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Abstract

We use Bayesian Model Averaging (BMA) to forecast real-time measures of eco-
nomic activity using a large set of possible predictors. The set of potential predictors
includes option-adjusted credit spreads—in addition to a large number of other asset
market indicators—based on bond portfolios sorted by maturity and credit risk as mea-
sured by the issuer’s distance-to-default. The portfolios are constructed directly from
the secondary market prices of outstanding senior unsecured bonds issued by a large
number of U.S. nonfinancial corporations. Our results indicate that relative to a direct
autoregression, BMA yields consistent improvements in the prediction of the growth
rates of real GDP, industrial production, employment, and business fixed investment,
as well as of the changes in the unemployment rate, at horizons from the current quar-
ter (i.e., “nowcasting”) out to four quarters hence. The gains in forecast accuracy are
statistically significant and economically important and owe almost exclusively to the
inclusion of our portfolio credit spreads in the set of predictors—BMA consistently as-
signs a high posterior weight to models that include these financial indicators.
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1 Introduction

One area of agreement among economists at universities, central banks, and Wall Street is

that forecasting future economic activity is hard. While the existing econometric models

give us some ability to forecast economic developments for the current quarter and perhaps

the quarter after that, their predictive power deteriorates rapidly as the forecast horizon ex-

tends beyond the very near term. Indeed, in predicting economic activity just a few quarters

ahead, many researchers find it very difficult to beat the simplest time-series models—for

example, a univariate autoregression—or even a forecast that is equal to the unconditional

mean of the variable being forecasted; see, for example, Sims [2005]; Tulip [2005]; and Faust

and Wright [2009].

Nevertheless, the idea of using information from financial markets—or assets markets

more generally—to predict future economic activity remains alluring among both practi-

tioners and policymakers. By their very nature, asset markets are forward looking. As a

result, prices in these markets should impound information about investors’ expectations

of future economic outcomes, even if extracting that information is complicated by the

existence of time-varying risk premiums.1

From a theoretical perspective, default-risk indicators such as corporate credit spreads—

the difference in yields between various corporate debt instruments and government secu-

rities of comparable maturity—seem to be particularly well suited for forecasting future

economic activity. Philippon [2009], for example, considers a model in which the decline in

investment fundamentals, owing to a reduction in the expected present-value of corporate

cash flows, leads to a widening of credit spreads prior to a cyclical downturn. As emphasized

by Bernanke et al. [1999] and Gilchrist and Zakraǰsek [2010], increases in credit spreads can

also signal disruptions in the supply of credit resulting from the worsening in the quality of

corporate balance sheets or from the deterioration in the health of financial intermediaries

that supply credit.

Despite their seeming advantage, the empirical success of using default-risk indicators to

forecast economic activity is mixed, with results varying substantially across different credit

spread indexes and across different time periods. For example, the “paper-bill” spread—

the difference between yields on nonfinancial commercial paper and comparable-maturity

Treasury bills—appears to have has lost much of its forecasting power since the early 1990s.

1Asset market indicators considered in this vast literature include stock prices (Fama [1981] and Harvey
[1989]); spreads between long and short-term risk-free interest rates (Harvey [1988]; Estrella and Hardouvelis
[1991]; Estrella and Mishkin [1998]; and Hamilton and Kim [2002]); the term structure of interest rates more
generally (Ang et al. [2006]); spreads between rates on short-term commercial paper and rates on Treasury
bills (Bernanke [1990]; Friedman and Kuttner [1992, 1998]; and Emery [1999]); and yield spreads on longer-
term corporate debt (Gertler and Lown [1999]; King et al. [2007]; Mueller [2007]; Gilchrist et al. [2009]; and
Gilchrist and Zakraǰsek [2010]).
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In contrast, credit spreads based on indexes of speculative-grade (i.e., “junk”) corporate

bonds, which contain information from markets that were not in existence prior to the mid-

1980s, have done particularly well at forecasting output growth during the previous decade,

according to Gertler and Lown [1999] and Mody and Taylor [2004]. Stock and Watson

[2003], however, find mixed evidence for the junk spread as a leading indicator during this

period, largely because it falsely predicted an economic downturn in the autumn of 1998.

This dichotomy of findings is perhaps not surprising, because as asset markets evolve, the

information content of prices in these markets may change as well. The range of empirical

findings may also reflect the fact that this research has generally relied on a single credit

spread index, rather than on multiple indexes reflecting a broad cross-section—in terms of

both default risk and maturity—of private debt instruments.

In part to address these problems, Gilchrist et al. [2009] (GYZ hereafter) constructed

credit spreads directly from the monthly data on prices of individual senior unsecured cor-

porate bonds trading in the secondary market. These micro-level credit spreads were then

sorted into bond portfolios by the remaining term-to-maturity of the underlying bond issue

and by the credit risk of the issuer as measured by its monthly expected default frequency

(EDF) constructed by the Moody’s/KMV. According to the results reported by GYZ, these

portfolio credit spreads have substantial predictive power for the growth of payroll employ-

ment and industrial production—at both short- and longer-term horizons—and significantly

outperform the predictive ability of the standard default-risk indicators. Moreover, GYZ

results indicate that the information content of credit spreads is concentrated in portfo-

lios consisting of long-maturity bonds issued by firms at a high-end of the credit-quality

spectrum.

While certainly tantalizing, the economists’ seemingly endless search for an asset price(s)

that will consistently and accurately predict macroeconomic outcomes naturally raises con-

cerns that the GYZ results are due to data mining. Even if asset prices had no true predictive

power, a finding that a particular asset market indicator is a useful predictor of future eco-

nomic activity would be bound to crop up from time to time. In this paper, we address

these concerns through the use of Bayesian Model Averaging (BMA), a framework that ex-

plicitly takes into account model uncertainty. The BMA approach to economic forecasting

involves using a potentially large number of possible models, one of which is considered to

be the true data-generating process; using the BMA methodology, a researcher can then

evaluate the posterior probability that each model is the “true model.” In addition, the

forecasts from the different models can be combined into a single forecast—the so-called

BMA forecast—using the models’ posterior probabilities as weights.

The contribution of our paper is not in the econometric methodology for forecasting

with a large number of predictors—a literature that has been very active in recent years.
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Rather, we are concerned about the choice of which variables are best suited for predicting

economic activity in a data-rich environment. In particular, we consider a large number of

asset prices, yields, and spreads as predictors of a wide variety of indicators of economic

activity. In addition to the standard set of asset market indicators, we use the “bottom up”

approach of GYZ to construct credit spreads for the bond portfolios sorted by the bond’s

remaining term-to-maturity and the issuer’s credit quality, which are then included in the

prediction exercise. We also adjust our portfolio credit spreads for the fact that a significant

portion of the underlying securities are callable, a feature, as pointed out by Duffee [1998]

and Duca [1999], with important consequences for the behavior of credit spreads over the

course of the business cycle. Finally, the set of predictors also includes macroeconomic

variables, and the forecasting methods are assessed in an out-of-sample prediction exercise

conducted using real-time data.

Our results indicate that in forecasting the growth rates of real GDP, real business fixed

investment, industrial production, and employment, as well as the change in the unem-

ployment rate, the BMA approach assigns a high weight to our option-adjusted portfolio

credit spreads. Moreover, the resulting BMA forecasts yield economically and statistically

significant improvements in the forecast accuracy over a univariate autoregression, a stan-

dard benchmark in this sort of forecasting exercises. In contrast, if the portfolio credit

spreads are omitted from the predictor set, the BMA forecasts are generally statistically

indistinguishable from the forecasts based on the autoregressive benchmark.

The plan for the remainder of this paper is as follows. Section 2 describes our bond-

level data and the construction of portfolios based on the option-adjusted credit spreads.

In Section 3, we outline the econometric methodology used to combine forecasts by BMA.

Section 4 contains our main empirical results. Lastly, Section 5 concludes.

2 Data Sources and Methods

2.1 Credit Spreads

The key information for our analysis comes from a large sample of fixed income securities

issued by U.S. nonfinancial corporations. Specifically, from the Lehman/Warga (LW) and

Merrill Lynch (ML) databases, we obtained month-end prices of outstanding long-term

corporate bonds that are actively traded in the secondary market.2 To guarantee that we

2These two data sources are used to construct benchmark corporate bond indexes used by market partic-
ipants. Specifically, they contain secondary market prices for a vast majority of dollar-denominated bonds
publicly issued in the U.S. corporate cash market. The ML database is a proprietary data source of daily
bond prices that starts in 1997. Focused on the most liquid securities in the secondary market, bonds in the
ML database must have a remaining term-to-maturity of at least two years, a fixed coupon schedule, and a
minimum amount outstanding of $100 million for below investment-grade and $150 million for investment-
grade issuers. By contrast, the LW database of month-end bond prices has a somewhat broader coverage
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are measuring borrowing costs of different firms at the same point in their capital structure,

we restricted our sample to senior unsecured issues with a fixed coupon schedule only. For

such securities, we spliced their month-end prices across the two data sources.

The micro-level aspect of our data set allows us to construct credit spreads that not con-

taminated by the maturity/duration mismatch that plagues most commercially-available

credit spread indexes. In particular, we construct for each individual bond issue a theoret-

ical risk-free security that replicates exactly the promised cash-flows of the corresponding

corporate debt instrument. For example, consider a corporate bond k issued by firm i that

at time t is promising a sequence of cash-flows {C(s) : s = 1, 2, . . . , S}, consisting of the

regular coupon payments and the repayment of the principle at maturity. The price of this

bond in period t is given by

Pit[k] =
S
∑

s=1

C(s)D(ts),

where D(t) = e−rtt is the discount function in period t. To calculate the price of a cor-

responding risk-free security—denoted by P f
t [k]—we discount the promised cash-flow se-

quence {C(s) : s = 1, 2, . . . , S} using continuously-compounded zero-coupon Treasury yields

in period t, obtained from the daily estimates of the U.S. Treasury yield curve reported by

Gürkaynak et al. [2007]. The resulting price P f
t [k] can then be used to calculate the yield—

denoted by yft [k]—of a hypothetical Treasury security with exactly the same cash-flows as

the underlying corporate bond. The credit spread Sit[k] = yit[k]−yft [k], where yit[k] denotes

the yield of the corporate bond k, is thus free of the “duration mismatch” that would occur

were the spreads computed simply by matching the corporate yield to the estimated yield

of a zero-coupon Treasury security of the same maturity.

To ensure that our results are not driven by a small number of extreme observations,

we eliminated all bond/month observations with credit spreads below 5 basis points and

with spreads greater than 3,500 basis points. In addition, we dropped from our sample very

small corporate issues—those with a par value of less than $1 million—and all observations

with a remaining term-to-maturity of less than one year or more than 30 years; calculating

spreads for maturities of less than one year and more than 30 years would involve extrap-

olating the Treasury yield curve beyond its support.3 These selection criteria yielded a

sample of 5,896 individual securities between January 1986 and June 2010. We matched

these corporate securities with their issuer’s quarterly income and balance sheet data from

Compustat and daily data on equity valuations from CRSP, yielding a matched sample of

1,104 firms.

and is available from 1973 through mid-1998 (see Warga [1991] for details).
3We also eliminated a small number of putable bonds from our sample. In contrast, a significant fraction

of the securities in our sample is callable, which raises an important issue of how to separate time-varying
prepayment risk from the default risk premium. We address this issue in detail later in the paper.
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Table 1: Summary Statistics of Corporate Bond Characteristics

Variable Mean SD Min P50 Max

No. of bonds per firm/month 3.08 3.75 1.00 2.00 74.0
Mkt. value of issuea ($mil.) 334.7 327.6 1.22 248.3 5,628
Maturity at issue (years) 12.9 9.3 1.0 10.0 50.0
Term to maturity (years) 10.5 8.4 1.0 7.5 30.0
Duration (years) 6.29 3.26 0.91 5.75 15.8
Credit rating (S&P) - - D BBB1 AAA
Coupon rate (pct.) 7.30 1.97 1.70 7.00 17.5
Nominal effective yield (pct.) 7.30 3.04 0.60 6.93 44.3
Credit spread (bps.) 215 297 5 123 3,499

Note: Sample period: Jan1986–June2010; No. of bonds/firms = 5,896/1,104; Obs. =
305,412. Sample statistics are based on trimmed data (see text for details).

aMarket value of the outstanding issue deflated by the CPI (1982–84 = 100).

Table 1 contains summary statistics for the key characteristics of bonds in our sample.

Note that a typical firm has only a few senior unsecured issues outstanding at any point

in time—the median firm, for example, has two such issues trading at any given month.

This distribution, however, exhibits a significant positive skew, as some firms can have

as many as 74 different senior unsecured bond issues trading in the market at a point in

time. The distribution of the real market values of these issues is similarly skewed, with the

range running from $1.2 million to more than $5.6 billion. Not surprisingly, the maturity of

these debt instruments is fairly long, with the average maturity at issue of about 13 years.

Because corporate bonds typically generate significant cash flow in the form of regular

coupon payments, the effective duration is considerably shorter, with both the average and

the median duration of about 6 years.

According to the S&P credit ratings, our sample spans the entire spectrum of credit

quality, from “single D” to “triple A.” At “BBB1,” however, the median bond/month ob-

servation is still solidly in the investment-grade category. Turning to returns, the (nominal)

coupon rate on these bonds averaged 7.30 percent during our sample period, while the av-

erage expected total return, as measured by the nominal effective yield, was 7.3 percent

per annum. Reflecting the wide range of credit quality, the distribution of nominal yields

is quite wide, with the minimum of 0.66 percent and the maximum of more than 44 per-

cent. Relative to Treasuries, an average bond in our sample has an expected return of

about 215 basis points above the comparable risk-free rate, with the standard deviation of

297 basis points.
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2.2 Default Risk

In this section, we describe the construction of variables used as proxies for the firm-specific

default risk, the crucial input in the construction of our bond portfolios. To measure a

firm’s probability of default at each point in time, we employ the “distance-to-default”

(DD) framework developed in the seminal work of Merton [1973, 1974]. The key insight

of this contingent claims approach to corporate credit risk is that the equity of the firm

can be viewed as a call option on the underlying value of the firm with a strike price equal

to the face value of the firm’s debt. Although neither the underlying value of the firm

nor its volatility can be directly observed, they can, under the assumptions of the model,

be inferred from the value of the firm’s equity, the volatility of its equity, and the firm’s

observed capital structure.

The first critical assumption underlying the DD-framework is that the total value of the

a firm—denoted by V—follows a geometric Brownian motion:

dV = µV V dt+ σV V dW, (1)

where µV denotes the expected continuously-compounded return on V ; σV is the volatility

of firm value; and dW is an increment of the standard Weiner process. The second critical

assumption pertains to the firm’s capital structure. In particular, it is assumed that the

firm has just issued a single discount bond in the amount D that will mature in T periods.4

Together, these two assumption imply that the value of the firm’s equity E can be viewed as

a call option on the underlying value of the firm V with a strike price equal to the face value

of the firm’s debt D and a time-to-maturity of T . According to the Black-Scholes-Merton

option-pricing framework, the value of the firm’s equity then satisfies:

E = V Φ(δ1)− e−rTDΦ(δ2), (2)

where r denotes the instantaneous risk-free interest rate, Φ(·) is the cumulative standard

normal distribution function, and

δ1 =
ln(V/D) + (r + 0.5σ2

V
)T

σ2
V

√
T

and δ2 = δ1 − σV

√
T .

According to equation (2), the value of the firm’s equity depends on the total value of

the firm and time, a relationship that also underpins the link between volatility of the firm’s

4Recent structural default models relax this assumption and allow for endogenous capital structure as
well as for strategic default. In these models, both the default time and default boundary are determined
endogenously and depend on firm-specific as well as aggregate factors; the voluminous literature on structural
default models is summarized by Duffie and Singleton [2003].
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value σV and the volatility of its equity σE. In particular, it follows from Ito’s lemma that

σE =

[

V

E

]

∂E

∂V
σV . (3)

Because under the Black-Scholes-Merton option-pricing framework ∂E
∂V

= Φ(δ1), the rela-

tionship between the volatility of the firm’s value and the volatility of its equity is given

by

σE =

[

V

E

]

Φ(δ1)σV . (4)

From an operational standpoint, the most critical inputs to the Merton DD-model are

clearly the market value of the equity E, the face value of the debt D, and the volatility

of equity σE. Assuming a forecasting horizon of one year (i.e., T = 1), we implement the

model in two steps: First, we estimate σE from historical daily stock returns. Second, we

assume that the face value of the firm’s debt D is equal to the sum of the firm’s current

liabilities and one-half of its long-term liabilities.5 Using the observed values of E, D, σE,

and r (i.e., the 1-year constant-maturity Treasury yield), equations (2) and (4) can be solved

for V and σV using standard numerical techniques. However, as pointed out by Crosbie

and Bohn [2003] and Vassalou and Xing [2004], the excessive volatility of market leverage

(V/E) in equation (4) causes large swings in the estimated volatility of the firm’s value σV ,

which are difficult to reconcile with the observed frequency of defaults and movements in

financial asset prices.

To resolve this problem, we implement an iterative procedure recently proposed by

Bharath and Shumway [2008]. The procedure involves the following steps: First, we ini-

tialize the procedure by letting σV = σE[D/(E + D)]. We then use this value of σV in

equation (2) to infer the market value of the firm’s assets V for every day of the previous

year. In the second step, we calculate the implied daily log-return on assets (i.e., ∆ lnV )

and use the resulting series to generate new estimates of σV and µV . We then iterate on σV

until convergence. The resulting solutions of the Merton DD-model can be used to calculate

the firm-specific DD over the one-year horizon as

DD =
ln(V/D) + (µV − 0.5σ2

V
)

σV

. (5)

5This assumption for the “default point” is also used by Moody’s/KMV in the construction of their
Expected Default Frequencies (EDFs) based on the Merton DD-model, and it captures the notion that
short-term debt requires a repayment of the principal relatively soon, whereas long-term debt requires the
firm to meet only the coupon payments. Both current and long-term liabilities are taken from quarterly
Compustat files and interpolated to daily frequency using a step function.
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Figure 1: Distance-to-Default
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Note: Sample period: Jan1986–June2010. The solid line depicts the weighted median DD of
the 1,104 bond issuers in our sample. The dotted line depicts the weighted median DD in the U.S.
nonfinancial corporate sector, and the shaded band depicts the corresponding weighted interquartile
range; all percentiles are weighted by the firm’s outstanding liabilities. The shaded vertical bars represent
the NBER-dated recessions.

The corresponding implied probability of default—the so-called EDF—is given by

EDF = Φ(−DD) = Φ

(

−
(

ln(V/D) + (µV − 0.5σ2
V
)

σV

))

, (6)

which, under the assumptions of the Merton model, should be a sufficient statistic for

predicting defaults.

We employ this methodology to calculate the distance-to-default for all U.S. nonfinan-

cial corporations covered by the S&P’s Compustat and CRSP (i.e., 11,886 firms over the

Jan1986–June2010 period). Figure 1 plots the cross-sectional median of the DDs for the

1,104 bond issuers in our sample. As a point of comparison, the figure also depicts the cross-

sectional median and interquartile range (IQR) of the DDs for the entire Compustat-CRSP

matched sample of nonfinancial firms.6 According to this metric, the credit quality of the

median bond issuer in our sample is, on average, very close to that of the median nonfinan-

cial firm, indicating that our sample of firms is representative of the broader economy. The

6To ensure that our results were not driven by a small number of extreme observations, we eliminated from
our sample all firm/month observations with the DD of more than 20 or less than -2, cutoffs corresponding
roughly to the 99th and 1st percentiles of the DD distribution, respectively.
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median DD for both groups of firms is strongly procyclical, implying that equity investors

anticipate corporate defaults to increase during economic downturns. Indeed, during the

height of the recent financial crisis in the autumn of 2008, both measures fell to very low

levels by recent historical standards.

2.3 Distance-to-Default Portfolios

We summarize the information contained in credit spreads, DDs, and excess equity returns

for the sample of bond issuers by constructing portfolios based on expected default risk—as

measured by our estimate of the distance-to-default—at the beginning of the period. These

conditional DD-based portfolios are constructed by sorting the three financial indicators in

month t into four quartiles based on the distribution of the distance-to-default in month

t− 1. The distance-to-default portfolios are constructed by computing a weighted average

of DDs in month t for each DD quartile, with the weights equal to the book value of the

firm’s liabilities at the end of month t− 1. Similarly, the stock portfolios are computed as a

weighted average of excess equity returns in month t for each DD quartile, with the weights

equal to the market value of the firm’s equity at the end of month t− 1.7

The construction of the corresponding bond portfolios is complicated by the fact that a

significant portion of bonds in our sample are callable (see Figure 2). As shown by Duffee

[1998], if the firm’s outstanding bonds are callable, movements in the risk-free rates—by

changing the value of the embedded call option—will have an independent effect on bond

prices, complicating the interpretation of the behavior of credit spreads. For example, as

the general level of interest rates in the economy increases, the option to call becomes less

valuable, which accentuates the price response of callable bonds relative to that of non-

callable bonds. As a result, a rise in interest rates will, ceteris paribus, compress the credit

spreads of callable bonds more than the credit spreads of their noncallable counterparts.

In addition, prices of callable bonds are more sensitive to uncertainty regarding the future

course of interest rates. On the other hand, to the extent that callable bonds are, in effect,

of shorter duration, they may be less sensitive to changes in default risk.

To deal with this issue, we utilize the micro-level aspect of our bond data to control

directly for the effects of the Treasury term structure and interest rate uncertainty on

the credit spreads of callable bonds when constructing bond portfolios. In particular, we

consider the following empirical bond-pricing model:

lnSit[k] = (1 + CALLi[k])× (α+ β1DDit + β2DD
2
it + γ′Xit[k])

+ CALLi[k]× (θ1LEVt + θ2SLPt + θ3CRVt + θ4VOLt) +RTGit[k] + ǫit[k], (7)

7Excess equity returns, which include dividends and capital gains, are measured relative to the yield on
1-month Treasury bills.
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Figure 2: Callable Nonfinancial Corporate Bonds
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Note: Sample period: Jan1986–June2010. The figure depicts the proportion of bonds in our sample
that are callable. The shaded vertical bars represent the NBER-dated recessions.

where CALLi[k] is an indicator variable that equals one if bond k (issued by firm i) is callable

and zero otherwise, DDit denotes the estimated year-ahead distance-to-default for firm i,

and ǫit[k] is a “bond-pricing error.”8 In this framework, credit spreads of callable bonds are

allowed to depend separately on the level (LEVt), slope (SLPt), and curvature(CRVt) of the

Treasury yield curve, the three factors that summarize the vast majority of the information

in the Treasury term structure, according to Litterman and Scheinkman [1991] and Chen

and Scott [1993].9 The credit spreads of callable bonds are also influenced by the uncertainty

regarding the path of long-term interest rates, as measured by the option-implied volatility

on the 30-year Treasury bond futures (VOLt).

We also allow for a nonlinear effect of default risk on credit spreads by including a

quadratic term of DDit in the bond-pricing regression, thereby accounting for the nonlinear

relationship between credit spreads and leverage documented by Levin et al. [2004].10 The

8Taking logs of credit spreads provides a useful transformation to control for heteroscedasticity, given
that the distribution of credit spreads is highly skewed.

9The level, slope, and curvature factors correspond, respectively, to the first three principal components
of nominal Treasury yields at 3-month, 6-month, 1-, 2-, 3-, 5-, 7-, 10-, 15, and 30-year maturities. All yield
series are monthly (at month-end) and with the exception of the 3- and 6-month bill rates are derived from
the smoothed Treasury yield curve estimated by Gürkaynak et al. [2007].

10As a robustness check, we also considered higher-order polynomials of the distance-to-default, but the
inclusion of cubic and quartic terms had virtually no effect on our results.
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vector Xit[k], in contrast, controls for the bond-specific characteristics that could influence

credit spreads through either term or liquidity premiums, including the bond’s duration

(lnDURit[k]), the amount outstanding (lnPARit[k]), and the bond’s (fixed) coupon rate

(lnCPNi[k]). The bond-pricing regression also includes credit rating fixed effects (RTGit[k]),

which capture the “soft information” regarding the firm’s financial health, information that

is complementary to our option-theoretic measures of default risk; see, for example, Löffler

[2004, 2007].

Using this framework, we adjust credit spreads on callable bonds (i.e., CALLi[k] = 1)

according to

S̃it[k] = exp
[

lnSit[k]− CALLi[k]× (α̂+ β̂1DDit + β̂2DD
2
it + γ̂′Xit[k])

− (θ̂1LEVt + θ̂2SLPt + θ̂3CRVt + θ̂4VOLt)
]

,

where S̃it[k] is the option-adjusted spread on a callable bond k and α̂, β̂1, β̂2, and θ̂1, . . . , θ̂4

denote OLS estimates of the corresponding parameters from the bond-pricing regression (7).

Table 2, translates the selected coefficients from the estimated log-spread pricing equation

into the impact of variation in default risk (the sum of the linear and quadratic DD terms),

the shape of the term structure, and interest rate uncertainty on the level of credit spreads.

Consistent with the theoretical predictions, the effect of the distance-to-default on the

credit spreads of callable bonds is significantly attenuated by the call-option mechanism:

A one standard deviation increase in the distance-to-default—a signal of improving credit

quality—implies a decrease of 23 basis points in the spreads of noncallable bonds, compared

with a 14 basis points decline in the spreads of their callable counterparts.

The estimates in Table 2 also indicate that the shape of the Treasury term structure

and interest rate volatility have first-order effects on the credit spreads of callable bonds,

which are consistent with the theoretical predictions. For example, a one standard deviation

increase in the level factor implies a 51 basis points reduction in the credit spreads on callable

bonds, while a one standard deviation increase in the slope factor lowers credit spreads on

such bonds 32 basis points. An increase in the option-implied volatility on the long-term

Treasury bond futures of one percentage point implies a widening of callable credit spreads

of about 15 basis points, because the rise in interest rate uncertainty lowers the prices of

callable bonds by boosting the value of the embedded call options.

The importance of the option-adjustment procedure over the entire sample period is

illustrated in Figure 3, which shows the time path of the average credit spread in our data

set, calculated using both the raw and option-adjusted spreads. Although the two series are

clearly highly correlated (ρ = 0.88) and are both strongly procyclical, there are a number

of noticeable differences. First, the option-adjusted credit spreads are, on average, lower
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Table 2: Selected Marginal Effects by Type of Bond

Noncallable Callable

Marginal Effect Est. S.E. Est. S.E. Meana STDb

Distance-to-default: DDit -0.227 0.013 -0.138 0.009 6.669 4.246
Term structure: LEVt - - -0.508 0.045 0.000 1.000
Term structure: SLPt - - -0.319 0.039 0.000 1.000
Term structure: CRVt - - -0.053 0.044 0.000 1.000
Term structure: VOLt (%) - - 0.153 0.014 10.39 2.596

Obs. = 305,412
No. of bonds/firms = 5,896/1,104
Adjusted R2 = 0.730

Note: The table contains the estimates of the marginal effect of a one unit change in the
specified variable on the level of credit spreads (in percentage points) for noncallable and callable
bonds based on the bond-pricing regression (7). All marginal effects are evaluated at sample means;
by construction, the level, slope, and curvature factors are standardized to have the mean equal to
zero and the standard deviation equal to one. Robust asymptotic standard errors are double clustered
in the firm (i) and time (t) dimensions; see Cameron et al. [2010] for details.

aSample mean of the specified variable.
bSample standard deviation of the specified variable.

than their unadjusted counterparts—140 basis points compared with 168 basis points—

reflecting the positive value of the embedded call options. By eliminating, at least in

part, fluctuations in the call option values, the option-adjusted credit spreads are also less

volatile, on average, than the raw credit spreads. Lastly, the largest differences between

the two series occurred in the mid-1980s and during the most recent financial crisis. The

former period was characterized by a high general level of interest rates and relatively high

uncertainty regarding the future course of long-term interest rates, whereas the difference

during the latter period owes primarily to the plunge in interest rates and the steepening

of the term structure that began with the onset of the financial crisis in the summer of

2007, two factors than more than offset the spike in (long-term) interest rate volatility that

occurred during that period.

We use the option-adjusted credit spreads to construct the DD-based bond portfolios.

To control for maturity, we also split each conditional DD quartile of credit spreads into

four maturity categories: (1) short maturity : credit spreads of bonds with the remaining

term-to-maturity of more than 1 year but less than (or equal) to 5 years; (2) intermediate

maturity : credit spreads of bonds with the remaining term-to-maturity of more than 5 years

but less than (or equal) 10 years; (3) long maturity : credit spreads of bonds with the

remaining term-to-maturity of more than 10 years but less than (or equal) to 15 years;

12



Figure 3: Credit Spreads on Nonfinancial Corporate Bonds
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Note: Sample period: Jan1986–June2010. The solid line depicts the time-series of the weighted
average of the option-adjusted credit spreads for our sample of bonds (see text for details); the dotted
line depicts the time-series of the weighted average of the raw credit spreads. In both cases, the weights
are equal to the market values of the underlying bond issues. The shaded vertical bars represent the
NBER-dated recessions.

(4) very long maturity : credit spreads of bonds with the remaining term-to-maturity of

more than 15 years. We then compute a weighted average of credit spreads in month t for

each DD/maturity portfolio, with the weights equal to the market value of the outstanding

issue; this procedure yields 16 bond portfolios of credit spreads (four DD quartiles and four

maturity categories).

Table 3 contains summary statistics of the DDs, credit spreads, and excess equity returns

in the DD-based portfolios. Not surprisingly, the average distance-to-default increases across

the four conditional DD quartiles. The time-series volatility of this default-risk indicator, as

measured by its standard deviation, also increases with the improvement in credit quality,

indicating that the DDs of the most risky firms fluctuate less than those of their more

creditworthy counterparts. Consistent with the increase in the likelihood of default, both

the average and the median credit spread decline monotonically across the four conditional

DD quartiles in all four maturity categories. The Sharpe ratio within each maturity category

is fairly constant for the portfolio of bonds in the first three DD quartiles. However, the

Sharpe ratio drops markedly for portfolios containing bonds issued by the riskiest firms.

The time-series characteristics of excess equity returns of firms in our four default-risk
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Table 3: Summary Statistics of Financial Indicators in DD-Based Portfolios

Financial Indicator DD Quartilea Mean SD S-Rb Min P50 Max

Distance-to-default 1 2.12 1.02 - -0.83 2.22 4.83
Distance-to-default 2 5.26 1.73 - 0.50 5.63 8.63
Distance-to-default 3 7.62 2.15 - 2.23 8.17 11.3
Distance-to-default 4 11.2 2.86 - 4.87 11.6 16.7

Credit spread (1–5 yr.) 1 2.77 1.82 1.52 0.73 2.27 12.1
Credit spread (1–5 yr.) 2 1.29 0.69 1.88 0.44 1.11 5.16
Credit spread (1–5 yr.) 3 0.94 0.48 1.94 0.29 0.85 3.65
Credit spread (1–5 yr.) 4 0.68 0.36 1.88 0.22 0.58 2.52

Credit spread (5–10 yr.) 1 2.97 1.65 1.80 0.93 2.35 9.65
Credit spread (5–10 yr.) 2 1.48 0.67 2.21 0.59 1.22 4.54
Credit spread (5–10 yr.) 3 0.99 0.45 2.20 0.45 0.86 3.33
Credit spread (5–10 yr.) 4 0.69 0.33 2.08 0.22 0.54 2.15

Credit spread (10–15 yr.) 1 2.51 1.67 1.50 0.87 1.98 13.2
Credit spread (10–15 yr.) 2 1.35 0.72 1.87 0.31 1.09 4.81
Credit spread (10–15 yr.) 3 0.90 0.48 1.89 0.25 0.79 3.45
Credit spread (10–15 yr.) 4 0.65 0.34 1.92 0.21 0.52 1.85

Credit spread (> 15 yr.) 1 2.69 1.61 1.67 0.67 2.34 12.3
Credit spread (> 15 yr.) 2 1.50 0.55 2.74 0.84 1.33 3.80
Credit spread (> 15 yr.) 3 1.10 0.42 2.59 0.51 0.98 3.09
Credit spread (> 15 yr.) 4 0.82 0.31 2.66 0.37 0.74 1.98

Excess Equity Return 1 -0.31 8.11 -0.04 -58.0 0.66 28.8
Excess Equity Return 2 0.08 6.12 0.01 -44.8 0.55 17.3
Excess Equity Return 3 0.05 4.91 0.01 -31.0 0.64 14.8
Excess Equity Return 4 0.19 4.14 0.05 -24.6 0.78 11.2

Note: Sample period: Jan1986–June2010. Distances-to-default are in units of standard deviations,
credit spreads are in percentage points, and (monthly) excess equity returns are in percent.

aThe (weighted) average of financial indicators in month t in each quartile is based on the distance-to-
default (DD) distribution in month t− 1 (see text for details).

bSharpe ratio.

categories, by contrast, do not exhibit much of a systematic pattern. Portfolios based on

returns of firms from the center of the credit quality spectrum (i.e., DD quartiles 2 and 3)

have identical Sharpe ratios, whereas the least risky firms (i.e., DD quartile 4) have an

appreciably better reward-to-variability ratio, a result that largely reflects the absence of

very large negative returns associated with the recent financial crisis. In contrast, firms

in the first DD quartile registered an exceptionally weak performance over the 1986–2010

period, a finding consistent with the distress risk anomaly documented by the empirical
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asset-pricing literature.11

The DD-based portfolios considered thus far were based on asset prices of a subset of

nonfinancial corporations, namely firms with senior unsecured bonds that are traded in

the secondary market. We also consider a broader set of DD-based financial indicators by

constructing the same type of portfolios using the distance-to-default estimates and excess

equity returns for the entire matched CRSP-Compustat sample of U.S. nonfinancial corpo-

rations. Given the large number of firms in any given month, we increase the granularity of

the portfolios by sorting the DDs and excess equity returns in month t into 10 deciles based

on the distribution of the distance-to-default in month t − 1. As before, the conditional

DD portfolios are constructed by computing a weighted average of DDs in month t for each

DD decile, whereas the stock portfolios are computed as a weighted average of excess eq-

uity returns in month t, a procedure yielding 20 additional DD-based portfolios of financial

indicators.

3 Econometric Methodology

We examine the predictive content of the DD-based portfolios, as well as a large number

of other predictors, within the Bayesian Model Averaging (BMA) framework, an approach

that is particularly well-suited to deal with model uncertainty. Initially proposed by Leamer

[1978], BMA has been used extensively in the statistics literature; see, for example, Raftery

et al. [1997] and Chipman et al. [2001]. The BMA approach to model uncertainty has also

found numerous econometric application, including the forecasting of output growth (Min

and Zellner [1993] and Koop and Potter [2004]); the forecasting of recession risk (King et al.

[2007]); cross-country growth regressions (Fernandez et al. [2001b] and Sala-i-Martin et al.

[2004]); exchange rate forecasting (Wright [2008]); and the predictability of stock returns

(Avramov [2002] and Cremers [2002]).

3.1 Bayesian Model Averaging

In using the BMA approach, the researcher considers a set of n possible models, where the

i-th model, denoted by Mi, is characterized by the parameter vector θi. One of these models

is the true model, but the researcher does not know which one. The researcher has prior

beliefs about the probability that the i-th model is true—denoted by P (Mi)—observes data

D, and updates her beliefs to compute the posterior probability that the i-th model is the

11Although financial theory predicts a positive relationship between default risk and equity returns, em-
pirically, stocks of firms with a high likelihood of default have anomalously low returns; see, for example,
Griffin and Lemmon [2002] and Campbell et al. [2008]
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true model according to

P (Mi|D) =
P (D|Mi)P (Mi)

∑n
j=1

P (D|Mj)P (Mj)
, (8)

where

P (D|Mi) =

∫

P (D|θi,Mi)P (θi|Mi)dθi (9)

is the marginal likelihood of the i-th model; P (θi|Mi) is the prior density of the parameter

vector θi associated with the i-th model; and P (D|θi,Mi) is the likelihood function. Each

model also implies a forecast. In the presence of model uncertainty, the BMA forecast

weights each of the individual forecasts by their respective posterior probabilities.

To operationalize BMA, the researcher needs only to specify the set of models, the model

priors P (Mi), and the parameter priors P (θi|Mi). In this paper, all the models considered

are linear regressions. Specifically, the i-th model is given by

yt+h = β′
iXit + γ′Zt + ǫt+h, (10)

where yt is the variable that the researcher wishes to forecast at a horizon of h periods;

Xit is a (pi × 1)-vector of predictors that are specific to model i; Zt is a (p0 × 1)-vector

of predictors that are common to all models; and ǫt+h
iid∼ N(0, σ2) is the forecast error.

Without loss of generality, the model-specific predictors Xit are assumed to be orthogonal

to the common predictors Zt. In our setup, the vector of parameters characterizing the i-th

model is thus given by θi = (β′
i γ

′ σ2)′.

In setting the model priors, we assume that all models are equally likely, implying that

P (Mi) = 1/n. For the parameter priors, we follow the general trend of the BMA literature

(e.g., Fernandez et al. [2001a]) in specifying that the prior for γ and σ2, denoted by p(γ, σ),

is uninformative and is proportional to 1/σ, while using the g-prior specification of Zellner

[1986] for βi conditional on σ2. The g-prior is given by N(0, φσ2(X ′
iXi)

−1), where the

shrinkage hyperparameter φ > 0 measures the strength of the prior—a smaller value of φ

corresponds to a more dogmatic prior. Letting β̂i and γ̂ denote the OLS estimates of the

parameters in equation (10), respectively, then the Bayesian h-period-ahead forecast made

from model Mi at time T is

ỹiT+h|T = β̃′
iXit + γ̂′Zt, (11)

where β̃i =
(

φ
φ+1

)

β̂i denotes the posterior mean of βi. The marginal likelihood of the i-th

model reduces to

P (D|Mi) ∝
[

1

1 + φ

]−
pi
2

×
[

1

1 + φ
SSRi +

φ

1 + φ
SSEi

]−
(T−p0)

2

, (12)
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where SSRi is the sum of squares from the i-th the regression and SSEi is the associated

sum of squared errors. The posterior probabilities of the models can then be worked out

from equation (8), and the final BMA forecast that takes into account model uncertainty is

given by

ỹT+h|T =
n
∑

i=1

P (Mi|D)ỹiT+h|T . (13)

Clearly, the BMA forecast in equation (13) will depend on the value of the shrinkage

hyperparameter φ. A small value of φ implies that the model likelihoods are roughly

equal, and so the BMA forecast will resemble equal-weighted model averaging (cf. Bates

and Granger [1969]). In contrast, a high value of φ amounts to weighting the models by

their in-sample R2 values, a procedure that is well known to generate poor out-of-sample

forecasting performance. Because the relationship between the out-of-sample root mean

square prediction error and the parameter φ is often U-shaped, the best out-of-sample

forecasts are obtained when φ is neither too small nor too big.

We apply BMA to forecasting various indicators of economic activity using standard

macroeconomic variables and financial asset prices as predictors. The common predictors

Zt in our regression equation (10) are a constant and lags of the dependent variable. In

our application, as well as in nearly any macro-finance application, the assumptions used in

deriving equation (12) are clearly false in two respects. First, the regressors are assumed to

be strictly exogenous; that said, many of the commonly-used methods for combining a large

number of variables in forecasting exercises, including bagging and empirical Bayes methods,

likewise have a theoretical justification that relies on strict exogeneity of the regressors.

Second, the forecasts are overlapping h-step ahead forecasts, so the forecast errors less than

h periods apart are bound to be serially correlated, even though it is assumed that they

are i.i.d. normal. Nevertheless, BMA, like other methods that combine a large number of

predictors to generate a forecast, may still have good forecasting properties, even if the

premises underlying their theoretical justification are false (e.g., Stock and Watson [2005]).

In fact, ability to provide accurate out-of-sample forecasts is a stringent test of the practical

usefulness of BMA in forecasting.

3.2 The Forecasting Setup

We focus on forecasting real GDP, real personal consumption expenditures (PCE), real busi-

ness fixed investment, industrial production, private payroll employment, and the civilian

unemployment rate over the period from 1986:Q1 to 2010:Q1. All series are in quarter-over-

quarter growth rates (actually 400 times log first differences), except for the unemployment

rate, which is simply in first differences. Our objective is to forecast the cumulative growth

rate (or the cumulative change in the case of the unemployment rate) for each of these
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macroeconomic variables from quarter t− 1 through quarter t+ h.

Specifically, let yt denote the growth rate in the variable from quarter t− 1 to quarter t.

(In case of the unemployment rate, yt denotes the first difference.) The average value of yt

over the forecast horizon h is denoted by yC

t+h = 1

h+1

∑h
i=0

yt+i. The i-th forecasting model

in our setup is given by:

yC

t+h = α+ βixit +

p
∑

j=1

γjyt−i + ǫt+h, (14)

where xit is one of the predictors listed in Table 4 and p, the number of lags, is deter-

mined by the Bayes Information Criterion (BIC). The set of possible predictors listed in

Table 4 includes 15 different macroeconomic series and 80 asset market indicators. The

asset market indicators include our 16 bond portfolios of options-adjusted credit spreads,

as well as average DDs and excess equity returns for different default-risk portfolios; in

addition, we consider the predictive content of the three Fama-French risk factors, a range

of standard interest rates and interest rate spreads, implied volatilities from options quotes,

and commodity prices.

The timing convention in the forecasting regression (14) is as follows. We think of

forecasts as being made in the middle month of each quarter. For macroeconomic variables,

we use the February, May, August, and November vintages of data from the real-time data

set compiled and maintained by the Federal Reserve Bank of Philadelphia; this includes

data through the previous quarter for all the macroeconomic series that we consider. All

asset prices are as of the end of the month from the first month of the current quarter.

Importantly, all of these data would have been available at the time that the Philadelphia

Fed assembled its mid-quarter vintage data set.

The option-adjustment procedure is also implemented in real-time—that is, the param-

eters of the bond-pricing regression (7) are estimated each month using only data available

at that time. The resulting real-time coefficient estimates are used to compute the option-

adjusted credit spreads, which are then sorted into the DD-based bond portfolios.12 With

these fully real-time data in hand, we then use BMA to construct forecasts of the values of

the dependent variable for the current and next four quarters (i.e., h = 0, 1, . . . , 4). Thus, we

are considering both “nowcasting” and prediction at horizons up to one year ahead. These

forecasts are evaluated in a recursive out-of-sample forecast evaluation exercise, starting

with the forecasts made in 1992:Q1 and continuing through to the end of the sample period

in 2010:Q1.

12Note that the real-time implementation of the option-adjustment procedure generates spreads that
differ from the option-adjusted spreads underlying Figure 3, where the option-adjustment procedure was
implemented using the full data set.
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Table 4: Predictor Set

Predictor (# of series) Data Transformation

Macroeconomic Series (15)
GDP log difference
PCE log difference
PCE (durable goods) log difference
Residential investment log difference
Business fixed investment log difference
Government spending log difference
Exports log difference
Imports log difference
Nonfarm private payrolls log difference
Civilian unemployment rate difference
Industrial production log difference
Single-family housing starts log difference
GDP price deflator log difference
Consumer price index log difference
M2 log difference

Asset Market Indicators (80)
Credit spreads in DD-based bond portfolios (16) level
Avg. DD by DD quartile (bond issuers) (4) level
Avg. DD by DD decile (nonfinancial firms) (10) level
Excess stock returns by DD quartile (bond issuers) (4) level
Excess stock returns by DD decile (nonfinancial firms) (10) level
3-month nonfinancial commercial paper rate level
3-month nonfinancial commercial paper rate less 3-month Tbill rate
3-month Eurodollar rate level
3-month Eurodollar rate less 3-month Tbill rate
3-month Treasury bill rate level
Federal funds rate level
1- to 10-year Treasury yieldsa (10) level
1- to 10-year Treasury yields (10) less 3-month Tbill rate
Fama-French risk factors (3) level
S&P 100 implied volatility level
10- and 30-year Treasury futures implied volatility (2) level
Eurodollar futures implied volatility level
Gold spot price second difference of logs
Oil spot price second difference of logs
CRB commodity spot price index second difference of logs

Note: All macroeconomic series come from the real-time data set maintained by the Federal Reserve
Bank of Philadelphia. The NIPA series are in real terms (c-w, $2000).

aThe nominal Treasury yields between maturities of 1- and 10-years are taken from the Treasury yield
curve estimated by Gürkaynak, Sack, and Wright [2007]
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An important issue in this type of real-time forecasting exercise is the definition of

what constitutes the “actual” values with which to compare the BMA forecasts. The

macroeconomic series that we are forecasting are subject to benchmark revisions, and some

of the series are also subject to definitional and conceptual changes. None of these changes

seem sensible to predict in a real-time forecasting exercise. Accordingly, we follow a standard

convention (cf. Tulip [2005]; and Faust and Wright [2009]), which is to measure actual

realized values from the data as recorded in the real-time data set by the Philadelphia Fed

two quarters after the quarter to which the data refer.

The accuracy of the BMA forecasts is evaluated by comparing the mean-square predic-

tion error (MSPE) of the BMA forecast to that obtained from a univariate autoregression:13

yC

t+h = α+

p
∑

j=1

γjyt−i + ǫt+h. (15)

Unfortunately, evaluating the statistical significance of the difference in root MSPEs from

BMA and the direct autoregression is complicated by the fact that the forecasts are gen-

erated by nested models. As shown by Clark and McCracken [2001], the distribution of

the Diebold and Mariano [1995] test statistic under the null hypothesis of equal forecast

accuracy has a nonstandard distribution. Accordingly, we use a bootstrap to approximate

the limiting distribution of the Diebold-Mariano statistic under the null hypothesis. In the

bootstrap, the predictors are, by construction, irrelevant—nevertheless, they have time-

series and cross-sectional dependence properties that mimic those of the underlying data.

The bootstrap hence allows us to test the null hypothesis of no improvement in forecast

accuracy.

The bootstrap involves fitting an AR(4) process to yt and separately estimating a dy-

namic factor model using the set of all predictors Xt:

Xt = ΛFt + ut; (16)

and

Ft = ΦFt−1 + vt, (17)

where Ft denotes the first three principal components of Xt. In each bootstrap replication,

we first re-sample with replacement from the residuals of yt to construct bootstrap samples of

yt. We then independently re-sample with replacement from the residuals in equations (16)

and (17), thereby constructing bootstrap samples of Xt for use in BMA; note that in this

13Note that this is a direct autoregression that projects yC

t+h onto four lags of yt. An alternative would
be to estimate an AR(p) model for yt and then iterate it forward to construct the forecasts. This approach
yielded very similar results.
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Table 5: BMA Out-of-Sample Predictive Accuracy

Predictors: Macroeconomic Variables & Asset Market Indicators

Forecast Horizon (h quarters)

Economic Activity Indicator h = 0 h = 1 h = 2 h = 3 h = 4

GDP 0.95 0.87 0.78 0.81 0.81
[0.04] [0.01] [0.00] [0.01] [0.01]

Personal consumption expenditures 0.91 0.89 0.92 0.98 1.03
[0.02] [0.04] [0.08] [0.17] [0.33]

Business fixed investment 0.87 0.72 0.70 0.71 0.74
[0.00] [0.00] [0.00] [0.00] [0.01]

Industrial production 0.95 0.85 0.84 0.84 0.80
[0.02] [0.00] [0.00] [0.01] [0.01]

Private employment 0.88 0.73 0.80 0.81 0.77
[0.00] [0.00] [0.00] [0.02] [0.01]

Unemployment rate 0.92 0.80 0.86 0.94 0.93
[0.00] [0.00] [0.01] [0.09] [0.08]

Note: Sample period: 1986:Q1–2010:Q1. The jump-off date for the out-of-sample recursive
forecasts is 1992:Q1. The forecasted variable is the cumulative growth rate (or change in the case of
unemployment rate) of each economic activity indicator over the specified forecast horizon. Entries
in the table denote the ratio of the MSPE from the BMA forecast to the MSPE from a direct
autoregression. Each model in the BMA forecast consists of a direct autoregression augmented with
one predictor. Bootstrapped p-values (500 replications) for the test of the null hypothesis that the
ratio of the MSPEs is equal to one are shown in brackets.

setup, the predictor setXt is, by construction, irrelevant for the forecasting of the dependent

variable.

4 Results

Table 5 contains the relative out-of-sample MSPEs of the BMA forecasts, using the bench-

mark value of the shrinkage parameter φ = 4. Bootstrapped p-values testing the null

hypothesis that the relative mean-square prediction error is equal to one, are shown in

brackets. For real GDP growth, the MSPEs from the BMA forecasts relative to those from

the direct autoregression are around 0.8 at all forecast horizons beyond the current quarter.

Judging from the bootstrapped p-values, these improvements in forecast accuracy are all

statistically significant, at least at the 5 percent level.

The relative accuracy of BMA in forecasting output growth appears to reflect, in part,

its ability to predict the growth of business fixed investment. For this volatile and cyclically
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important indicator of economic activity, the BMA forecast improves on the direct autore-

gression by almost 30 percent at forecast horizons of one to four quarters. The growth of

personal consumption expenditures, in contrast, is considerably less predictable. Although

BMA is noticeably more accurate than the direct autoregression in forecasting consumption

growth over the very near term, the relative MSPEs are statistically indistinguishable from

one at the two- to four-quarter-ahead horizons.

Our BMA setup also implies economically and statistically significant gains in accuracy

when predicting the growth of industrial production and changes in labor market conditions

at both the near- and longer-term forecast horizons. In the case of industrial production,

the relative MSPEs lie between 0.80 and 0.95, improvements that are statistically highly sig-

nificant. The relative MSPEs in the case of employment growth are between 0.73 and 0.88,

values that are again all below one at conventional significance levels. For changes in the

unemployment rate, the BMA forecast is more accurate than the univariate autoregression

at all horizons, but the improvements are only statistically significant at the shorter hori-

zons. Overall, our results indicate that for forecasting a range of real economic activity

indicators, BMA—with (option-adjusted) portfolio credit spreads in the set of predictors—

yields improvements relative to the univariate benchmark that are both economically and

statistically significant. The gains in forecasting accuracy are most pronounced for cyclically

sensitive indicators of economic activity, such as the growth of business fixed investment,

industrial production, and private employment.14

To gauge the information content of credit spreads in predicting economic outcomes, we

first repeat the forecast comparison exercise by using only the credit spreads in the 16 DD-

based bond portfolios in the set of predictors and then by using all predictors except for

the credit spreads. The results of this exercise are shown in the top and bottom panels of

Table 6, respectively. According to the top panel, the accuracy of the BMA forecasts based

only on credit spreads is very similar to that reported in Table 5 for most economic indicators

and forecast horizons. Although restricting the predictor set to only credit spreads in our

DD-based portfolios does lead to a loss of forecast accuracy for output and consumption

growth at longer horizons, using only credit spreads as predictors actually improves the

accuracy of the BMA forecast of the change in the unemployment rate.

In contrast, the exclusion of the DD-based portfolios of credit spreads from the predictor

set results in a substantial deterioration in the predictive accuracy of the BMA forecasts.

14As a robustness check, we also considered other methods for forecasting in a data-rich environment,
including a factor-augmented autoregression and an equally-weighted average of OLS-based forecasts. In
general, BMA outperformed these methods. By construction, factors are designed to explain the maximum
amount of the cross-sectional variation in the set of predictors, which is not the same thing as predicting
future economic activity. Equally-weighted average of the OLS-based forecasts works relatively well, but it
assumes away the possibility that some variables may be more useful for forecasting economic activity than
others.
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Table 6: The Information Content of Credit Spreads

(BMA Out-of-Sample Predictive Accuracy)

Predictors: Option-Adjusted Credit Spreads Only

Forecast Horizon (h quarters)

Economic Activity Indicator h = 0 h = 1 h = 2 h = 3 h = 4

GDP 0.91 0.88 0.89 1.00 1.03
[0.02] [0.01] [0.03] [0.26] [0.41]

Personal consumption expenditures 0.87 0.88 1.03 1.14 1.19
[0.00] [0.03] [0.53] [0.87] [0.89]

Business fixed investment 0.85 0.69 0.71 0.74 0.77
[0.00] [0.00] [0.00] [0.00] [0.00]

Industrial production 0.91 0.79 0.84 0.90 0.86
[0.00] [0.00] [0.00] [0.03] [0.02]

Private employment 0.84 0.70 0.72 0.73 0.71
[0.00] [0.00] [0.00] [0.00] [0.00]

Unemployment rate 0.86 0.71 0.74 0.79 0.78
[0.00] [0.00] [0.00] [0.01] [0.01]

Predictors: All Variables except Option-Adjusted Credit Spreads

Forecast Horizon (h quarters)

Economic Activity Indicator h = 0 h = 1 h = 2 h = 3 h = 4

GDP 0.96 0.95 0.96 0.96 0.95
[0.05] [0.06] [0.08] [0.10] [0.09]

Personal consumption expenditures 0.97 0.90 0.92 0.96 1.02
[0.12] [0.04] [0.07] [0.14] [0.28]

Business fixed investment 0.93 0.91 0.93 0.95 0.92
[0.01] [0.01] [0.04] [0.10] [0.08]

Industrial production 0.98 1.03 1.12 1.13 1.16
[0.06] [0.64] [0.89] [0.80] [0.80]

Private employment 0.98 1.01 1.09 1.10 1.07
[0.11] [0.35] [0.73] [0.65] [0.48]

Unemployment rate 0.92 0.94 1.07 1.10 1.05
[0.01] [0.04] [0.74] [0.69] [0.44]

Note: Sample period: 1986:Q1–2010:Q1. The jump-off date for the out-of-sample recursive
forecasts is 1992:Q1. The forecasted variable is the cumulative growth rate (or change in the case
of unemployment rate) of each economic activity indicator over the specified forecast horizon. En-
tries in the table denote the ratio of the MSPE from the BMA forecast to the MSPE from a direct
autoregression (see text for details). Each model in the BMA forecast consists of a direct autoregres-
sion augmented with one predictor. Bootstrapped p-values (500 replications) for the test of the null
hypothesis that the ratio of the MSPEs is equal to one are shown in brackets.
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As shown in the bottom panel of Table 6, for the current-quarter forecasts, BMA yields only

small improvements in forecast accuracy relative to the univariate benchmark. Moreover,

the relative MSPEs of BMA forecasts at horizons beyond the current quarter are statistically

indistinguishable from one in nearly all cases. In summary, absent the information content

of credit spreads in our DD-based bond portfolios, the evidence of predictability of economic

activity beyond the current quarter appears to be quite weak and inconsistent.

4.1 Which Predictors are the Most Informative?

Figure 4 depicts the total weights—that is, the sum of posterior probabilities—that BMA

assigns to variables in the following predictor subsets: (1) option-adjusted credit spreads

in the DD-based bond portfolios; (2) macroeconomic variables; (3) Treasury yields and the

associated interest rate spreads; and (4) all other asset market indicators. Results are shown

for all forecast horizons considered and for each of the six different indicators of economic

activity that we forecast.

According to these results, BMA assigns some weight to the macroeconomic variables in

a number of cases. But, generally, BMA ascribes the vast majority of the posterior weight to

the information content of option-adjusted credit spreads in our DD-based bond portfolios.

Figure 5 depicts the posterior probabilities that BMA assigns to each of the 16 different

DD-based bond portfolios when forecasting at the four-quarter-ahead horizon, using only

these credit spreads as predictors. Note that, by construction, the posterior probabilities

must sum to one for each indicator of economic activity.

Within the different bond portfolios, BMA assigns substantial posterior probabilities to

multiple credit spreads, so it represents a genuine model combination exercise, as opposed

to model selection. In general, credit spreads based on portfolios of long-maturity bonds

(i.e., securities with the remaining term-to-maturity between 5 and 10 years) appear to be

the most informative about the economic outlook, as these long-maturity credit spreads are

consistently assigned a high posterior weight.

With regards to credit quality, BMA tends to place most posterior weight on credit

spreads in portfolios containing securities issued by firms in the upper half of the credit

quality distribution—that is, portfolios corresponding to the third and fourth quartile of

the DD distribution. The exceptions seem to be the forecasts of output and consumption

growth, two economic indicators for which BMA assigns a noticeable weight credit spreads

associated with somewhat riskier firms. All told, these results are broadly consistent with

those of Gilchrist et al. [2009] who find that the information content of credit spreads is

concentrated in portfolios consisting of long-maturity bonds issued by firms at the middle

and upper end of the credit-quality spectrum.
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Figure 4: BMA Posterior Probabilities by Predictor Type

0.0

0.2

0.4

0.6

0.8

1.0

Probability

Credit
spreads

Macro
variables

Interest rates
and spreads

Other
indicators

  Current quarter
  1 quarter
  2 quarters
  3 quarters
  4 quarters

GDP

0.0

0.2

0.4

0.6

0.8

1.0

Probability

Credit
spreads

Macro
variables

Interest rates
and spreads

Other
indicators

Personal consumption expenditures

0.0

0.2

0.4

0.6

0.8

1.0

Probability

Credit
spreads

Macro
variables

Interest rates
and spreads

Other
indicators

Business fixed investment

0.0

0.2

0.4

0.6

0.8

1.0

Probability

Credit
spreads

Macro
variables

Interest rates
and spreads

Other
indicators

Industrial production

0.0

0.2

0.4

0.6

0.8

1.0

Probability

Credit
spreads

Macro
variables

Interest rates
and spreads

Other
indicators

Private employment

0.0

0.2

0.4

0.6

0.8

1.0

Probability

Credit
spreads

Macro
variables

Interest rates
and spreads

Other
indicators

Unemployment rate

Note: The figure depicts the total weight (i.e., the sum of posterior probabilities) that BMA assigns
to variables in the following predictor sets: (1) option-adjusted credit spreads in the DD-based bond
portfolios; (2) macroeconomic variables; (3) Treasury yields and the associated interest rate spreads;
and (5) all other asset market indicators. The entire set of predictors is listed in Table 4.
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Figure 5: BMA Posterior Probabilities for Option-Adjusted Credit Spreads
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Note: The figure depicts the total weight (i.e., posterior probability) that BMA assigns to the
16 DD-based bond portfolios consisting of the option-adjusted credit spreads. The results shown are
for the four-quarter-ahead forecast horizon and for the case in which the predictor set includes only the
option-adjusted credit spreads (see the top panel of Table 6); as a result, the posterior probabilities sum
to one for each indicator of economic activity.
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4.2 Robustness Checks

4.2.1 Varying the Priors

The results reported thus far were based on the value of the shrinkage hyperparameter

φ = 4. In this section, we examine the robustness of our results to different values of φ,

the parameter governing the strength of the g-prior. Figure 6 plots the MSPE of the BMA

forecast—relative to the MSPE from a direct autoregression—as a function of φ for all

six economic indicators and all five forecast horizons. Our BMA forecasting setup delivers

substantial gains in forecast accuracy relative to the direct autoregression for a wide range

of values of φ; in fact, the qualitative nature of our results appears to be fairly insensitive

to the choice of the shrinkage parameter. In some cases, the relative MSPE decreases

monotonically in φ (at least over the range of values of φ considered). In others, the

relationship between the MSPE and φ is U-shaped, and the best forecasts are consequently

obtained with a small or intermediate value of φ.

With a sufficiently small value of φ—implying a very informative prior—BMA outper-

forms the univariate time-series benchmark in all cases considered in this paper. This is an

attractive feature of BMA with a sufficiently informative prior, at least in this data set.15

Overall, setting φ = 4 as our benchmark seems to be a good choice, because it gives relative

MSPEs that are less than one in nearly all cases, and it often yields substantial gains in

forecast accuracy. Nevertheless, our conclusions appear to be quite robust to a wide range

of choices of φ.

4.2.2 Raw vs. Option-Adjusted Credit Spreads

An important feature of our DD-based bond portfolios is that they are based on option-

adjusted credit spreads. As shown in Figure 3, the option-adjustment procedure signifi-

cantly alters the time-series characteristics of the average credit spread across our 16 bond

portfolios; indeed, the real-time option adjustment makes even a bigger difference in the

case of individual bond portfolios. Thus one might naturally wonder to what extent our

option-adjustment procedure influences the ability of credit spreads to forecast economic

activity. Accordingly, we re-did our forecasting exercise using all the predictors as before,

except with the DD-based bond portfolios now based on raw credit spreads, instead of their

option-adjusted counterparts. The results of this exercise is shown in Table 7.

According to entries in the table, the BMA forecasts that use raw credit spreads continue

to be more accurate than the forecasts obtained from direct autoregressions, at least at

shorter horizons. Although gains in forecast accuracy are statistically and economically

15Note that in the limit, as φ goes to zero, the BMA forecast is, by construction, equivalent to the forecast
from a direct autoregression.
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Figure 6: BMA Forecasting Performance and the Informativeness of the g-Prior
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Note: The figure depicts the ratio of the MSPE of the BMA forecast to the MSPE from a direct
autoregression for the different values of the shrinkage hyperparameter φ (see text for details).
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Table 7: BMA Out-of-Sample Predictive Accuracy

(Without Option Adjustment)

Predictors: Macroeconomic Variables & Asset Market Indicators

Forecast Horizon (h quarters)

Economic Activity Indicator h = 0 h = 1 h = 2 h = 3 h = 4

GDP 0.95 0.89 0.82 0.82 0.78
[0.02] [0.02] [0.01] [0.02] [0.02]

Personal consumption expenditures 0.94 0.91 0.94 0.99 1.06
[0.03] [0.06] [0.10] [0.20] [0.47]

Business fixed investment 0.89 0.85 0.86 0.83 0.76
[0.00] [0.01] [0.02] [0.02] [0.01]

Industrial production 0.95 0.95 1.04 0.94 0.97
[0.01] [0.03] [0.50] [0.06] [0.13]

Private employment 0.90 0.92 1.09 1.13 1.05
[0.01] [0.03] [0.71] [0.72] [0.39]

Unemployment rate 0.92 0.91 1.12 1.17 1.11
[0.01] [0.03] [0.85] [0.86] [0.63]

Note: Sample period: 1986:Q1–2010:Q1. The jump-off date for the out-of-sample recursive
forecasts is 1992:Q1. The forecasted variable is the cumulative growth rate (or change in the case
of unemployment rate) of each economic activity indicator over the specified forecast horizon. En-
tries in the table denote the ratio of the MSPE from the BMA forecast to the MSPE from a direct
autoregression (see text for details). Each model in the BMA forecast consists of a direct autoregres-
sion augmented with one predictor. Bootstrapped p-values (500 replications) for the test of the null
hypothesis that the ratio of the MSPEs is equal to one are shown in brackets.

significant in some cases, they are neither as large nor as consistent—both across economic

indicators and horizons—as those that relied on the option-adjusted credit spreads. For

example, in forecasting the growth of private payroll employment, the BMA forecast that

uses the option-adjusted credit spreads is considerably more accurate than the forecast from

the direct autoregression at all forecast horizons. But, when raw spreads are used instead,

the BMA forecast is actually less accurate than our univariate benchmark at horizons of

two quarters and beyond.

These results suggest that the information content of credit spreads on corporate bonds

is significantly influenced by fluctuations in the values of embedded options, fluctuations

that lower the signal-to-noise ratio of credit spreads for future economic outcomes. Given

the fact the standard credit spread indexes are constructed using prices on both callable and

non-callable bonds and that the portion of callable corporate debt is changing over time,

our findings may also help explain the uneven forecasting performance of these default-risk
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indicators for future economic activity.

5 Predicting the 2007–09 Financial Crisis

The U.S. economy had generally performed well during the first half of 2007. After mid-year,

however, the economic landscape was reshaped dramatically by the intensifying downturn

in the housing market and the emergence of significant strains in the financial markets in the

United States and abroad. Indeed, in December of 2007, the U.S. economy officially entered

the longest and most severe recession of the postwar period. In this section, we examine

the real-time accuracy of our BMA forecasts for this extraordinary episode of economic and

financial turmoil.

The dashed lines in Figures 7–8 show the realized (annualized) growth rates from quarter

t− 1 to quarter t+ h of real GDP, PCE, business fixed investment, industrial production,

private payroll employment, along with the level of the unemployment rate at t + h, since

the beginning of 2005; Figure 7 considers the case of h = 1—that is, the one-quarter-

ahead forecast horizon—whereas Figure 8 corresponds to the case of h = 4, that is, the

four-quarter-ahead forecast horizon. The solid line in each panel depicts the corresponding

real-time BMA point forecast—made in quarter t—using our DD-based portfolios of option-

adjusted spreads. The shaded bands depict the 50-, 68-, 90-, and 95-percentiles of the

associated predictive densities. The data are plotted as of quarter t+ h. Thus in the four-

quarter-ahead case, the data for 2010:Q1 show the actual growth rates of economic activity

from 2008:Q4 to 2010:Q1 and the BMA forecasts for the growth over the same period,

where the forecasts would have been made in 2009:Q1. Note that if the BMA predictions

had perfect foresight, then the predicted and realized values would be equal.

According to Figure 3, credit spreads started to widen significantly in the second half of

2007, concomitant with the slowdown in economic activity predicted by the BMA forecasts.

With credit spreads continuing to move higher, the forecast for economic growth became

progressively more pessimistic, reaching its nadir in 2008:Q4, a period when spreads sky-

rocketed to record level after the collapse of Lehman Brothers. These real-time projections

turned out to be quite accurate, especially at the one-quarter-ahead forecast horizon (Fig-

ure 7). The four-quarter-ahead BMA forecast based on credit spreads (Figure 8) also

did reasonably well, although it missed the timing of the recession by a couple of quar-

ters. At this longer forecast horizon, the most pessimistic forecasts were also made in

2008:Q4—applying to the period ending in 2009Q4—while the realized economic indicators

were generally at their worst in 2009:Q2.
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Figure 7: Recent Predictive Accuracy of Credit Spreads

(One-Quarter-Ahead BMA Forecast)
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Note: The solid line in each panel depicts the real-time BMA point forecast—using the 16 DD-
based portfolios of option-adjusted credit spreads—of the specified variable for the one-quarter-ahead
forecast horizon; the dashed line depicts the realized values of the corresponding variable; and the
shaded bands represent the 50-, 68-, 90-, and 95-percent percentiles of the predictive density (see text
for details). The shaded vertical bar denotes the 2007–09 NBER-dated recession.
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Figure 8: Recent Predictive Accuracy of Credit Spreads

(Four-Quarters-Ahead BMA Forecast)
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Note: The solid line in each panel depicts the real-time BMA point forecast—using the 16 DD-
based portfolios of option-adjusted credit spreads—of the specified variable for the four-quarter-ahead
forecast horizon; the dashed line depicts the realized values of the corresponding variable; and the
shaded bands represent the 50-, 68-, 90-, and 95-percent percentiles of the predictive density (see text
for details). The shaded vertical bar denotes the 2007–09 NBER-dated recession.
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6 Conclusion

This paper has revisited the forecasting of real-time economic activity using a large number

of macroeconomic and financial predictors. Our contribution involved expanding the set

of financial predictors with corporate credit spreads based on bond portfolios sorted by

the instrument’s maturity and credit risk as measured by the issuer’s distance-to-default.

These portfolio credit spreads were constructed directly from the secondary market prices

of a large number of senior unsecured bonds issued by U.S. nonfinancial corporations. Using

a flexible empirical bond-pricing framework, the micro-level credit spreads were adjusted

for the callability of the underlying issue, a pervasive feature of the corporate cash market

and one that significantly influences the information content of credit spreads for future

economic activity.

To take explicitly into account model uncertainty, we employed Bayesian model aver-

aging techniques to combine the information content of variables in our predictor set, an

approach that helps to mitigate concerns about data mining. Our results indicate that the

accuracy of the BMA forecasts significantly exceeds—both statistically and economically—

the accuracy of the forecasts obtained from a univariate direct autoregression, a benchmark

that has proven to be quite difficult to beat when forecasting real-time economic activ-

ity. The gains in forecasting accuracy stem almost exclusively from the inclusion of the

option-adjusted portfolio credit spreads in the set of predictors—Bayesian model averaging

consistently assigns high posterior probabilities to models that include these default-risk in-

dicators. In contrast, if the portfolio credit spreads are omitted from the predictor set, the

BMA forecasts of future economic activity are generally statistically indistinguishable from

the forecasts obtained from a direct autoregression. This finding highlights the rich amount

of information contained in corporate bond spreads, information, as argued by Gilchrist and

Zakraǰsek [2010], that may be particularly useful for identifying the importance of credit

supply shocks in the determination of macroeconomic outcomes.
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