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1 Introduction

Recent research has found that in a data rich environment, dimension reduction in the form of

factors is useful for forecasting and policy analysis. However, a common criticism of factor models

is that the factors are difficult to interpret. One reason is that the factors are estimated from a

large panel of data without taking full advantage of the data structure. This paper proposes a new

hierarchical (multi-level) dynamic factor model obtained by splitting a large panel of data into a

small number of blocks. In our three level model, the within-block comovements are due to block-

level factors, and the between-block variations are due to the common factors. Factors estimated

from a block of employment data, for example, are then interpreted as a labor market factor. A

four level model further divides the blocks into subblocks. The hierarchical structure implies that

the transition equation for the factors at a given level has a time varying intercept that depends

on the factors at the next higher level. We show how this can be taken into account in state space

estimation.

We consider real time monitoring of economic activity as a primary use of our model. Timely

and accurate monitoring of the data are necessary for policy makers to design their policies in

accordance with changing economic conditions. At least three issues make the monitoring exercise

difficult in practice, however. First, as information technology changes, more and more economic

data become available. Second, as individual time series typically feature idiosyncratic variation

and are measured with error, they contain not only news about the state of the economy but also

noise. Third, the data are released at different points in time. Real time monitoring of economic

activity therefore requires filtering out the common signal from the idiosyncratic noise for a very

large number of variables in inherently unbalanced panels. By exploiting the timing in which the

data are released, our model provides a formal way to aggregate information at different levels as

blocks of data arrive on a staggered basis. We use a four level model to monitor 447 economic time

series and find that the timing of the 2007-2009 downturn and subsequent recovery varies quite

substantially across different blocks. Moreover, a continuous update of the state of the economy

based on each new release of data provides a more timely signal of growth dynamics than an update

at the end of each month when new observations on all blocks of data have been released.

Our model can be applied whenever a panel of data can sensibly be organized into blocks and

block level variations are non-negligible. Indeed, the decomposition of variances show that block-

level variations tend to be stronger than the common variations, though both are small relative to

the purely idiosyncratic components in most series. We also compare the factor estimates to the
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principal component estimates and show that the principal components estimator tends to treat

block-level variation as common because the large magnitude of the block-level event contributes

significantly to the total variations in the data. Our model can also be used to analyze the relative

importance of country-level and global variations such as in Glick and Rogoff (1995), or market-wide

versus industry-specific variations such as in Brooks and DelNegro (2006).

The remainder of this paper is organized as follows. In Section 2, we introduce the three level

specification of our model. We present its hierarchical state space representation in Section 2.1,

outline its estimation via Markov Chain Monte Carlo methods in Section 2.2 and discuss how our

model relates to previously suggested multi-level factor models in Section 2.3. In Section 3, we

present results for a three level model of real activity in the US that comprises six blocks of data

organized by the timing of data releases. In Section 4, we then present a four level extension of our

model which allows for common factors at the subblock level, the block level, and the aggregate

level. We apply this model to a dataset which combines several hundred economic time series

for real activity in the US in five blocks and fourteen subblocks of data. Each of the subblocks

corresponds to a statistical release. We discuss how our model can be used to monitor economic

activity in real time in Section 5. Section 6 concludes.

2 A Three Level Hierarchical Dynamic Factor Model

We assume that the data used in the analysis (denoted Xbit) are stationary, mean-zero, standardized

to have a unit variance after possible logarithmic transformation and detrending. We assume that

there are KGb common factors Gb in each block b = 1, . . . , B. Let the mean zero block-level factors

be Gbjt for j = 1, . . .KGb. Hence, there is a total number KG = (KG1 + . . .+KGB) of block-level

factors. We assume that these KG block-level factors share a total of KF common factors Ft. Let

Nb denote the number of variables in block b. This implies a total number N = (N1 + . . . + NB)

of variables in the analysis. We assume that N and T are both large, but that B is much smaller

than N .

Each time series i in a given block b is decomposed into a serially correlated idiosyncratic

component, eXbit, and a common component λiG.b(L)Gbt which it shares with other variables in the

same block. Each block-level factor Gbjt has a serially correlated block-specific component eGbjt and

a common component λjF.b(L)Ft which it shares with all other blocks. Finally, the economy-wide

factors Ft are assumed to be serially correlated. The model can be summarized by the following
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equations:

Xbit = λiG.b(L)Gbt + eXbit, (1)

Gbjt = λjF.b(L)Ft + eGbjt, (2)

ψF.k(L)Fkt = εFkt, (3)

ψX.bi(L)eXbit = εXbit, (4)

ψG.bj(L)eGbjt = εGbjt. (5)

In the above, i = 1, . . . Nb, j = 1, . . .KGb, and k = 1, . . .KF . In this model, variables within a

block can be correlated through Ft or the eGbjt’s, but variables between blocks can be correlated

only through Ft. The factor loadings and AR processes for the common factors, block-specific and

idiosyncratic components are defined in more detail in Section 2.1 below. Our model specifies a

multi-level structure for the factors. This is to be contrasted with models that allow for hierarchy in

the factor loadings as e.g. considered in Lopes and West (2004). Such models allow for heterogeneity

in the response to common variations, whereas we allow for heterogeneity in the common shocks.

Related work in the literature will be further discussed in Section 2.3.

In the terminology of multilevel models, (1) is the level-one equation, and (2) is the level-two

equation. The stochastic process for Ft as given by (3) constitutes a level-three equation. To fix

ideas, if we are given data for production, employment, consumption, etc, then X1it would be one of

the N1 series collected for production, X2it would be one of the N2 series collected for employment

and so forth. The production and the employment factors G1t and G2t would be correlated because

of economy wide fluctuations, which are captured by Ft.

The idiosyncratic components eXbi are AR processes of order qXbi, the block-specific components

are AR processes of order qGbj , and the economy-wide factors Fk are AR processes of order qFk .

We assume normally distributed innovations throughout. Thus,

εXbi ∼ N(0, σ2
Xbi) i = 1, . . . , Nb

εGbj ∼ N(0, σ2
Gbj) j = 1, . . . ,KGb, b = 1, . . . , B

εFk ∼ N(0, σ2
Fk

) k = 1, . . . ,KF .

As written, the specification allows the lag order of the factor loading matrix, the number of factors,

and the factor specific errors to differ across blocks as well as within blocks. Similarly, the lag order

of the idiosyncratic errors can also vary across blocks and units. The dynamics of the model could be

further enriched by allowing for stochastic volatility and Markov switching effects at different levels
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of the hierarchy. Note, however, that when B is large, the number of possible model configurations

increase quickly. In that case, restricting the parameters to be the same across blocks might be

desirable.

For identification, we assume that for each b = 1 . . . B, the matrix of contemporaneous factor

loadings ΛG.b0 =
(
λ1
G.b0, λ

2
G.b0, . . . , λ

Nb
G.b0

)
is lower block triangular. For example, if KGb = 2, we

would have

ΛG.b0 =



1 0
λG.b02,1 1
λG.b03,1 λG.b03,2

: :
λG.b0Nb,1 λG.b0Nb,2

 .

This normalization implies that the block-level factors load heavily on the variables ordered first

within each block. An alternative is to normalize the variance of εG.b to unity and to restrict the

diagonal elements of the upper-left Nb ×KGb block of ΛG.b0 to be positive.

Identification of the economy-wide factors F can be achieved in a similar manner. However, in

the empirical examples discussed below, we assume KF = 1. In this setup, it is sufficient to fix the

upper-left element of the contemporaneous factor loading matrix ΛF0 to one in order to identify

the scale of the common factor and its loadings separately.

The difference between a multilevel and a two level factor model is best understood when Ft

and Gbt are scalars and when the factor loading polynomials λiG.b(L) and λjF.b(L) are of lag order

one. With KGb = KF = 1,

Xbit = λiG.b(λ
j
F.bFt + eGbt) + eXbit

= λbiFt + vbit, (6)

where λbi = λiG.bλ
j
F.b and

vbit = λiG.beGbt + eXbit.

A standard factor model ignores the block structure and stacks all observations up irrespective of

which block an observation belongs to. The data would be modeled as

Xit = λiFt + vit.

This two level representation would be equivalent to an exact factor model if the block-specific

components {eGbt : b = 1, ..., B} were zero for all t. We would otherwise obtain an ‘approximate

factor model’ if vit was ‘weakly correlated’ across i and t. In practice, this means that the number
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of idiosyncratic errors that are serially and/or cross-sectionally correlated cannot be too large. The

condition will be satisfied if the number of series in each block was relatively small in the sense

that the variation in vbit is dominated by eXbit as N →∞ and Nb →∞. Instead of imposing this

possibly invalid assumption, our hierarchical model tackles this problem by explicitly specifying the

block structure. Since the blocks have a well-defined interpretation, and since the ordering of the

first variables in each block is chosen explicitly based on knowledge about the data structure, we

can provide interpretation to the block level factors. This overcomes a common criticism of large

dimensional factor analysis that the factors are difficult to interpret.1 Furthermore, estimates of

Gbt are often objects of independent interest. For example, in monitoring the macroeconomy in

our empirical analysis below, knowledge about the state of the housing block is always useful, even

if the overall state of the economy might be the ultimate object of interest.

2.1 The State Space Representation

Let Θ = (ΘF ; ΘG; ΘX) where ΘF ,ΘG are parameters that characterize Ft, Gt respectively, and ΘX

are the remaining parameters. Let

Xbt =
(
Xb.1t Xb.2t . . . Xb.Nbt

)′
Xt =

(
X1t X2t . . . XBt

)′
Gbt =

(
Gb.1t Gb.2t . . . Gb.KGbt

)′
Gt =

(
G1t G2t . . . GBt

)
.

By assumption,

(i) Xt |= Θ|Gt,ΘX (ii) Gt |= Θ|Ft,ΘG, (iii) Ft |= Θ|ΘF

where |= stands for stochastic independence. Stepwise specification of the sub-models leads to the

statistical model

f(Xt, Ft, Gt; Θ) = f(Xt|Gt; ΘX)f(Gt|Ft; ΘG)f(Ft; ΘF ).

The data density is

f(Xt; Θ) =
∫ ∫

f(Xt|Gt; ΘX)f(Gt|Ft; ΘG)f(Ft|ΘF )dGtdFt.

1The widely used macroeconomic data provided by Stock and Watson (2006) is already loosely organized around
blocks of data on output, consumption, prices, etc. Although it is not always clear which block some series belong to,
this ambiguity does not matter as the block structure is not exploited in the analysis. In contrast, in our application
data are placed into blocks by data release. For example, in the four level specification of our model we will have a
retail sales block consisting of the underlying detail of the the Census Bureau’s monthly retail sales release.
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Because of the assumed hierarchical structure, the data density can be constructed recursively from

the pair of equations:

f(Gt|ΘF ,ΘG) =
∫
f(Gt|Ft; ΘG)f(Ft|ΘF )dFt

f(Xt|Θ) =
∫
f(Xt|Gt; ΘX)f(Gt|ΘF ,ΘG)dGt.

Here, f(Xt, Ft, Gt; Θ) is the measurement equation and f(Gt|ΘF ,ΘG) is the structural model for

the latent factor Ft. As discussed in Mouchart and Martin (2003), strong identification of the mea-

surement model is required to obtain weak identification of the statistical model. Our assumptions

ensure that ΘX = (ΨX ,ΣX ,ΛG) are identified from the measurement model, ΘG = (ΨG,ΣG,ΛF )

are identified from the structural model for Gt, and ΘF = (ΨF ,ΣF ) are identified from the transi-

tion equation for Ft. These equations are now made precise.

Common Factor Dynamics The common factors evolve according to

ΨF (L)Ft = εFt,

where ΨF (L) is a KF ×KF diagonal matrix polynomial with elements ψF.k(L) = 1−ψF.k1L− . . .−

ψF.kqFL
qF and where εFt ∼ N(0,ΣF ) and ||~ΨF || < 1.

Block-Level Dynamics The (pseudo) measurement equation that relates the block level to the

common factors is

Gbt = ΛF.b(L)Ft + eGbt, (7)

ΨG.b(L)eGbt = εGbt. (8)

where ΨG.b(L) is a KGb×KGb diagonal matrix polynomial with elements ψG.bj(L) = 1−ψG.bj1L−

. . .−ψG.bjqGLqG . ΛFb(L) is a KGb×KF matrix polynomial of factor loadings. We call this a pseudo

and not a standard measurement equation because Gbt is not observed. We restrict ||ψG.bj(L)|| < 1

for stationarity and assume εGt ∼ N(0,ΣG).

Together, (7) and (8) imply that

ΨG.b(L)Gbt = ΨG.b(L)ΛF.b(L)Ft + εGbt.

This leads to the block-level transition equation

Gbt = αF.bt + ΨG.b1Gbt−1 + . . .+ ΨG.bqGbGbt−qGb + εGbt.
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where

αF.bt = ΨG.b(L)ΛF.b(L)Ft. (9)

The transition equation at the block level thus differs from the standard transition equation

in linear state space models by the time-varying intercept αF.bt. This term captures the part of

the dynamics of the block level factor Gbt that it shares with other blocks. Knowledge of the

comovement across blocks is therefore useful in estimating the block-specific dynamics. In Section

2.2 below, we show how this additional term can easily be incorporated into a standard sampling

method for linear state space models.

Within-Block Dynamics For each b = 1, . . . , B we have

Xbt = ΛG.b(L)Gbt + eXbt,

ΨX.b(L)eXbt = εXbt,

where ΨX.b(L) is a Nb×Nb diagonal matrix polynomial with elements ψX.bi(L) = 1−ψX.bi1L−

. . . − ψX.biqXLqX . ΛGb(L) is a Nb ×KGb matrix polynomial of factor loadings with rows λiG.b(L).

Then, for b = 1, . . . B, the measurement equation for each block can be rewritten as

ΨX.b(L)Xbt = ΨX.b(L)ΛG.b(L)Gbt + εXbt. (10)

The total unconditional variance is the sum of the unconditional variance of the components

multiplied by the effective loadings on the components. Dividing the variance of the components by

the total variance gives the fraction of the variance in X explained by the common innovations εF ,

block-specific innovations εGb, and idiosyncratic errors εX , respectively. We denote these by shareF ,

shareG, and shareX . Appendix A provides the algebraic expressions for the shares of variance due

to the three types of shocks. A two level factor model does not distinguish between Ft and Gt. In

these models, one minus shareX is the size of the common component.

2.2 Estimation via Markov Chain Monte Carlo

We use the method of Markov Chain Monte Carlo (MCMC) to estimate the posterior distribution

of the parameters of interest. The method samples a Markov chain that has the posterior density

of the parameters as its stationary distribution. MCMC has been used by Kim and Nelson (2000),

Aguilar and West (2000), Geweke and Zhou (1996) and Lopes and West (2004), among others, to

estimate two level factor models. These algorithms are variations and extensions of the method
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developed in Carter and Kohn (1994) and Frühwirth-Schnatter (1994). Although in theory, the

algorithm allows for multiple factors, most previous studies have limited attention to estimation of

a single factor. We allow both Ft and Gbt to be vector valued.

Our setup is a hierarchical dynamic factor model where each level admits a state-space repre-

sentation that has a measurement and a transition equation. The MCMC algorithm thus needs

to be extended to handle this hierarchical structure. Let Λ = (ΛG,ΛF ), Ψ = (ΨF ,ΨG,ΨX),

Σ = (ΣF ,ΣG,ΣX). The main steps are as follows:

1. Organize the data into blocks to yield Xbt, b = 1, . . . B. Use principal components to initialize

{Gt} and {Ft}. Use these to produce initial values for Λ, Ψ, Σ.

2. Conditional on Λ,Ψ, Σ and {Ft}, draw {Gt} taking into account time varying intercepts.

3. Conditional on Λ,Ψ, Σ and {Gt}, draw {Ft}.

4. Conditional on {Ft} and {Gt}, draw Λ, Ψ, and Σ.

5. Return to 2.

We assume conjugate priors, and thus Step (4) is straightforward. Step (3) follows the Carter

and Kohn procedure used for level two models and is thus also standard. The main complication

going from a two to a three level model lies in the way {Gt} is sampled in Step (2). Recall that

the transition equation for Gbt is of the form

Gbt = αF.bt + ΨG.b1Gbt−1 + . . .+ ΨG.bqGbGbt−qGb + εGbt.

This involves the term αF.bt = ΨG.b(L)ΛF (L)Ft, which, given a draw of Ft, can be interpreted as a

time-varying intercept that is known for all t. By conditioning on Ft, our updating and smoothing

equations for Gt explicitly take into account the information carried by Ft.

A sketch of the algorithm is as follows. Let ~Gbt =
{
Gbt, Gbt−1, . . . , Gbt−l∗G

}
and define ~αF.bt,

~ΨG.b,
~̃ΛG.b,and ~ΣG.b accordingly as the companion form equivalents of αF.bt,ΨG.b,ΛG.b,and ΣG.b,

respectively. We first run the Kalman filter forward to obtain the sequence
{
~Gbt|t

}
that accounts

for ~αF.bt and the corresponding covariance matrix ~PGbT |T in period T based on all available sample
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information. This implies the following prediction and updating equations:

~Gbt+1|t = ~αF.bt + ~ΨG.b
~Gbt|t

PGbt+1|t = ~ΨG.bPGbt|t~Ψ
′
G.b + ~ΣG.b

~Gbt|t = ~Gbt|t−1 + PGbt|t−1
~̃Λ
′
G.b

(
~̃ΛG.bPGbt|t−1

~̃Λ
′
G.b + ΣX.b

)−1(
X̃bt −

~̃ΛG.b ~Gbt|t−1

)
PGbt|t = PGbt|t−1 − PGbt|t−1

~̃Λ
′
G.b

(
~̃ΛG.bPGbt|t−1

~̃Λ
′
G.b + ΣX.b

)−1
~̃ΛG.bPGbt|t−1

We can then use the algorithm proposed in Carter and Kohn (1994) and Frühwirth-Schnatter

(1994) to sample the block level factors Gb conditional on the sequence
{
~Gbt|t

}
, the data Xbt and

the relevant parameters, again taking into account the information carried by the common factors

F through the time-varying intercept ~αF.bt. More details are given in Appendix A.

We assume the prior distribution for all factor loadings Λ and autocorrelation coefficients Ψ to

be Gaussian with mean zero and variance one. The prior distribution for the variance parameters

is that of an inverse chi-square distribution with ν degrees of freedom and a scale of d where ν and

d2 are set to 4 and 0.01, respectively. 2 After discarding the first 2,000 draws as a burn-in, we take

another 25,000 draws, storing every 50-th draw. The reported statistics for posterior distributions

are based on these 500 draws. Results obtained from storing every one of the first 8,000 draws after

burn-in are very similar.

2.3 Related Work

Multilevel factor models have been considered extensively in the psychology literature. With the size

of the panel being large in only one dimension and assuming a strict factor structure, these models

can be estimated by maximum likelihood. See Goldstein and Browne (2002) for a review. However,

these models do not allow for dynamics. Dynamic hierarchical linear models were considered by

Gammerman and Mignon (1993), but there are no latent variables.

The two models closest to ours are Diebold et al. (2008) and Kose et al. (2003). Like us, Diebold

et al. (2008) also assume a hierarchy of the factors. In their model, country-level yield curve factors

share a common factor structure at the global level. In contrast to the one step estimation that we

propose, Diebold et al. (2008) estimate their model in two steps. In the first step, they estimate

the country level factors using classical OLS. In the second step, Diebold et al. (2008) treat the
2If θ is distributed as inverse χ2 with ν degrees of freedom and a scale of d, written θ ∼ Iχ2(v, d2), then θ is

distributed as an inverse gamma with parameters α/2 and β/2, where α = ν and β = d2ν. We use this equivalence
in our procedure and sample variance parameters based on the χ2 distribution.
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first step estimates as observable and use them as inputs to the measurement equation of a second

state space model which they estimate using Gibbs sampling methods. This procedure has at least

two disadvantages. First, it does not take into account the global factor dynamics in the estimation

of the country-level block factors. Hence, the potentially important information embedded in the

comovement across blocks (countries) is essentially ignored when estimating the block level factors.

Second, the sampling uncertainty around the block level factors is not taken into account in the

estimation of the global factors.

As shown above, the hierarchical structure that both our models have in common implies that

the transition equation for the factors at a given level has a time varying intercept which depends

on the factors at the next higher level. This means that after a simple modification of the transition

equation, any method for estimating latent factors in linear state space models can be applied to

hierarchical factor models of the form proposed in Diebold et al. (2008) and in our paper. As

we show in Section 4 below, this is true regardless of the number of levels in the hierarchy. It

is important to note that any filtering or sampling algorithm can be adapted to account for the

dependency on the higher level factors. In Section 2.2 above, we discuss the slight modification

that is necessary for the case of the forward filtering backward smoothing algorithm of Carter and

Kohn (1994) and Frühwirth-Schnatter (1994) which is arguably one of the most prominent of such

methods.

While the model in Diebold et al. (2008) and the one suggested here share the hierarchical

factor structure, our approach is more general for the following reasons. First, since their model

is tailored to yield curve estimation, Diebold et al. (2008) impose a tight parametric structure on

the factor loadings at the block level. This is not the case in our model. Second, in contrast to our

model Diebold et al. (2008) do not allow for lags in the observation equation and therefore cannot

account for lead-lag relationships between the different block-level factors, a feature that we believe

is quite important for many macroeconomic applications.

Our three level factor model also shares common features with an approach that has previously

been suggested in the macroeconomic literature. Kose et al. (2003), see also Kose et al. (2008),

use multi-level factor models to study international business cycle comovements. In contrast to our

approach, they do not model a hierarchal structure of the factors. Instead, they simply assume that

economic fluctuations in each country are attributed to three types of shocks: a world, a regional

and a country-specific business cycle component. For each observable variable i in country b, they
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have

xbit = ciFt + dbieGbt + ebit

where Ft is a world factor, eGbt is a common shock specific to region b, and where ebit is a component

specific to variable i in country b.3

Our hierarchical multilevel model differs from theirs in a number of ways. First and foremost,

we take a ‘bottom up’ approach while theirs is ‘top down’. This means that in our model, the

level two factors in the form of Gbt are well defined, and could be objects of independent interest.

In contrast, a top down approach only yields a block-level component eGbt that is orthogonal to

Ft. This means in the context of a multi-country model that we can identify a Euro factor that

is uncorrelated with a global factor and an Asia-specific factor, but the model does not deliver an

estimate of the state of the Euro or the Asian economy.

There are other differences between our model and that of Kose et al. (2003). While their Ft

and Gbt are scalars, we allow for multiple common and multiple block-level factors. Moreover,

our model allows for lagged factor observations to enter the measurement equation at the various

levels. In contrast, their model only allows contemporaneous factor observations to have an effect

on time-t measurements. More specifically, the model by Kose et al. (2003) is most comparable

to a simplified version of our model that restricts the lagged loadings to zero, as presented in (6).

Then their loading on the world factor ci plays the role of our λiG.bλ
j
F.b and their loading dbi on the

regional factor is our λG.bi. Since we impose the structure that Gbt is linear in Ft, the responses

of shocks to Ft for all variables in block b can only differ to the extent that their exposure to the

block-level factors differs, whereas ci is unconstrained in Kose et al. (2003). We believe that this

restriction is a sensible one in many economic applications. For example, it appears quite plausible

to assume that the effect of an economy-wide shock is similar for the capacity utilization in different

industries and is also similar for the measures of employment across different age groups, but that

the two sets of variables show quite different loadings across groups.

By imposing the hierarchical structure, we have a total of KG ×KF and N ×KG parameters

characterizing loadings on Ft and Gt, whereas Kose et al. (2003) have N × KF and N × KG

parameters, respectively. As KG is much smaller than N , our framework is considerably more

parsimonious and thus its estimation likely to be computationally more efficient in applications

where N is large. In addition, our model allows for dynamic loadings, but their model restricts Ft
3A similar framework was recently used by Stock and Watson (2008a) to analyze national and regional factors in

housing construction.
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and eGbt to have non-zero loadings only contemporaneously. In this regard, our model is much less

restrictive.

Because the factors and the loadings in the common component are not separately identifiable,

a different modeling strategy as discussed earlier is to assume a hierarchy for the factor loadings.

Lopes et al. (2008) and Calder (2007) specify the hyperparameters to take advantage of spatial

distance between units. With economic data, the distance between units is often not well defined.

More importantly, for real time monitoring of economic activity and business cycle analysis, tracking

the factors at the block level (say, the housing) is of independent interest.

Also somewhat related to our model is the work of Francke and de Vos (2000). They consider a

hierarchical model in which the common and block components are random walks. They directly

model the trend components without distinguishing the factor from its loadings. Milani and Belviso

(2006) organize a large panel of macroeconomic time series for the US into blocks of data. They

do not assume the existence of comovement beyond the block structure, but instead model the

dynamic evolution of the different block factors jointly within a VAR. Clearly, this approach imposes

a constraint on the number of block factors that one can allow for. Hallin and Liska (2008) also

study dynamic factor models with a block structure using dynamic principal components. In their

analysis, the factors can fall into as many as 2K possible categories, where K denotes the number

of blocks. This can be computationally challenging if K turns out to be large. Our work is distinct

from theirs, as by exploiting the timing of data release or economic and geographical structure, we

assume that the block structure of the data is known.

In terms of estimation, Otrok and Whiteman (1998) estimate latent dynamic factors by consid-

ering their conditional joint distribution. The main practical limitation is that they have to invert

a variance-covariance matrix of rank T at each iteration of their Gibbs sampling algorithm. Hence,

estimation becomes computationally demanding for problems when N and T are both large. Our

experimental models here have up to N > 400 series and T > 200, and we anticipate using as many

as 1,000 series in a fully fledged analysis. To alleviate the dimensionality problem, we put more

structure on the block factors Gt. This enables us to exploit the prediction error decomposition of

Ft and Gt which avoids inverting large matrices.

An alternative to Gibbs sampling is to estimate Gt by principal components, and then estimate

Ft from the principal components estimates of Gt. This method was implemented in Beltratti

and Morana (2008). However, sequential estimation by principal components would not take into

account the dependence of Gt on Ft through αFt. These ‘unrestricted’ estimates of Gt should thus
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be less efficient than our one step estimates. Another advantage of our approach is that the posterior

distributions allow us to assess sampling uncertainty about the estimated factors. While the large

sample theory for principal components estimation of Gt and Ft is given in Bai and Ng (2006),

the properties of the principal components estimator for Ft based upon a first step estimation of

Gt by principal components is not known. It remains unclear how to obtain theoretical prediction

intervals or assess the sampling uncertainty of counter-factual analysis within the two-step principal

components framework.

Our model is unique in that it permits information aggregation while preserving the heteroge-

neous characteristics of the data at the block level in an internally coherent manner. Nonetheless,

as a cross-check, it is useful to compare the estimates produced by our three level model with

those obtained from principal components analysis. Hereafter, we use a ’tilde’ to denote estimates

obtained by the method of principal components, and a ’hat’ to denote estimates obtained from

our MCMC algorithm. That is, Ĝt denote the posterior means of the block-level dynamic factors

while F̂t are the posterior means of the factors common to Gt. In contrast, we refer to F̃t as the

principal component estimates obtained using all data at once and let F̃t(G̃t) denote the two step

principal components estimates (obtained from extracting principal components from the block-

level principal components estimates). However, it should be kept in mind that the method of

principal components estimates the static factors, whereas we estimate the dynamic factors, which

should generally be smoother than the static factors.

We use the principal components estimated for each block, denoted G̃b,PC , as starting values

for Gt. The principal components extracted from the data pooled across blocks are then used as

starting values for Ft. Note that the principal components only identify the factor space using the

normalization that Λ̃′G,PCΛ̃G,PC/N = Ir and the matrix G̃′PCG̃PC is diagonal. We use alternative

identification assumptions. Therefore, our starting values may be far from the true values. As

a cross-check on our choice of initialization, we also run the MCMC algorithm using randomly

generated numbers for the factors as starting values and find that the sampler converges to the

same posterior means.4

4In an unreported Monte Carlo exercise, we estimate a model with three blocks of data. We treat the posterior
means of the parameter estimates as well as F̂t and Ĝt as ‘true’ values, and resample εX to a set of simulated data.
The simulated data are then used to estimate the parameters. The estimated factors are close to the true factor
processes as implied by the simulated data, and the posterior mean of the parameters are also close to the ‘true’
values. This is not reported to conserve space.
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3 A Six Block-Three Level Model of Real Activity

In the applications considered in this paper, we use a balanced panel of monthly data from 1992:01-

2009:07. The data are transformed to be stationary using Stock and Watson (2008b) as a guide. A

complete list of the series used along with their source and the transformation applied is provided

in the appendix. After the data transformation, our sample effectively starts in 1992:4, giving

T = 207 observations for all blocks. Summary statistics based on factors estimated by principal

components are reported in Table 1.

We organize the plethora of economic data for real economic activity in the US according to

the various statistical releases in which they are published. By the construction of the data, these

releases broadly correspond to economic categories. For example, the Bureau of Labor Statistics

(BLS) publishes data on the employment situation in the first week of each month. Their release

consists of two separate surveys: the establishment survey with about 90 series summarizing the

state of the labor market from the employers’ perspective, and the household report which collects

about 80 series on the labor market conditions faced by employees. Assuming that both surveys

contain useful information about the state of the labor market, we treat them as separate blocks

of data and will be interested in the dynamics they share with the other output related blocks.

The Board of Governors releases about 40 series of industrial production and 25 series of capacity

utilization data in the third week of each month. Finally, the Census Bureau publishes about 60

series on manufacturers’ shipments, inventories and orders of durable goods in its advance report

on durable goods in the last week of the month. We complement these releases on output related

economic categories with survey information on manufacturing activity. We collapse three such

surveys into one block of data: the Institute for Supply Management’s (ISM) survey, the Federal

Reserve Bank of Philadelphia’s Business Outlook, and the Federal Reserve Bank of Chicago’s

Midwest Manufacturing survey.

We estimate a three level dynamic hierarchical factor model for six blocks of data related to

output in the US economy that are released at different dates in each month: industrial production

(IP), capacity utilization (CU), the establishment survey (ES), the household survey (HS), manu-

facturers’ surveys (MS), and durable goods (DG). An important aspect of our analysis is that we

use prior information to identify the factors. This involves grouping the series in the dataset into

blocks of variables, and then ordering the variables in each block so that the series thought most

likely to be representative of comovement in a given block are put in positions one through KGb.

This is listed below.
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Block N Variable Ordered First Variable Ordered Second
1 CU 25 Machinery Motor Vehicles and Parts
2 IP 38 Durable Consumer Goods Nondurable Consumer Goods
3 ES 82 All Employees: Wholesale Trade Avg Wkly Earnings: Construction
4 HS 92 Civilian Labor Force: Men: 25-54 Years Unemp. Rate Full-Time Men Workers
5 MS 35 PMI Composite Index Phila FRB General Activity Index
6 DG 60 Inventories: Machinery Mfrs’ Unfilled Orders: Machinery

3.1 Results

According to the IC2 criterion of Bai and Ng (2002), four of the six blocks have either one or

two factors. However, the criterion suggests that the HS and MS blocks may have as many as

eight factors. Although our Bayesian estimation approach generally allows for different numbers of

factors across blocks, we let all blocks be driven by two block-level components so as to enhance

comparability of the results. We assume one common factor at the aggregate level.5 Our model

is described by the following set of parameters : KF = 1, KGb = 2 for all b, lFk = 2, lGb = 2,

qFk = qGb.j = qXb.i = 1 for all b = 1, . . . B, k = 1, . . .KF , j = 1, . . .KGb, and i = 1, . . . Nb. We note

that the estimated factors and idiosyncratic errors are generally mildly persistent, suggesting that

the transformed data used in the analysis are stationary.

The top panel of Table 2 reports the posterior means and standard errors of the dynamic

parameters. The common factor has an autoregressive coefficient of .88. The block-level factors

have varying degrees of persistence, and many of the block-level factors are close to white noise.

The block-level shocks tend to have larger variance than the shocks to the common factors.

In this model, there are N × 2 loadings on Gt, and KG × 1 loadings on Ft, where KG = 12

and N=332. Instead of reporting all the loadings, we summarize the properties of the model

by evaluating the relative importance of the common, block-level, and idiosyncratic variation.6

The bottom panel of Table 2 shows that there is substantial heterogeneity across blocks. Of the

six blocks considered, the CU, the IP, and the ES blocks have the largest common component,

explaining about 30% of the variation in the data of the block. The block-level shocks roughly

explain another 10 to 15% of the variation in these three blocks. Thus, the common and block-level

factors in our sample of economic variables explain close to 40% of the variation in the blocks. This

is similar to what one finds in principal components analysis applied to the much analyzed Stock

and Watson dataset with 132 series, where the first five factors are found to explain about 40% of
5Initial estimation assuming two common factors suggests that the second factor has a very small variance, and

dropping it did not lead to any noticeable change in the decomposition of variance.
6To preserve space, we present the average shares across all series in a given block.
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the data.

While aggregate shocks to the CU, IP, and ES blocks are more important than the block-level

shocks, the block-level component is larger than the common component in all remaining blocks.

Shocks common to the MS block account for around 22% of the variations, compared to the common

component of about 12%. The result that stands out in Table 2 is that the idiosyncratic component

always explains the largest share of variation. In particular, 77% of the variation in the Household

Survey block is idiosyncratic, and only 8% of the variation in that block is explained by the common

factor F . These results highlight the difficulty in distilling information relevant for aggregate policy

from observed data, as block-level information can be disguised as common variations, and a large

idiosyncratic component can make precise estimation of the common factor space difficult.

As noted earlier, if block-level variations are important, some of the principal components

extracted from the entire panel of data might correspond to block-level factors. To investigate this

issue, we regress the principal components F̃kt on F̂t to obtain residuals ẽkt for each k = 1, . . .KF .

These are variations deemed common by the method of principal components but not by our F̂t. We

then check if these residuals can be explained by our estimated block-level factors by regressing ẽkt

on Ĝbjt. To conserve space, Table 3 reports only the values of R2 that exceed 10%. Evidently, many

of the block-level variations are correlated with the factors estimated by the method of principal

components from the entire data panel. The first and second principal components are correlated

with variations in the Establishment Survey block (b = 3) with a correlation as high as 0.32, while

the fourth principal component is correlated with the Household Survey block (b = 4). This could

be a consequence of the fact that the employment block constitutes almost one third of the data,

and common variations in the Household Survey block are deemed more important in principal

component analysis than in our framework. The factors of the Capacity Utilization (b = 1) and

Industrial Production blocks (b = 2) are strongly correlated with the fifth principal component.

Overall, we interpret these results as suggesting that variations identified as common by principal

component analysis may in fact occur at the block-level and not be genuinely common.

Figure 1 graphs the factors estimated using the different approaches. F̂t denotes the common

factor estimated using our hierarchical model while F̃t is the first principal component extracted

from the from the entire data panel. Note that our F̂t is noticeably smoother than F̃t. In particular,

the latter features large spikes in 1996 that are not prevalent in our common factor estimate F̂t.

One potential explanation for this relates to the government shutdown of the budget in January

1996. Due to the large number of employment related series in the dataset, the first principal
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component extracted from the panel puts a lot of weight on this block-level event. In contrast, it

is appropriately treated as variations associated to a block of data using our hierarchical model.

Notice further that the estimates nicely track the two recessions in our sample period. According to

our common factor estimate, real activity bottomed at the end of 2001, consistent with the official

NBER business cycle chronology which reports November 2001 as the trough of the recession. All

estimates also document a collapse of real activity in late 2008 and a subsequent sharp rebound in

early 2009.

4 A Four Level Hierarchical Dynamic Factor Model

Some blocks of data are naturally organized by subblocks. For example, the BLS combines the

establishment and the household surveys into its employment report which is published once a

month. While the time series in both surveys can be expected to share common variation, some of

the dynamics might be specific to either of the two and not represent genuine common labor market

related information. Similarly, different surveys of manufacturing activity are likely to feature both

common and survey-specific components which might be important to disentangle in practice. Our

hierarchical dynamic factor model can easily be extended to allow for a subblock level as we will

discuss next.

We continue to let Xbit denote variables associated with block-level factors Gbt. To distinguish

data associated with blocks that have subblocks from those that do not, let Zbsit be the observed

data for block b where s is an index for the subblocks. Let Hbst be the KHbs factors of subblock s

in block b. Then a four level model can be represented by

Zbsit = λiH.bs(L)Hbst + eZbsit, ψZ.bsi(L)eZbsit = εZbsit

Hbst = ΛG.bs(L)Gbt + eHbst, ΨH.bs(L)eHbst = εHbst

Gbt = ΛF.b(L)Ft + eGbt, ΨG.b(L)eGbt = εGbt

ψF.k(L)Fkt = εFkt.

The dependence of Ht on Gt implies that

Hbst = αG.bst + ΨH.bs1Hbst−1 + . . .+ ΨH.bsqHbsHbst−qHbs + εHbst

where αG.bst = ΨH.bs(L)ΛG.b(L)Gbt. As in the three level model, the dependence of Gbt on Ft in

turn implies

Gbt = αF.bt + ΨG.b1Gbt−1 + . . .+ ΨG.bqGbGbt−qGb + εGbt.
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Conditional on Gbt, Ft, and Θ, we can draw Hbst for each s and b, and conditional on Ft, we can

draw Gbt for each b.

Blocks that have a subblock structure can be combined with blocks that do not. A model with

more levels can always be decomposed into a sequence of two level models. Of course, we will

need to have a reasonable number of series at the subblock level. But conceptually, a model with

’branches’ in some but not all blocks is straightforward to set up in our framework. Notice also that

in contrast to multi-level factor models like the one in Kose et al. (2003), the hierarchical structure

of our model ensures that allowing for subblocks does not increase the number of parameters to

estimate with the order of variables included in the model.

Our hierarchical model setup is a dynamic factor model where each level admits a state-space

representation that has a measurement and a transition equation. Hence, the estimation algorithm

for a three level model discussed in section 2.2 can easily be modified to apply to a four level model.

4.1 A Four Level Model of Real Activity

We apply our four level hierarchical factor model to the same data used to estimate the three level

model which we expand to include data related to the US housing market and data on retail as

well as auto sales. We organize these data into fourteen subblocks each of which corresponds to a

separate release by a statistical agency or other data provider. These are industrial production (IP),

capacity utilization (CU), durable goods (DG), the establishment survey (ES), the household survey

(HS), retail sales (RS), wholesale trade (WT), and auto sales (AUTO), housing starts (H-STARTS),

new home sales (H-NEWSALES), existing home sales (H-EXISTSALES), the ISM manufacturing

survey (ISM), the Philadelphia Fed Manufacturing survey (PHILAFED), and the Chicago Fed

Midwest manufacturing survey (CHICFED). Figure 2 gives the time line of data releases of these

fourteen subblocks for June 2009. We organize the fourteen subblocks in five blocks that together

comprise 447 series. The first is an output block with subblocks IP, CU, and DG representing the

goods production. The second is a labor market block consisting of subblocks ES and HS. The third

is a demand block with subblocks RS, WT, and AUTO. The fourth is a housing market block which

comprises the subblocks H-STARTS, H-NEWSALES and H-EXISTSALES. Finally, the fifth block

is a manufacturing survey block with subblocks ISM, PHILAFED and CHICFED. We estimate one

common factor (KF = 1), and one common factor per block (KGb = 1), and one or two factors per

subblock depending on the number of series they contain (KHbs = 1 or KHbs = 2). We interpret

the estimated common factor as a factor for real economic activity. In the table below, we list each
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subblock along with the number of variables it contains, how many subblock factors we extract,

and the variable that is ordered first.

Block subblock N KGb KHbs Variable Ordered First
Production CU 25 1 2 Capacity Utilization: Machinery

IP 38 1 2 IP: Durable Consumer Goods
DG 60 1 2 Manufacturers’ Inventories: Machinery

Employment ES 82 1 2 All Employees: Wholesale Trade
HS 92 1 2 Civilian Labor Force: Men: 25-54 Years

Demand RS 30 1 2 Retail Sales: General Merchandise Stores
WS 54 1 2 Merchant Wholesalers: Sales: Automotive
AUTO 4 1 1 Domestic Car Retail Sales

Housing H-STARTS 24 1 2 Housing Starts: 1-Unit: West
H-NEWSALES 5 1 1 New 1-Family Houses Sold: West
H-EXISTSALES 4 1 1 NAR Total Existing Home Sales, Northeast

Mfg Surveys ISM 9 1 1 ISM Mfg: PMI Composite Index
PHILAFED 21 1 1 Phila FRB Bus Outlook: General Activity
CHICFED 5 1 1 Chicago FRB: Midwest Manufacturing Index

As before, we assume the prior distribution for all factor loadings λ and autocorrelation coeffi-

cients ψ to be Gaussian with mean zero and variance one. The prior distribution for the variance

parameters is that of an inverse chi-square distribution with ν degrees of freedom and a scale of d

where ν and d2 are set to 4 and 0.01, respectively.

Table 4 only reports the autoregressive parameters for Gt and Ft. As in the three level models

considered in the previous section, the common factor is again more persistent than the block-level

factors. The ψG for the output factor is close to that found for CU and IP in the three level

model studied above, while that for the employment block is higher than that previously found

for ES or HS. The demand factor is the least persistent of all block factors. Table 4 also reports

the decomposition of variance, which is now performed at the subblock level. As in the three

level model, idiosyncratic shocks dominate common variations at all levels of aggregation for the

majority of subblocks. The only exceptions are H-EXISTSALES and CHICFED for which the

share of variance explained by the subblock factor shocks exceeds the share of variance explained

by idiosyncratic shocks. The CU and IP blocks continue to have the largest common component.

However, this only accounts for about 10 % of the variation in these blocks. More generally, shocks

at the block and the subblock level are more important drivers of time series variation in our panel

than aggregate shocks in all subblocks.

Perhaps of most interest is an analysis of the state of real economic activity estimated with the

model. This is presented in Figure 3. The solid line is the F̂t based on our model and the dotted lines
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are the estimated block factors Ĝbt, all standardized to have unit variance. This plot documents

that while all subcomponents of output that we consider share the pattern of a strong collapse at

the end of 2008 and a subsequent sharp rebound, the block dynamics were quite different. It is

the flexibility of our model with respect to the lag structure of the factor loadings at the different

levels of the hierarchy that allows us to disentangle these dynamics in a joint framework.

5 Real Time Monitoring

An important task for applied economists is to monitor economic activity in real time. This

requires an updating of estimates of the state of the economy as new data become available. The

hierarchical structure of our model makes it straightforward to update estimates of the factors at

the different levels of the hierarchy once a new data release becomes available for a given set of

economic indicators.

In particular, along with a draw from the posterior distribution of the model parameters and

latent factors, a new time series observation on the series in a subblock can be used to update the

subblock-specific factor Hbs. For the subblocks for which a new observation has not been observed

yet, we can employ the model to generate linear forecasts. Together, the updated and predicted

subblock factors can be used to update the estimate of the block-specific factor Gb. In a similar

vein, we can predict the next observation for all block factors for which no new subblock information

has come in. Along with the updated block-specific factor, we can then update our estimate of

the economy-wide factor F . Hence, each time new information on any of the subblocks of data

becomes available, we can update our estimate of the state of the economy through the hierarchical

structure of our model. The exact algorithm used to monitor the factors at the different levels of

the hierarchy is as follows:

1. If data for the month on subblock s ∈ [1, S] in block b has been released, use data Zbsit as

well as a draw j from the posterior of the model parameters ~̃ΛH.bs,~ΨH.bs, ~ΣH.bs, and ~ΣZ.bs and

the model factors {Hbst}Tt=1 to update HbsT+1.7 This is done as follows. We use the Kalman

7The arrowed parameters are the vectorized versions of the model factors and parameters introduced above. They
are defined in detail in Section B in the appendix. As an example, ~Hbst denotes the stacked vector of observations{
Hbst, Hbst−1, . . . , Hbst−l∗

H

}
. Notice also that we drop the superscripts j denoting the individual draws from the

posterior distribution of the model parameters in the outline of the monitoring algorithm so as to enhance readability.
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filter to obtain the mean and variance of the conditional distribution HbsT+1|T+1:

~HbsT+1|T+1 = ~HbsT+1|T +KH.bsT

(
Z̃bsT+1 −

~̃ΛH.bs ~HbsT+1|T

)
,

PH.bsT+1|T+1 = PH.bsT+1|T −KH.bsT
~̃ΛH.bsPH.bsT+1|T ,

where

~HbsT+1|T = ~αG.bsT + ~ΨH.bs
~HbsT |T ,

PH.bsT+1|T = ~ΨH.bsPH.bsT |T ~Ψ
′
H.bs + ~ΣH.bs,

KH.bsT = PH.bsT+1|T
~̃Λ
′
H.bs

(
~̃ΛH.bsPH.bsT+1|T

~̃Λ
′
H.bs + ~ΣZ.bs

)−1

.

Given ~HbsT+1|T+1 and PH.bsT+1|T+1, we generate a draw ~HbsT+1 fromN( ~HbsT+1|T+1, PH.bsT+1|T+1).

2. If data on subblock s has not been released for the month, we “predict” ~HbsT+1 and PH.bsT+1|T

using

~HbsT+1|T = ~αG.bsT + ~ΨH.bs
~HbsT |T ,

PH.bsT+1|T = ~ΨH.bsPH.bsT |T ~Ψ
′
H.bs + ~ΣH.bs,

and generate a draw ~HbsT+1 from N( ~HbsT+1|T , PH.bsT+1|T ).

3. Conditional on ~HbT+1 =
(
~Hb1T+1, . . . , ~HbST+1

)
, ~̃ΛG.b, ~ΨG.b, ~ΣG.b and ~ΣH.b, we update Gb.

That is, we first use the Kalman filter to obtain the mean and variance of the conditional

distribution ~GbT+1|T+1as above. Given ~GbT+1|T+1 and PG.bT+1|T+1, we then generate a draw

~GbT+1 from N(~GbT+1|T+1, PG.bT+1|T+1).

4. If no data for block b has been released for the month yet, we “predict” ~GbT+1 and PG.bT+1|T

using

~GbT+1|T = ~αF.bT + ~ΨG.b
~GbT |T ,

PG.bT+1|T = ~ΨG.bPG.bT |T ~Ψ
′
G.b + ~ΣG.b,

and generate a draw ~GbT+1 from N(~GbT+1|T , PG.bT+1|T ).

5. Conditional on ~GT+1 =
(
~G1T+1, . . . , ~GBT+1

)
, ~̃ΛF , ~ΨF , ~ΣF , and ~ΣG, we update F . Again,

we first use the Kalman filter to obtain the mean and variance of the conditional distribution

FT+1|T+1.Then, given ~FT+1|T+1 and PF.T+1|T+1, generate a draw ~FT+1 fromN(~FT+1|T+1, PF.T+1|T+1).
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Repeating this procedure for many draws from the posterior distribution of the parameters and

model factors provides us with a distribution of factor estimates each time a new data point is

observed. Thus, if five blocks of data with a total of fourteen subblocks are released successively

over the course of the month, we get fourteen updates of our common factor FT+1 that captures

the pervasive comovement across all blocks of data.

In related work, Giannone, Reichlin, and Small (2008) use a factor model to forecast quarterly

GDP growth as monthly information arrives in real time. They estimate their model using a two-

step approach that combines principal components with Kalman filtering techniques. Banbura et

al. (2008) extend the model in Giannone, Reichlin, and Small (2008) to the components of GDP by

incorporating temporal aggregation and accounting identities. While these two papers are similar

to ours in the sense that they also employ a large cross-section of macroeconomic time series in

a real-time monitoring exercise, they do not take into account the block structure of the data

explicitly which is a unique feature of our modeling approach.

5.1 Monitoring the 2007-2009 Economic Downturn

We illustrate how our model can be used to track the state of the economy while new data becomes

available based on the four level model of real activity presented in Section 4.1. In particular, we

document the evolution of the factor estimates over the course of the last two years beginning in

July 2007. The starting values for the monitoring exercise are the estimates obtained using data

from April 1992 through July 2007. We contrast our continuous update which is obtained each

time a new observation on any subblock of the dataset becomes available with a monthly update

of the model which we obtain at the end of each month when a full set of new observations on all

447 series in our panel is available.8

Figure 4 shows the estimated posterior means of the continuous update and the monthly update

for the common factor F . The latter has the form of a step function as it only features a new data

point at the end of each month. According to this plot, the continuous updates of activity appear to

provide a more timely signal about the state of the economy than the monthly updates. Especially

around the collapse of real activity in the fall of 2008 and its subsequent rebound in 2009, the

continuous update is consistently leading the monthly update. This highlights the usefulness of our

hierarchical model for tracking the state of the economy when data on different economic categories
8In this exercise, we use final data releases instead of actual real time data which are not available for the large

cross-section of macroeconomic time series that we consider. We are currently building such a database. To the
extent that data revision errors are series specific and don’t share a common component, the factors extracted from
revised and real-time data should be very similar.
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become available in a consecutive way. This is particularly important for real time policy analysis

which heavily relies on the timeliness of signals about changes in the course of economic growth.

Figures 5 to 7 show the continuous and monthly updates for the estimated block factors Ĝ

of the Demand, Housing, and Manufacturing Survey blocks, respectively. All show a very similar

pattern: the intra-month update is consistently leading the monthly update throughout the last

recession. Hence, in addition to tracking aggregate economic activity in real time, our model also

allows us to update estimates of factors common to blocks of data while new data on subblocks

become available. Since in our application, these blocks of data correspond to economic categories,

the estimated block factors are objects of independent interest. In this respect, it is important to

note that the exact timing of the downturn and following rebound differs across the various blocks

of data. For example, while the demand and the manufacturing survey blocks appears to have

bottomed in December 2008, housing activity growth as captured by the housing block factor only

picked up in March 2009.9 These results highlight that business cycle variations are only loosely

synchronized across the different sectors of the economy. It is therefore important to allow for lead-

lag relationships between the common factors and the factors capturing block-specific information.

This is a distinctive feature that our model offers.

6 Conclusion

This paper lays out a framework for analyzing dynamic hierarchical factor models. The approach

has three advantages. First, by extracting common components from blocks, the estimated factors

have a straightforward interpretation. Explicitly modeling the block-level variation also resolves an

important drawback of standard (two level) factor models in which common shocks at the block-

level can be confounded with genuinely common shocks. Second, the blocks can be defined to

take advantage of the timing of data releases, which makes the framework suitable for real time

monitoring of economic activity. Third, the framework allows for a more disaggregated analysis of

economic fluctuations while still achieving a reasonable level of dimension reduction. While a two

level model only enables counter-factual analyses of aggregate or idiosyncratic shocks, the effects

of aggregate, block-level, and idiosyncratic shocks can be coherently analyzed in our framework.

9Note that since the data have been transformed into growth rates for most blocks, the factor estimates capture
dynamics in the growth cycle rather than the level cycle.
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Appendix

A The Three Level Model in Matrix Form

Let lGb = (lGb.1, . . . lGb.Nb) is a vector. Similarly, qXb = (qXb.1, . . . qXb.Nb) and qGb = (qGb.1, . . . qGb.KGb)
are also vectors with possibly non-identical entries. Let lF = maxb∈B lFb, lG = maxb(maxi∈Nb lGb.i),
qX = maxb(maxi∈Nb qXbi), and qG = maxb(maxk∈KGb qGb.k).

Stacking up the data by blocks and letting

Xt =
(
X1t X2t . . . XBt

)′
Gt =

(
G1t G2t . . . GBt

)′
,

we have

Xt = ΛG(L)Gt + eXt

Gt = ΛF (L)Ft + eGt

ΨF (L)Ft = εFt

ΨX(L)eXt = εXt

ΨG(L)eGt = εGt.

Then ΛG(L) is a N ×KG matrix polynomial of order lG, ΛF (L) is a KG ×KF matrix polynomial
of order lF , ΨX(L) is a N × N matrix polynomial of order qX , ΨG(L) is a KG × KG matrix
polynomial of order qG, ΨF (L) is a KF × KF matrix polynomial of order qF . Finally, ΣX =
diag(σ2

X11, ..., σ
2
XBNB

), ΣG = diag(σ2
G11, ..., σ

2
GBkB

), and ΣF = diag(σ2
F1, ..., σ

2
FKF

) are matrices of
dimension N ×N,KG×KG, and KF ×KF , respectively. To ensure identification of the block-level
factors G, we assume that for l = 0, . . . , lG

ΛG.l =


ΛG.1l 0 · · · 0

0 ΛG.2l
...

...
. . . 0

0 · · · 0 ΛG.Bl

 .

Sampling {Ft}

In companion form as
Ft
Ft−1

...
Ft−qF+1

 =


ΨF.1 ΨF.2 · · · ΨF.qF

I 0 0
...

. . . . . .
...

0 · · · I 0




Ft−1

Ft−2
...

Ft−qF

+


εFt
0
...
0


or

~Ft = ~ΨF
~Ft−1 + ~εFt

To obtain estimates of the global factors F given the block factors G, we have to perform the
following steps. First, pre-whiten the observation equation

Gt = ΛF (L)Ft + eGt
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so that its errors are i.i.d. This gives ΨG(L)Gt = ΨG(L)ΛF (L)Ft + εGt or

G̃t = Λ̃F (L)Ft + εGt

where G̃t = ΨG(L)Gt, and where Λ̃F (L) = ΨG(L)ΛF (L) = Λ̃F0+Λ̃F1L+...+Λ̃Fs∗FL
l∗F is a KG×KF

matrix polynomial of order l∗F = qG + lF . Stacking the lags of F , this gives the companion form:

G̃t =
[

Λ̃F.0 Λ̃F.1 · · · Λ̃F.l∗F

]
Ft
Ft−1

...
Ft−l∗F

+ εGt


Ft
Ft−1

...
Ft−l∗F+1

 =


ΨF.1 · · · ΨF.qF 0 · · · 0

I 0
...

...
...

...
. . . . . .

...
...

0 · · · I 0 · · · 0




Ft−1

Ft−2
...

Ft−l∗F

+


εFt
0
...
0


or

G̃t = ~̃ΛF ~Ft + εGt and ~Ft = ~ΨF
~Ft−1 + ~εFt

where ~ΣF = V ar(~εFt) =
(

ΣF 0
0 0

)
.

Denote ΞF the set of parameters {~̃ΛF , ~ΨF ,ΣG,~ΣF }. Then, following Carter and Kohn (1994),
the conditional distribution of the factors ~F given the pre-whitened block factors {G̃t} and the
parameters ΞF can be obtained by performing the following steps. First run the Kalman filter
forward to obtain estimates ~FT |T of the (stacked) factors and their variance covariance matrix ~PT |T
in period T based on all available sample information:

~Ft+1|t = ~ΨF
~Ft|t

~PFt+1|t = ~ΨF
~PFt|t~Ψ

′
F + ~ΣF

~Ft|t = ~Ft|t−1 + ~PFt|t−1
~̃Λ
′
F

(
~̃ΛF ~PFt|t−1

~̃Λ
′
F + ΣG

)−1(
G̃t −

~̃ΛF ~Ft|t−1

)
~PFt|t = ~PFt|t−1 − ~PFt|t−1

~̃Λ
′
F

(
~̃ΛF ~PFt|t−1

~̃Λ
′
F + ΣG

)−1
~̃ΛF ~PFt|t−1

Next, draw ~FT from its conditional distribution given ΞF and the data through period T :

~FT |{G̃t},ΞF ∼ N(~FT |T , ~PFT |T )

Then, for t=T−1, . . . , 1 proceed backwards to generate draws ~Ft|T from

~Ft|T |~F ∗t+1, {G̃T },ΞF ∼ N(~Ft|t, ~F ∗t+1
, ~Pt|t, ~F ∗t+1

) (11)

where ~Ft|t, ~F ∗t+1
= ~Ft|t + ~Pt|t~Ψ

∗′
F (~Ψ∗F ~Pt|t ~Ψ

∗′
F + ΣF )−1 (~F ∗t+1 − ~Ψ∗F ~Ft|t)

and ~Pt|t, ~F ∗t+1
= ~Pt|t − ~Pt|t ~Ψ

∗′
F (~Ψ∗F ~Pt|t ~Ψ

∗′
F + ΣF )−1 ~Ψ∗F ~Pt|t.

where ~F ∗t and ~Ψ∗F are the first KF rows of ~Ft and ~ΨF , respectively.
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Sampling {Gt}

For the block-level factors, (7) and (8) imply that

ΨG(L)Gt = ΨG(L)ΛF (L)Ft + εGt.

This leads to the block-level transition equation
Gt
Gt−1

...
Gt−qG+1

 =


αFt
0
...
0

+


ΨG.1 ΨG.2 · · · ΨG.qG

I 0 0
...

. . . . . .
...

0 · · · I 0




Gt−1

Gt−2
...

Gt−qG

+


εGt
0
...
0


or

~Gt = ~αFt + ~ΨG
~Gt−1 + ~εGt

where
αFt = ΨG(L)ΛF (L)Ft.

A similar algorithm can be used to sample the block factors G. Since the block-dynamics are
assumed to be independent, this can be done block by block. Recall that X̃bt = Λ̃G.b(L)Gbt +
εXbt,∀ b = 1, . . . , B, where X̃bt = ΨX.b(L)Xbt and Λ̃G.b(L) = ΨX.b(L)ΛG.b(L) is a Nb×KGb matrix
polynomial of order l∗G = qX+lG. Furthermore, Gbt = αF.bt+ΨG.b1Gbt−1+. . .+ΨG.bqGbGbt−qGb+εGbt
where αF.bt = ΨG.b(L)ΛF (L)Ft, ∀ b = 1, . . . , B. Together, these two equations imply the following
state-space form

X̃bt =
[

Λ̃G.b0 Λ̃G.b1 · · · Λ̃G.bl∗G

]
Gbt
Gbt−1

...
Gbt−l∗G

+ εXbt


Gbt
Gbt−1

...
Gbt−l∗G

 =


αF.bt

0
...
0

+


ΨG.b1 · · · ΨG.bqG 0 · · · 0

I 0
...

...
...

...
. . . . . .

...
...

0 · · · I 0 · · · 0




Gbt−1

Gbt−2
...

Gbt−l∗G−1

+


εGbt

0
...
0


or

X̃bt = ~̃ΛG.b ~Gbt + εXbt and ~Gbt = ~αF.bt + ~ΨG.b
~Gbt−1 + ~εGbt

where ~ΣG.b = V ar(~εGbt) =
(

ΣG.b 0
0 0

)
.

Denote ΞGb the set of parameters {~ΛG.b, ~ΨG.b,~ΣG.b,ΣX.b}. Conditional on ΞGb and {Ft}, the
above equations represent a state-space system with a time-varying intercept. We therefore need
to slightly adjust the Carter and Kohn (1994) method as laid out before. The complete set of
equations is as follows.

First, run the Kalman filter forward to obtain estimates ~GbT |T of the factors and their variance
covariance matrix ~PbT |T in period T based on all available sample information. With the time-
varying intercept ~αF.bt, this implies the following steps:
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~Gbt+1|t = ~αF.bt + ~ΨG.b
~Gbt|t

~PGbt+1|t = ~ΨG.b
~PGbt|t~Ψ

′
G.b + ~ΣG.b

~Gbt|t = ~Gbt|t−1 + ~PGbt|t−1
~̃Λ
′
G.b

(
~̃ΛG.b ~PGbt|t−1

~̃Λ
′
G.b + ΣX.b

)−1(
X̃bt −

~̃ΛG.b ~Gbt|t−1

)
~PGbt|t = ~PGbt|t−1 − ~PGbt|t−1

~̃Λ
′
G.b

(
~̃ΛG.b ~PGbt|t−1

~̃Λ
′
G.b + ΣX.b

)−1
~̃ΛG.b ~PGbt|t−1

The Kalman filter iterations provide us with the conditional distribution of ~GbT |T given ΞGb
and the data through period T :

~GbT |{X̃bt},ΞGb ∼ N(~GbT |T , ~PGbT |T )

Using again the algorithm of Carter and Kohn, we sample the entire set of factor observations
conditional on the parameters ΞGb and all the data. Given the Gaussianity and Markovian structure
of the state-space model, the distribution of ~Gbt given ~Gbt+1 and X̃btis normal:

~Gbt|X̃bt, ~G
∗
bt+1,ΞGb ∼ N(~Gbt|t, ~G∗bt+1

, ~PGbt|t, ~G∗bt+1
) (12)

where

~Gbt|t, ~G∗bt+1
= E[~Gbt|X̃bt, ~G

∗
bt+1]

= ~Gbt|t + ~PGbt|t~Ψ
∗′
G.b

(
~Ψ∗G.b ~PGbt|t~Ψ

∗′
G.b + ΣG.b

)−1
(~G∗bt+1 − ~αF.bt+1 − ~Ψ∗G.b ~Gbt|t)

~PGbt|t, ~G∗bt+1
= V ar(~Gbt|X̃bt, ~G

∗
bt+1)

= ~PGbt|t − ~PGbt|t~Ψ
∗′
G.b

(
~Ψ∗G.b ~PGbt|t~Ψ

∗′
G.b + ΣG.b

)−1
~Ψ∗G.b ~PGbt|t

where ~G∗bt+1 and ~Ψ∗G.b denote the first KGb rows of ~Gbt+1 and ~ΨG.b, respectively. Given these
conditional distributions, we can then proceed backwards to generate draws ~G∗bt for t=T−1, . . . , 1.
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Decomposition of Variance Given the state space representation of the model, it is not hard
to see that for each individual variable Xbi,

vec(V ar(Xbi)) = γ′F.bivec(V ar(F )) + γ′G.bivec(V ar(eGb)) + vec(V ar(eXbi)) (13)

where

γ′F.bi =

(
lG∑
l=0

λ′G.bil ⊗ λ′G.bil

)
·

(
lF∑
l=0

ΛF.bl ⊗ ΛF.bl

)

γ′G.bi =

(
lG∑
l=0

λ′G.bil ⊗ λ′G.bil

)

vec(V ar(F )) =

I − qF∑
q=1

(ΨF.q ⊗ΨF.q)

−1

⊗ vec(ΣF )

vec(V ar(eGb)) =

I − qG∑
q=1

(ΨG.bq ⊗ΨG.bq)

−1

· vec(ΣG.b)

vec(V ar(eXbi)) =

1−
qX∑
q=1

ψ2
X.biq

−1

· σ2
X.bi.
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B The Four Level Model

Stacking all variables Zbsit in a subblock and pseudo-differencing the serially correlated idiosyn-
cratic components eZbsit,the observation equation at the subblock level can be written as

Z̃bst = Λ̃H.bs(L)Hbst + εZbst, ∀ b = 1, . . . , B, ∀ s = 1, . . . , S,

where Z̃bst = ΨZ.bs(L)Zbst and where Λ̃H.bs(L) = ΨZ.bs(L)ΛH.bs(L) is a Nb ×KHbs matrix polyno-
mial of order l∗H = qZ + lH . Moreover, the state equation at the subblock level is

Hbst = αG.bst + ΨH.bs1Hbst−1 + ...+ ΨH.bsqHHbst−qH + εHbst

where
αG.bst = ΨH.bs(L)ΛG.b(L)Gbt, ∀ b = 1, . . . , B, ∀ s = 1, . . . , S,

Together, these two equations imply the following state-space form

Z̃bst =
[

Λ̃H.bs0 Λ̃H.bs1 · · · Λ̃H.bsl∗H

]
Hbst

Hbst−1
...

Hbst−l∗H

+ εZbst


Hbst

Hbst−1
...

Hbst−l∗H

 =


αG.bst

0
...
0

+


ΨH.bs1 · · · ΨH.bsqH 0 · · · 0

I 0
...

...
...

...
. . . . . .

...
...

0 · · · I 0 · · · 0




Hbst−1

Hbst−2
...

Hbst−l∗H−1

+


εHbst

0
...
0


or

Z̃bst = ~̃ΛH.bs ~Hbst + ~εZbst (14)
~Hbst = ~αG.bst + ~ΨHbs

~Hbst−1 + ~εHbst (15)

For blocks that do have a subblock structure, the observation and state equation at the block
level become

H̃bt =
[

Λ̃G.b0 Λ̃G.b1 · · · Λ̃G.bl∗G

]
Gbt
Gbt−1

...
Gbt−l∗G

+ εHbt


Gbt
Gbt−1

...
Gbt−l∗G

 =


αF.bt

0
...
0

+


ΨG.b1 · · · ΨG.bqG 0 · · · 0

I 0
...

...
...

...
. . . . . .

...
...

0 · · · I 0 · · · 0




Gbt−1

Gbt−2
...

Gbt−l∗G−1

+


εGbt

0
...
0


or

H̃bt = ~̃ΛG.b ~Gbt + ~εHbt (16)
~Gbt = ~αF.bt + ~ΨG.b

~Gbt−1 + ~εGbt (17)
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C Tables and Figures

Table 1: Univariate Analysis of Principal Component Estimates
Two Step Model:

G̃bjt = Λ̃F.bjF̃t(G̃t) + ẽGbjt

G̃bjt = Ψ̃G.bjG̃bjt−1 + ε̃Gbjt

ẽGbjt = Ψ̃eGbj ẽGbjt−1 + ε̃Gbjt

F̃kt(G̃t) = Ψ̃F.kF̃kt−1(G̃t) + ε̃Fkt.

Block T Nb IC2 R2
Gb.1

Ψ̃
G̃.b1

CU 207 25 1 0.249 0.376
IP 207 38 2 0.267 0.480
ES 207 82 3 0.205 0.281
HS 207 92 8 0.115 0.131
MS 207 35 4 0.171 0.160
DG 207 60 2 0.151 0.562

Note: Let G̃bjt be the j-th factor obtained by the method of principal components using data
from block b. R2

Gb.1
is the explanatory power of the 1st factor, obtained as the ratio of 1st largest

eigenvalue X ′X to the sum of the eigenvalues. Ψ̃
G̃.b1

is the estimated first order autocorrelation
coefficient of G̃.b1.
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Table 2: A Three Level Model for Production with Six Blocks:

Xbit = ΛG.bi(L)Gbt + eXbit

Gbt = ΛF.b(L)Ft + eGbt

ψF.k(L)Fkt = εFkt, k = 1, . . .KF

ψG.bj(L)eGbjt = εGbjt, j = 1, . . .KGb

ψX.bi(L)eXbit = εXbit, i = 1, . . . Nb.

Block j ψ̂G.bj σ̂2
εGbj

S.E
CU: 1 1 0.373 0.064 0.113 0.021
CU: 1 2 -0.122 0.057 0.091 0.016
IP: 2 1 0.170 0.015 0.110 0.007
IP: 2 2 -0.140 0.047 0.089 0.017
ES: 3 1 0.052 0.015 0.137 0.007
ES: 3 2 -0.160 0.031 0.115 0.010
HS: 4 1 0.198 0.137 0.095 0.031
HS: 4 2 -0.069 0.056 0.096 0.010
MS: 5 1 0.436 0.824 0.128 0.091
MS: 5 2 0.059 0.111 0.093 0.024
DG: 6 1 -0.013 0.030 0.172 0.007
DG: 6 2 -0.009 0.030 0.175 0.006
Factor ψ̂F.k σ̂2

F.k S.E.
1 0.880 0.061 0.040 0.017

Decomposition of Variance
Estimates Standard Errors

block shareF shareG shareX shareF shareG shareX
1 CU: 0.303 0.144 0.553 0.069 0.021 0.055
2 IP: 0.321 0.131 0.549 0.075 0.021 0.058
3 ES: 0.279 0.114 0.607 0.073 0.020 0.056
4 HS: 0.081 0.150 0.769 0.034 0.013 0.026
5 MS: 0.117 0.222 0.661 0.056 0.033 0.031
6 DG: 0.101 0.123 0.777 0.044 0.014 0.035

Note: This table provides estimates ψ̂G.bj and ψ̂F.k governing the serial correlation in the block-
specific and common components eGbj and Fkt. It also gives estimates σ̂2

εGbj
and σ̂2

F.k governing the
variance of the innovations εGbjt and εFkt. The lower panel documents the shares of variance in Xbit

due to εFkt, εGbjt, and εXbit averaged across the series in each block. All reported estimates and
standard errors are the posterior means and posterior standard deviations of the draws retained
after an initial burn-in.
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Table 3: Correlation Between Ĝbjt and ẽkt
k b j R2

1 3 2 0.17
2 3 1 0.20
2 3 2 0.32
2 5 1 0.13
3 5 1 0.27
4 4 2 0.16
5 1 2 0.60
5 2 2 0.31
7 6 2 0.15

Note: This table provides estimates of the correlation between block-specific factors Ĝbjt from our
three level model of real activity and residuals ẽkt obtained by regressing the k-th factor estimated
by principal components on our estimate F̂t. R2 is the coefficient of determination from regressing
ẽkt on the j-th factor in block b.
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Table 4: A Four Level Model for Real Activity with Five Blocks and Fourteen Subblocks

Zbsit = ΛH.bsi(L)Hbst + eZbsit, ψZ.bsi(L)eZbsit = εZbsit,

Hbst = ΛG.bs(L)Gbt + eHbst, ψH.bs(L)eHbst = εHbst,

Gbt = ΛF.b(L)Ft + eGbt, ψG.b(L)eGbt = εGbt,

ψF (L)Ft = εFt.

b ψ̂G.b σ̂2
εGb

S.E
Output 0.396 0.044 0.162 0.016
Employment 0.537 0.019 0.186 0.008
Demand 0.177 0.055 0.161 0.021
Housing 0.706 0.021 0.200 0.010
Mfg Surveys 0.550 0.078 0.143 0.043
Factor ψ̂F σ̂2

F S.E.
1 0.824 0.007 0.183 0.004

Decomposition of Variance
block sub-block shareF shareG shareH shareX

Estimates
Output IP 0.090 0.115 0.176 0.619
Output CU 0.089 0.113 0.161 0.637
Output DG 0.022 0.026 0.180 0.773
Employment HS 0.042 0.090 0.226 0.642
Employment ES 0.015 0.033 0.171 0.782
Demand RS 0.030 0.073 0.212 0.685
Demand WT 0.012 0.028 0.153 0.806
Demand AUTO 0.018 0.049 0.393 0.539
Housing H-starts 0.005 0.069 0.176 0.750
Housing H-newsales 0.002 0.030 0.285 0.683
Housing H-existsales 0.003 0.038 0.626 0.333
Mfg Surveys ISM 0.035 0.161 0.248 0.556
Mfg Surveys PhilaFed 0.010 0.045 0.197 0.747
Mfg Surveys ChicagoFed 0.022 0.071 0.461 0.446

Standard Errors
Output IP 0.059 0.030 0.031 0.043
Output CU 0.060 0.028 0.030 0.042
Output DG 0.023 0.011 0.019 0.023
Employment HS 0.037 0.030 0.025 0.033
Employment ES 0.013 0.019 0.014 0.020
Demand RS 0.028 0.020 0.025 0.027
Demand WT 0.013 0.012 0.015 0.017
Demand AUTO 0.023 0.038 0.049 0.039
Housing H-starts 0.006 0.042 0.020 0.035
Housing H-newsales 0.003 0.035 0.033 0.036
Housing H-existsales 0.004 0.040 0.052 0.041
Mfg Surveys ISM 0.032 0.065 0.065 0.035
Mfg Surveys PhilaFed 0.014 0.026 0.026 0.026
Mfg Surveys ChicagoFed 0.041 0.055 0.072 0.034

Note: This table provides estimates ψ̂G.b and ψ̂F governing the serial correlation in the block-specific and common components eGbt and Ft. It

also gives estimates σ̂2
εGb

and σ̂2
F governing the variance of the innovations εGbt and εFt. The lower panel documents the shares of variance in

Zbsit due to εFt, εGbt, εHbst, and εZbsit averaged across the series in each subblock. All reported estimates and standard errors are the posterior

means and posterior standard deviations of the draws retained after an initial burn-in.
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Figure 1: Three Level Model of Real Activity with 6 Blocks
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Note: This figure plots the common factor estimate F̂ from our three level model of real activity
along with the first principal component F̃ of the entire data panel.
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Figure 2: Release Schedule for Output Related Data in June 2009
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Note: This figure provides a schematic of the timing of the different data releases which constitute
the fourteen subblocks of our four level model over the course of June 2009.
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Figure 3: Four Level Model of Real Activity with 5 Blocks and 14 Subblocks
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Note: This figure plots the common factor estimate F̂ from our four level model of real activity
along with the block-specific factors Ĝ for the five blocks of data representing the different
categories of real activity-related information that we employ. These are Output (b = 1), Demand
(b = 2), Employment (b = 3), Housing (b = 4), and Manufacturing Surveys (b = 5).
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Figure 4: Monitoring Real Activity in a Four Level Model with 5 Blocks and 14 Subblocks
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Note: This figure plots the continuous update of the common factor F̂ from our four level model,
obtained whenever there is a new release in any of the fourteen subblocks, along with the update
of the factor obtained with a full new set of observations at the end of each month.
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Figure 5: Monitoring Demand in a Four Level Model with 5 Blocks and 14 Subblocks
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Note: This figure plots the continuous update of the block-specific factor Ĝb for the Demand block
from our four level model, obtained whenever there is a new release in any of the three subblocks
Retail Sales, Wholesale Trade or Auto Sales, along with the update of the factor obtained with a
full new set of observations at the end of each month.
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Figure 6: Monitoring Housing Activity in a Four Level Model with 5 Blocks and 14 Subblocks
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Note: This figure plots the continuous update of the block-specific factor Ĝb for the Housing block
from our four level model, obtained whenever there is a new release in any of the three subblocks
Housing Starts, New Home Sales or Existing Home Sales, along with the update of the factor
obtained with a full new set of observations at the end of each month.
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Figure 7: Monitoring Manufacturing Activity in a Four Level Model with 5 Blocks and 14 Subblocks
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Note: This figure plots the continuous update of the block-specific factor Ĝb for the Manufacturing
Survey block from our four level model, obtained whenever there is a new release in any of the
three subblocks ISM, Philadelphia Fed Business Outlook Survey or Chicago Fed MidWest Mfg
Survey, along with the update of the factor obtained with a full new set of observations at the end
of each month.
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