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1. Introduction. 

 There is growing evidence that the time series behavior of US inflation is 

changing.  The most notable change is the decline in inflation persistence. For example, 

in a reduced form model Cogley (2005) and Cogley and Sargent (2007) show that 

inflation persistence has declined dramatically and that this decline occurred around 

1983.  

 But the decline in inflation persistence is not the only change. There is evidence 

suggesting that the slope of the Phillip’s curve may also have declined. To make these 

statements more concrete, a typical empirical Phillips curve is estimated by  

ttt gapLa 211 )( βπβπ ++= −        (1) 

where tπ denotes inflation, )(1 Lβ  is a distributed lag, and tgap denotes the output gap.   

The sum of the distributed lag coefficients is referred to as inflation persistence and the 

slope of the Phillips curve is given by 2β . Both of these appear to have declined. These 

drops have troubled some policymakers because they imply that the costs to lowering 

inflation have likely risen. 

 This paper uses a dynamic stochastic general equilibrium model to explain the 

decline in inflation persistence, and to a lesser extent the slope of the Phillips curve. Our 

hypothesis is that there has not been a change in the structural Phillips curve. Assuming a 

constant Phillips curve, we see how well the model can match the time series behavior of 

these estimated coefficients. Our results suggest that the change in Fed policy and the 

dramatic drop in the variability of total factor productivity (an important factor behind the 

so called “great moderation”) may be responsible for the changes in inflationary 
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dynamics. In particular, we show that (1) a change in the aggressiveness of the central 

bank response to inflation (a more aggressive Taylor rule), and (2) a decrease in the 

relative variance of technology shocks are qualitatively consistent with the changed 

coefficients.  

The paper is organized as follows. We first examine a standard DNK model and 

derive analytical expressions for inflation persistence and the gap coefficient. We argue 

that if mark-up shocks become relatively more important, inflation persistence will 

decline. Furthermore, if the central bank becomes more aggressive in fighting inflation, 

inflation persistence will also decline. We then calibrate our model and argue that a more 

aggressive Taylor rule in conjunction with a decrease in the relative variance of 

technology shocks (assuming that the variance of mark-up shocks did not change) is 

quantitatively consistent with the changed coefficients. We then present some sensitivity 

analysis.  

 

2. Analytical Results.   

 This section uses a fairly standard DNK model to demonstrate how the model’s 

regression coefficients are affected by the relative variability of mark-up shocks and the 

degree of aggressiveness in the central bank’s response to inflation. Production is linear 

in labor with a random and auto-correlated productivity shock given by tθ , while 

household preferences are separable in consumption and labor with risk-aversion 

coefficient of σ and Frisch labor supply elasticity of 1/ν.  The Calvo pricing equation 

assumes that there is indexing to past inflation as in Christiano, Eichenbaum, and Evans 

(2005). This introduces a backward element into the Calvo equation. (See also Woodford 
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(2003) for details.)  The central bank follows a simple Taylor rule 

with tgaptt gapR ττπ +=  with τ ≥ 1.
1
  We consider more general Taylor rules in the next 

section. 

The familiar DNK model can be expressed as 

tgtttttgapt gQPgapgapMgap )1()1()( 11 −+−+−=−+ ++ ρθρπττπ  (2) 

πελππββπ tttttt gapE +++=+ −+ 11)1(      (3) 
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and tE  denotes the expectations operator, ssc denotes steady-state consumption, 

tg denotes government spending, and πε t  denotes a mark-up shock.  We follow the 

convention of assuming that the mark-up shocks are iid (see Fuhrer (2006), Roberts 

(2006), and the empirical evidence in Adam and Billi (2006)).  Note that technology and 

government spending shocks enter into (2) symmetrically.  The empirical evidence 

reported below suggests that the autocorrelation of the technology and government 

                                                 
1
 We assume τ > 1 because as we show in the appendix the size of gapτ does not affect the necessary 

condition for determinacy. This is because of the Christiano et al. (2005) assumption that the Calvo curve is 

indexed to lagged inflation. 
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spending processes are comparable.  For simplicity in our analytical results we focus only 

on technology shocks to the Fisher equation (2).
2
   

 Econometric estimation of the system (2)-(3) is reminiscent of the standard 

identification problems with simultaneous equations.  To the extent that the data is 

generated by Fisher equation shocks in (2), the inflation-gap data will reveal a positive 

relationship between inflation and the gap as in the Phillips curve (3). Conversely, to the 

extent that mark-up shocks are more important, the data will reveal a negative 

relationship between inflation and the gap as in (2).  Hence, a key issue in the analysis is 

the relative variability of shocks to the Fisher equation (2) versus shocks to the Phillips 

curve (3).   

The importance of mark-up shocks versus Fisher equation shocks is also affected 

by the nature of monetary policy. An increase in how aggressively the central bank fights 

inflation will increase the relative importance of mark-up shocks so that the data will 

reveal the Fisher equation and a negative relationship between inflation and the gap.  

Solving (2)-(3) forward we have 
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where (2a) assumes gapτ  = 0.  The Fisher equation shocks are weighted by 1/τ, but the 

mark-up shocks are not.  Hence, a more aggressive monetary policy tends to directly 

reduce the effect that Fisher shocks have on inflation and the gap so that the inflation-gap 

data will be primarily driven by mark-up shocks. Similarly, if the monetary policy rule 

                                                 
2
 We do not consider monetary shocks, but they would also enter into (2) in a symmetric fashion.   
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offsets technology shocks then this would also increase the relative importance of mark-

up shocks.
3
 

  We will now formally prove these conjectures. We begin the analysis with some 

results on the equilibrium decision rules and then turn to the implications for the 

regression coefficients.  Remarkably, the iid mark-up shocks and the form of the Calvo 

equation with past indexation imply that the way the gap responds to lagged inflation and 

the mark-up shock are identical.   

 

Proposition 1:  The decision rules are given by  

 

tttt caa θεππ π ++= −1        (4) 

  

tttt daagap θγεγπ π ++= −1        (5) 
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Proof:  See Appendix. 

                                                 
3
 For example, if the shocks are observable optimal monetary policy implies that the policy rule would 

directly respond to Fisher-equation shocks (eg., 
ttt PR θρτπ )1( −+= ) in order to keep the real rate of 

interest at its “natural” rate in response to technology shocks (again, see Woodford (2003)).  In this case we 

have a model in which inflation and the output gap respond only to mark-up shocks so that the model data 

would behave as if there were no technology or government spending shocks.   
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 Suppose that an econometrician runs an OLS regression like (1) on the data that 

comes out of this model.  The simple structure of the theoretical model implies that only 

one lag of inflation is needed in the estimates.  Hence, we will consider an OLS 

regression of the form: 

ttt gap211 βπβπ += − .        (6) 

Although the variances of the underlying shocks have no effect on the (linear) decision 

rule coefficients in Proposition 1, these variances will have an important effect on the 

OLS coefficients. Our key analytical results are summarized in the following proposition 

and its three corollaries. 

 

Proposition 2:  The OLS coefficients in equation (6) are given by: 
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Proof:  See Appendix. 

 

We have the following corollaries. 
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Corollary 1:  Suppose there are only technology shocks ( 0=rv ).  Then we have 
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Proof:  The expressions for the OLS coefficients come from simple algebra.  As for the 

limiting results, Proposition 1 implies that as ∞→τ , 
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QED. 

 

Corollary 2:  Suppose there are only mark-up shocks ( ∞→rv ).  Then we have  

.0/1,0 21 <== γββ  

As ∞→τ , 02 →β  (from below).   

Proof:  By inspection. 

 

Corollary 3:  Suppose that both shocks are operative (rv is nonzero and finite).  As 

∞→τ  ( −∞→γ ),  

( )rvMP

P

gap

2222

222

1
)()1(

)1(

τρλ

ρρλ
β

++−

−
→ . 

02 →β . 

As ∞→gapτ  ( 0→γ ),  



 9 

11 →β , and  
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Proof:  See Appendix. 

 

 Notice that since λ is typically estimated to be quite small, Corollary 3 implies 

that as τ goes to infinity 1β  is essentially zero. Thus inflation persistence will be nearly 

zero for either a strict inflation-targeting central bank or an economy with only mark-up 

shocks ( ∞→rv ).  Conversely, a gap-targeting central bank ( ∞→gapτ ) results in 

inflation persistence of unity, the lag coefficient in the decision rule (4).  Hence a more 

aggressive Taylor Rule can have different effects on measured inflation persistence 

depending on which policy parameter has increased, τ or gapτ .   

 A summary of these Corollaries is presented in Table 1.  Note that as 0→rv  

Corollary 3 does not converge to Corollary 1. With a central bank that reacts infinitely-

aggressively to inflation, there is a discontinuity between an economy with rv = 0 and an 

economy with a very small amount of mark-up shocks. 

 Table 1 confirms the earlier intuition suggesting two possible explanations for the 

decline in the size of the estimated OLS coefficients: (i) a decline in the variance of 

technology shocks (and thus an increase in the relative importance of mark-up shocks), 

and (ii) a more aggressive monetary policy response to inflation (a larger τ). But are these 

qualitative results quantitatively relevant?  In the next section, we provide some 

numerical results that suggest that the answer is “yes.”   
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3. Numerical Results.   

In this section we present two sets of results on the quantitative effect of changes 

in monetary policy and changes in relative variances. Our first results are a quantitative 

extension of the closed-form expressions in Proposition 2. Our second set of results 

simulate the model by feeding into it estimates of the actual shock process hitting the US 

economy since 1960 and then estimating the implied OLS coefficients.   

First we need to discuss calibration. We choose parameter values that are within 

the standard range in the literature: β = 0.99, ν = 1.0, σ = 1.0, and λ = 0.104 (implying an 

average of 5 quarters between price changes). We consider two time periods, 1960-1979 

and 1983-2004, where the break is suggested by the well-known change in monetary 

policy, see Clarida, Gali and Gertler (2000).  We discard the middle years because of the 

significant uncertainty regarding the policy rule during this time period. 

The shock processes for technology
4
 and government spending

5
 are estimated for 

these two sample periods. The results are shown in Table 2. The autocorrelation of both 

shocks is comparable so that we essentially have one shock in the Fisher equation. (For 

the closed-form results we abstract from government spending shocks.) Time variation in 

the estimated AR(1) coefficients is small so we treat them as being constant over the 

                                                 
4
 The technology series was kindly provided by Peter Rupert. Capital includes both equipment and 

structures, but excludes residential investment. The series is logged and HP-filtered with a smoothing 

parameter 1600. 
5
 In the model government spending is the share of government expenditures in total output.  Since our 

model does not include capital, we choose to measure government spending as government spending 

divided by the sum of government spending and total consumption expenditures. This data is obtained from 

the BEA. The series are also logged and HP-filtered with smoothing parameter 1600. 
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sample and impose a common autoregressive coefficient from the entire sample of ρ = 

0.75.
6
   

The relative variance (rv) of mark-up shocks is crucial to our analysis. From 

Proposition 2 we have 
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Although Table 2 provides evidence on the changing variability of technology shocks, 

there is no corresponding direct evidence on mark-up shocks.  Instead we will assume 

that the variability of mark-up shocks is constant over time. Later we calibrate this 

variance so that the model matches the level of inflation persistence (0.26) in the data 

over the period 1983-2004.  

 Even with an assumed constant variance of mark-up shocks, the dramatic decline 

in the variance of total factor productivity (productivity shocks) since 1983 implies that 

the relative variability of mark-up shocks increased. Table 2 shows that the standard 

deviation of productivity shocks decreased from, 0.0087 to 0.0048, implying that the 

relative variance of mark-up shocks increased by a factor of 3.29.  

 Figures 1-2 present numerical results calculated using the closed form expressions 

in Proposition 2. The figures document the effect of changes in rv and change in the 

policy rule on the measured regression coefficients. We assume there are no fiscal shocks 

and that technology shocks have an autocorrelation of ρ = 0.75 (the estimated value over 

the entire sample). We begin by assuming that monetary policy follows the simple Taylor 

rule assumed in the last section. Figures 1-2 considers several different levels of τ, where 

                                                 
6
 A standard Andrews (1993) supremum test for a break in the AR(1) coefficient of technology at unknown 

break point cannot reject the null hypothesis of structural stability at the 10 percent level.  The same result 

holds for government spending. 
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τ = 1 is a natural lower bound as lower values imply equilibrium indeterminacy. We also 

consider the effect of a response to the output gap ( 1=gapτ ). 

 The qualitative pictures in Figures 1-2 are as anticipated: more aggressive 

monetary policy and/or a higher relative variance of the mark-up shocks, puts downward 

pressure on both estimated coefficients. The quantitative effect can be quite large. For 

example, a change in τ from 1.0 to 1.5 typically cuts the estimated inflation persistence 

by more than half. As the relative variance approaches infinity so that mark-up shocks 

dominate the system, inflation persistence goes to zero for all of these rules. More 

aggressive monetary policy has a similar effect. When τ =10, inflation persistence and the 

output gap coefficients are L-shaped functions of the relative variance of mark-up shocks: 

A small amount of mark-up shocks makes inflation persistence drop close to zero. As τ 

gets large, these coefficients drop discontinuously to zero for arbitrarily small levels of 

mark-up shocks.  Adding the output gap to the Taylor rule has only a modest effect on the 

behavior of inflation persistence, but dramatically reduces the measured gap coefficient 

pushing it to counterfactually negative levels. 

These figures allow for a multitude of experiments and can provide a sense of the 

quantitative size of the effects.  For example, if monetary policy in the pre-1979 period is 

given by τ =1.0 and rv = 0.30 in that period (as would be implied by our later calibration), 

inflation persistence would be over 0.8. If monetary policy remained the same and rv 

increased to 0.97 (given the lower variability of technology shocks), inflation persistence 

falls to 0.63. Conversely, if rv remained at 0.30 in both periods, and only monetary policy 

changed from τ =1.0 to a more aggressive regime (τ = 1.5 and gapτ  = 1.0), then measured 

inflation persistence would have declined to 0.38.  Taken together, if the increase in rv is 
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matched with a more aggressive monetary policy (τ = 1.5 and gapτ  = 1.0), then persistence 

falls to 0.16.    

 To illustrate how well our benchmark model does in quantitatively replicating the 

data we need shock processes and a more realistic monetary policy rule. Because of 

problems with equilibrium indeterminacy for the earlier (1960-79) period we assume that 

monetary policy is given by ttR τπ= with τ = 1.001. For the 1983-2004 period we 

assume a variety of monetary policy rules of the form  

  ))(1(1 ttgaptitit gapgapii ∆++−+= ∆− τττπρρ .   (7) 

Our benchmark calibration uses Mehra’s (2002) estimates: ρi = 0.8, τ = 1.6, gapτ = 0, ∆τ  = 

0.62.  Mehra (2002) presents evidence that changes in the gap are more important than 

the level of the gap in explaining monetary policy. But we later report different 

permutations of this rule to get a sense of the importance of each parameter. Responding 

to the change in the gap turns out to be important since it gets rid of the large 

counterfactual decline in the gap coefficient in the post-1983 period. 

 As for shocks, we feed into the model’s decision rules the actual technology and 

government spending shocks from the data.  Agents perceive these exogenous series to 

evolve according to AR(1) processes with persistence of 0.75 and 0.84, respectively 

which were the estimated values over the 1960-2004 period (see Table 2). The mark-up 

shocks are drawn from a normal distribution with a constant variance. 

This constant variance is chosen so that the model matches the 1983-2004 

inflation persistence we see in the data. We need a standard deviation of mark-up shocks 
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of 0.0072 in order for inflation persistence to match the 0.26 value observed in the data.
7
  

Our calibration therefore implies that rv = 0.97 in the post-1983 period. Since the 

standard deviation of technology was about 80 percent larger pre-1979, our assumption 

that the variability of mark-up shocks was constant across time implies that rv = 0.30  

prior to 1979.  Hence, our benchmark calibration is that rv = 0.30 pre-1979, and rv = 0.97 

post 1983.
8
 

 Figures 3-4 present the average OLS coefficients generated by the model across 

1000 simulations of the model where the mark-up shock for each simulation is drawn 

from a distribution as reported above. This gives rise to error bounds around the model. 

We report the data along with the 2.5 and 97.5 percentile bounds. For ease of comparison 

the estimated inflation persistence and gap coefficients from the data are also reported.  

Both the model-based and real-data estimates are 40-quarter rolling regressions. The 

simulated data shows a fall in persistence from about 0.75 in the 1980’s to around 0.2 in 

the new millennium. The timing of this drop coincides well with the data. Inflation 

persistence in the data falls even further to zero at the turn of the century, but the 

estimated inflation persistence is within the error bands from the simulations almost all 

the time.
9
  

                                                 
7
 Inflation persistence is defined to be the sum of the coefficients on the 4 lags of inflation. Similar to 

Cogley (2005) and Cogley and Sargent (2007), we correct this regression to account for the likely change 

in the Fed’s implicit long-term inflation target over time. We proxy for long-term inflation by smoothing 

the inflation data with an HP filter (assuming a HP-filter smoothing parameter of 1600).    

 
8
 The absolute size of rv is somewhat arbitrary and depends upon the way in which we write the Calvo 

equation (3).  For example, one natural alternative is to divide (3) by (1+β).  In this case rv is scaled down 

by a factor of about four, (1+β)
2
, and the scales in the figures are correspondingly transformed. 

 
9
 There are also error bounds around the estimated coefficients in the data. We choose not to report them in 

this picture, but they are considerably tighter than the error band around the model.  
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 Figures 5-6 provide some sensitivity analysis to the general Taylor rule (7) above. 

Rule 1 is once again τ =1 and everything else set to zero. Rule 2 is the benchmark rule 

without a response to the gap or the change in the gap: ρi = 0.8, τ = 1.6, gapτ = 0, ∆τ  = 0. 

Rule 3 adds a response to the level of the gap: ρi = 0.8, τ = 1.6, gapτ = 0.62, ∆τ  = 0. Rule 

4 is the benchmark rule without inertia: ρi = 0, τ = 1.6, gapτ = 0, ∆τ  = 0.62. Rule 5 is the 

benchmark Mehra Taylor rule estimates: ρi = 0.8, τ = 1.6, gapτ = 0, ∆τ  = 0.62. 

 These results are given in figures 5-6. All of these rules imply that inflation 

persistence and the gap coefficient fall as the relative variance of mark-up shocks 

increases, although the magnitude of the declines depends upon the particular rule. We 

can use these Figures to get a sense of what inflation persistence and the output gap 

coefficient would look like if we thought about calibrating to these alternative rules 

assuming that pre-1979 monetary policy is still given by τ = 1. Table 3 conducts these 

experiments. Suppose that monetary policy in the post-1983 period is given by one of the 

rules in the first column of Table 3. We then choose rv in the post-1983 period to match 

the inflation persistence in the actual post-1983 data. Given the decline in the variance of 

measured technology shocks, this then implies a lower rv for the pre-1979 period. The 

remaining columns in Table 3 report the implied OLS coefficients for each of the 

subperiods. 

  Our benchmark calibration has inflation persistence declining from 0.82 to 0.26. 

The bottom rows decompose this drop into two other possibilities. If monetary policy 

were given by our benchmark calibration in both sub-periods but the variability of 

technology shocks had dropped, inflation persistence would have fallen from 0.47 to 

0.26. Similarly, if the variability of technology shocks had not changed but monetary 
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policy had changed, inflation persistence would have fallen from 0.62 to 0.26. The fall in 

inflation persistence is similar across all the other rules and falls from a little greater than 

0.8 to 0.26.  

 The behavior of the gap coefficients, however, is noticeably different. Our 

benchmark has the gap coefficient falling a little from 0.03 to -0.12. In the data the gap 

coefficient remains virtually unchanged (0.013 versus 0.076 in the latter period). 

Calibrating to rule 4, the benchmark rule without inertia (rv=0.45 for post-1983 and 0.14 

pre-1983), produces nearly an identical drop for inflation persistence as does the 

benchmark rule, but the gap coefficient (which already drops too much in our base-line 

calibration) now drops even more (0.16 in the pre-79 period and -0.21 in the post-83 

period). Similar results obtain when the post 1983 policy is described by a reaction to the 

level of the gap instead of the change in the gap (as in rule 3), but now the drop in the 

output gap coefficient is larger yet (0.12 to -0.33). A policy rule with inertia that does not 

react to either the gap or the change in the gap (rule 2) looks very similar to our base-line 

calibration where the central bank reacts to the change in the gap in the latter period but 

the gap coefficient in the early period is larger. 

 It is easy to see that the model has a much harder time matching the gap 

coefficient. But the gap is most likely subject to measurement error to a much larger 

extent than the inflation data. Additionally, Table 3 indicates that the gap coefficient is 

much more heavily influenced by the nature of the policy rule. Changes in the policy 

rule, for example associated with Greenspan’s appointment in 1987, could change the gap 

coefficient significantly while inflation persistence would be little affected. It is also 

encouraging that the model that best matches the data is our benchmark rule that was 
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calibrated to an estimated policy rule by Mehra (2002). It is important to point out, 

however, that our choice of a rule that reacted to the change in the gap versus the level of 

the gap is important.
10

  Evidence, however, suggests that Fed policy is best described by a 

rule that reacts to the change in the gap and theoretically such a rule more closely 

characterizes optimal monetary policy as discussed in Walsh (2003). 

 As a final form of sensitivity analysis, we have also considered the case in which 

there is external habit formation in preferences (indexed by ]1,0[∈h ).  This introduces 

the lagged output gap into both the Fisher equation (2) and the Phillips curve (1).  As 

before, our calibration strategy is to choose the level of rv in the post-1983 period to 

match the measured inflation persistence in this same period. Interestingly, this 

calibration strategy is not possible if the habit parameter is large, eg., h > 0.3.  That is, for 

large values of h, the OLS inflation persistence coefficient (as a function of rv) becomes 

asymptotic at a level exceeding the desired calibration of 0.26.  This experiment is 

possible for lower values of the habit parameter. For example, with h = 0.2, the 

calibration implies that inflation persistence would fall from 0.73 to 0.26 across the two 

periods, while the gap coefficient would slightly decline from -0.09 to -0.11.  This is only 

modestly different from our benchmark results without habit.   

 The inability to calibrate with habit persistence is because our estimated Phillips 

curve (6) is misspecified. Habit persistence implies that the lag of consumption should be 

in the Calvo equation. Therefore, we have also investigated the possibility of altering the 

OLS regression (6) to include a lag of the gap. In this case, the calibration strategy can be 

implemented for much higher levels of habit.  For example, with h = 0.7, the calibration 

                                                 
10

 We have assumed that mark-up shocks are iid.. The effect of responding to the change in the gap, versus 

the level of the gap, is actually reversed if mark-up shocks are extremely persistent. In this case, inflation 

persistence only falls if monetary policy reacts to the level of the gap (or doesn’t react to the gap at all). 
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implies that inflation persistence would fall from 0.79 to 0.26 across the two periods, 

while the sum of the gap coefficients would sharply decline from 0.30 to 0.19.   

 

 

4. Conclusion 

 Inflation persistence has dropped markedly since the early 1980’s. Policymakers 

are faced with different ways to interpret such data. The evidence could reflect changes in 

the underlying nature of price setting, such as the degree of forward vs. backward looking 

agents. Such changes are important to policymakers as they impact the monetary 

transmission mechanism. Instead, we present a model in which the structural equations 

are constant over time, except for the monetary policy rule itself. We combine plausible 

time variation of policy with a decrease in the volatility of technology shocks (one of the 

factors behind the great moderation) and replicate the observed time series properties of 

inflation. Hence, the structural model of price setting may very well be stable even if 

reduced form inflation persistence displays large instability. 
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Appendix. 
 

 

Proposition 1:  The decision rules are given by  

 

tttt caa θεππ π ++= −1        (4) 

  

tttt daagap θγεγπ π ++= −1        (5) 

 

where a < 1, 
a

aa

aM

a

gap λ

β

τ

τ
γ

)1)(1(

)1(

−−−
=

−−

−
≡ < 0,  

 

)(1 ρββ

λ

+−+
=

ad

c
 

 

)(1

])([
)1(

)1(

ρββ

ρτγλ
τρ

ρ

+−+

++
+−−

−
=

a

M
M

P
d

gap

gap

 

 

As ∞→τ , 0→a , −∞→γ , 
λ

τ
τ

)(
)(

gapM
a

+
→ , and 

λ
γ

1
)(

−
→a .  Similarly when 

∞→gapτ , 1→a , 0→γ .  Note that if ρ = 1, then c = d = 0.  

 

Proof:  The model is given by (2) and (3) where we abstract from government spending 

shocks without loss of generality (assuming there are comparable auto-correlation 

coefficients). Using (3) to solve for tgap , we can use the method of undetermined 

coefficients and expression (2) to derive the characteristic polynomial of the system: 

0)()])(1([)]1()([)( 23 =+−+++++++++−≡ MxMMxMMxMxf gapgapgap ττβτλβτβλβ

 

For τ > 1, it is straightforward to show that we have equilibrium determinacy (one root in 

the unit circle, two roots outside). Henceforth, we will let “a” denote the unique root in 

the unit circle.  Without loss of generality, we can then define γ such that aγ is the 
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corresponding coefficient for marginal cost where equation (2) 

implies
gapaM

a

τ

τ
γ

−−

−
≡

)1(
.   The decision rules can thus be written as  

tttt cba θεππ π ++= −1   

        

tttt deagap θεγπ π ++= −1  

The second equality for γ comes from using the method of undetermined coefficients on 

(3) (isolating the 1−tπ term) and solving for γ. 

 Isolating the b and e coefficients from from equation (2) we have 

)()( eabMeab gap −=+− γττ . 

Given γ above this is satisfied with e = bγ.  As for the ratio a/b, equation (3) implies: 

1)1( ++=+ λγββ babb . 

If we multiply this by a/b, and compare it to f(a), we have that b/a = 1.   Similarly, the 

method-of-undetermined-coefficients calculation yields the coefficient on the technology 

shock.  The limiting values come from the cubic f(a).  Note that if we divide through by 

τ, and then take the limit as τ gets large, we have f(x) = λx so that we have a unique stable 

root at a = 0.  If we define q = aτ, we can then define a cubic )/()( τqfqg ≡ .  As τ goes 

to infinity, we get that a finite root of g is 
λ

τ )( gapM
q

+
→ .  This then determines the 

limiting value of aτ.   The limiting value of aγ is determined by substituting the above 

decision rules into equation 2 and isolating the 1−tπ term.  To show that as ∞→gapτ , 

1→a  notice that as ∞→gapτ , we get that 1)1(2 −++−→ xxf ββ , which has a root of 

unity.  QED. 
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Proposition 2:  The OLS coefficients in equation (13) are given by: 
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Proof:  The OLS coefficients are given by the solution to  

2
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,

min
2

211

21

ttt gap
E

βπβπ

ββ

−− −  . 

The optimization conditions include: 

0)( 1211 =−− −− tttt gapE πβπβπ  

0)( 211 =−− − tttt gapgapE βπβπ  

We can then replace tπ  and tgap  by the decision rules in Proposition 1.  Tedious algebra 

then yields the general expressions for the OLS coefficients.   

QED 

 

 

Corollary 3:  As ∞→τ  ( −∞→γ ),  
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02 →β . 

As ∞→gapτ  ( 0→γ ),  
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Proof: For the limiting cases as ∞→τ , we have that 0→a and −∞→γ . Proposition 1 
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Substituting this back into the earlier expression we have that 
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When ∞→gapτ  the proof is straight forward since 1→a and 0→γ .  

 

QED. 
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Table 1 

OLS Coefficients  

ttt gap211 βπβπ += −  
 

       1β       2β   

Cost push shocks 

only 

0 0/1 <γ  

As ∞→τ  or 

∞→gapτ , 

converges to 0.    

  

Technology shocks 

only ]1[
d
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As ∞→τ , 
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ρβ −+
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converges to 1. 
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>
−+ ρβ

λ
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. 

As ∞→gapτ , 

converges to 

0
1

>
− βρ

λ
. 

 

 

 

 

Table 2 

Estimation of shock processes 

 
 1960-79 1983-2004 

Technology   

Autocorrelation 0.76 0.71 

Std. deviation of innovation 0.0087 0.0048 

Government   

Autocorrelation 0.87 0.75 

Std. deviation of innovation 0.0027 0.0017 
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Table 3 

Alternative Experiments
* 

ttt gap211 βπβπ += −  
 

 

Experiment: 

 

β1, pre-

1979  

β1, post-

1983 

(calibrated) 

β2, pre-

1979  

β2, post-1983 

Rule 2: 

ρi = 0.8, τ = 1.6, 

gapτ = 0, ∆τ  = 0 

0.86 0.26 0.15 -0.12 

Rule 3: 

ρi = 0.8, τ = 1.6, 

gapτ = 0.62, ∆τ  = 0 

0.85 0.26 0.12 -0.33 

Rule 4: 

ρi = 0, τ = 1.6, 

gapτ = 0, ∆τ  = 0.62 

0.86 0.26 0.16 -0.21 

Rule 5: 

ρi = 0.8, τ = 1.6, 

gapτ = 0, ∆τ  = 0.62 

(Benchmark) 

0.82 0.26 0.03 -0.12 

Pre-1979: τ = 1, rv = 0.97 

Post-1983: Rule 5, rv = 0.97  

0.64 0.26 -0.26 -0.12 

Pre-1979: Rule 5, rv = 0.30 

Post-1983: Rule 5, rv = 0.97 

0.47 0.26 0.01 -0.12 

Data 0.62 0.26 0.013 0.076 

 

 

*The pre-1979 policy rule is τ = 1 unless otherwise noted.  Rule 5 is the benchmark 

policy rule.  The general form of the policy rule is given by 

))(1(1 ttgaptitit gapgapii ∆++−+= ∆− τττπρρ . 
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Figure 1: Model closed form prediction for lagged inflation coefficient
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Figure 2: Model closed form prediction for gap coefficient.
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Figure 3: Inflation coefficient. 40 quarter rolling regressions: model pre-
dictions vs. data. Percentiles based on 1000 simulations of model data
generated by random draws of i.i.d. markup shocks and estimated series for
technology and government spending shocks.
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Figure 4: Gap coefficient. 40 quarter rolling regressions: model predictions
vs. data. Percentiles based on 1000 simulations of model data by random
draws of i.i.d. markup shocks and estimated series for technology and gov-
ernment spending shocks
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Figure 5: Model closed form prediction for lagged inflation coefficient. The
horizontal lines correspond to inflation persistence of 0.26. Taylor rule is
of the form: it = ρiit−1 + (1 − ρ) (τπt + τgapgapt + τ∆∆gapt). Rule 1: τ =
1.0001, all other zero. Rule 2: τ = 1.6, ρi = 0.8, all other zero. Rule 3:
τ = 1.6, τgap = 0.62, ρi = 0.8, all other zero. Rule 4: τ = 1.6, τ∆ = 0.62,
all other zero. Rule 5: τ = 1.6, ρi = 0.8, τ∆ = 0.62, all other zero. (Mehra
rule)
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Figure 6: Model closed form prediction for gap coefficient. For a description
of rules, see Figure 6.
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