEs and MAEs
between procedures in each population.

2. Comparison of MHS Replication Variance Estimation Properties of Median-Estimation Procedures
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When we examined the variance estimation properties for each procedure, the results were quite different.  As with our
empirical data analysis, we had three very distinctive sets of results.   Table 4 summarizes the three different comparison
measures for the variance estimates in the four populations.  The numerators for the relative bias and stability and the
coverage rates are based on 1000 samples.  The denominator for the relative bias and stability (“truth”) are based on 5000
samples.  An asterisk (*) in the last column of Table 4 indicates that the error rate is significantly different from the
nominal error rate of 0.10 using the normal approximation to the binomial distribution at the 90% confidence level. 

Table 4: Relative Bias and Relative Stability for Variance Estimates, and Error Rates for 90% Confidence Intervals
Population Median-Estimation

Procedure
Unclustered Single Stage Design Clustered Two-stage Design

Relative
 Bias

Relative
Stability

Error
 Rate

Relative
Bias

Relative
Stability

Error
 Rate

Conventional SM 0.19 0.69 11.0% 0.11 0.58 15.1%*
Financing I02000 0.25 0.35 6.9%* 0.25 0.37 9.0%

IO1000 0.21 0.32 7.0%* 0.19 0.33 9.3%
IT4 0.06 0.25 10.0% 0.06 0.27 11.3%
IT25 0.07 0.25 10.9% 0.06 0.27 11.8%*
IT50 0.05 0.26 9.5% 0.05 0.28 12.1%*

Region 2 SM 0.57 1.24 7.3%* 0.41 1.07 7.9%*
Midwest IO2000 0.33 0.44 6.9%* 0.23 0.35 8.6%

I01000 0.30 0.42 7.0%* 0.17 0.30 8.7%
IT4 0.15 0.41 10.1% 0.14 0.41 11.5%*
IT25 0.16 0.40 9.8% 0.11 0.37 10.4%
IT50 0.15 0.42 9.0% 0.11 0.40 10.4%

Region 3 SM 0.30 0.88 12.4%* 0.15 0.71 11.1%
South IO2000 0.31 0.42 6.7%* 0.28 0.39 7.5%*

IO1000 0.29 0.40 6.7%* 0.27 0.38 7.3%*
IT4 0.04 0.29 11.0% 0.01 0.28 10.8%
IT25 0.02 0.28 11.0% -0.01 0.27 11.3%
IT50 0.01 0.29 11.1% -0.02 0.28 11.9%*

Region 4 SM 0.39 0.98 8.9% 0.25 0.79 8.6%
West IO2000 0.32 0.42 6.2%* 0.31 0.41 5.2%*

IO1000 0.29 0.39 6.2%* 0.28 0.38 5.2%*
IT4 0.11 0.32 8.6% 0.10 0.31 7.6%*
IT25 0.10 0.31 9.4% 0.09 0.30 7.5%*
IT50 0.08 0.31 9.5% 0.08 0.31 8.3%*

In both studies, the variance estimates of the transformed-data-interpolated medians perform best in terms of relative bias
and stability.  Specifically,

! The variance estimates of the transformed-data-interpolated medians (IT4, IT25, IT50) have the smallest
relative bias.  The difference in estimation method is quite pronounced in three of the four populations, where
the largest relative bias of the transformed-data-interpolated medians is less than one-half the size of the
smallest relative bias of the original-data-interpolated and sample medians.  These results are surprisingly
strong for the two-stage clustered design, since the variance estimates are expected to be biased upwards (see
Section 5.A);
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! The variance estimates of the interpolated medians had the best stability.  The variance estimates of the sample
median had the poorest stability in all four populations.  This result was expected due to the smoothing effect
of interpolation.  Again, the transformed-data-interpolated medians generally performed better than the original-
data-interpolated medians, although the difference is not as pronounced as in the case of relative bias.
Generally, the stability is close with all three bin widths for the transformed-data-interpolated medians.

The results for each median-estimation procedure’s confidence interval coverage are not as consistent, varying by design.
With the single-stage unclustered design, the confidence intervals constructed from transformed-data-interpolated
medians and SEs have the best coverage.  In each population, the data-dependent bins (all widths) yield close to nominal
or better coverage; in fact, none of these error rates is statistically different from the nominal 10%. The confidence
intervals constructed from original-data-interpolated medians and SEs are extremely conservative. Here, the positive bias
in the variance estimates makes these intervals unnecessarily wide, thereby reducing the power to make interesting
findings. The coverage with the sample median is erratic.

Some of these coverage patterns are repeated in the two-stage clustered design.  Again, the coverage with the sample
median is erratic, and the coverage rates for the confidence intervals constructed from original-data-interpolated medians
are better than nominal (although only significantly better than nominal in two populations).  The error rate pattern is
quite different for the transformed-data-interpolated medians.  In all but the Region 4 population, the coverages rates for
the three procedures are worse than nominal.  However, with bins of widths 4 and 25, only one error rate is significantly
larger than 10%; for bins of width 50, two of these three error rates are significantly larger than 10%.  All of the
interpolated-data-medians have significantly smaller than nominal error rates in the Region 4 population; consistent with
the other population’s results, the error rates for the original-data-interpolated medians are the farthest from 10%.

In both studies, the transformed-data-interpolated medians  have the best variance estimation properties in terms of
relative bias and relative stability by a large margin, regardless of bin width. And, in both studies, the transformed-data-
interpolated medians using bins of width 4 or width 25 have excellent confidence interval coverage.  Since the
transformed-data-interpolated-medians using bins of width 50 or width 25 yielded the “best” estimators in terms of root-
MSE and MAE in both studies, using linear interpolation on transformed data with bins of width 25 appears  to be the
best median-estimation procedure in terms of estimation and variance estimation properties.

6. Conclusion

We explored the effect of using variations of two different methods of estimating the median sales price of sold houses:
direct estimation versus linear interpolation.  Linear interpolation requires classifying continuous data into bins of
standard width.  This width can be arbitrary, can differ greatly by domain, and may change as the sample distribution
changes over time.  The linear transformation based on the third quartile appeared to correct this problem.  With the
transformed data, the bins’ widths and locations in the distribution change depending on the data.

Our empirical results indicated that the choice of method has a pronounced impact on the variance estimates given MHS
replication.  Our simulation study examined the properties of the different median-estimation procedures on the MHS
replicate variance estimates.  In all four simulated populations, the transformed-data-interpolated medians (data
dependent bin widths)  performed the best, usually by a wide margin.  Most critically, this method greatly reduces the
overestimation of the variance.  Using bins of width 25 on the transformed scale (41 bins total) yielded the best median
sales price estimates and variance estimates, given MHS replication and is our recommended method for the Survey of
Construction.

The recommended method has several advantages.  First, it’s adaptive.  It works well for a variety of distributions,
because the bin widths themselves depend on the distribution at hand. Second, it saves computing resources by avoiding
sorting half-samples.  Third, the data-dependent -intervals can be easily incorporated into generalized survey-processing
software.  Finally, it gives better estimates and MHS replicate variance estimates (at least for sales price of sold houses).
We expect that these results are generalizable for other continuous distributions as well, although obviously this
conjecture should be tested on other data sets.   Other areas for future research include examining the relationship
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between sample size and precision of the median estimates, examining alternative bin sizes, and exploring the robustness
of the recommended procedure with different replicate variance estimation procedures.
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