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Abstract

We propose a novel method for estimating DSGE models when
real-time information on expectations is available. We use the Survey
of Professional Forecasters (SPF) data to estimate a medium-scale
New Keynesian DSGE model using the proposed technique. Our re-
sults suggest that the unconditional forecasts of private agents differ
from the expectations of the SPF and that private agents find it use-
ful to exploit existing real-time exogenous information when forming
their own expectations and making their decisions. However, given
that the accuracy of conditioning information decreases over time,
they rely only on a subset of that information. We also find that the
economic implications of the model in which agents exploit exogenous
expectation information substantially differ from those of the bench-
mark in which agents are not allowed to use off-model information.
In particular, the model using SPF data outperforms the benchmark
both in terms of fit and in terms of forecast performance.

∗First version July 1, 2010. VERY PRELIMINARY AND INCOMPLETE
†Michel.Juillard@ens.fr
‡junior.maih@norges-bank.no

1



1 Introduction

New-generation dynamic stochastic general equilibrium (DSGE) models, have
to a large extent, assuaged one of the frustrations macroeconomists used to
face: designing a model that is both theoretically consistent and empirically
relevant – in other words, a model that both allows the type of story-telling
that policymakers require and also forecasts well.

But while the assumption of rational expectations underlying the founda-
tions of DSGE models implies that agents systematically exploit all available
information that has the potential of improving their forecasts, in standard
DSGE models (e.g. Smets and Wouters (2007)) the parameters are estimated
disregarding the possibility that the current knowledge of future events affects
current decisions. In this paper we consider the estimation of the structural
parameters of a DSGE model in an environment in which agents, in their
decision-making process, exploit existing real-time information on expecta-
tions of future events.

There are at least two advantages in estimating models using the in-
formation set actually available to economic agents at the time they make
their decisions. First, from an econometric point of view, real-time data
potentially contains useful information about the location of the structural
parameters to estimate. Secondly, the estimated parameters in turn affect
both the economic implications and the forecasting performance of models.

If private agents’ unconditional forecasts are aligned with some existing
expectation information, and that the model at hand captures the behavior
of the agents, then there is potentially no gain in estimating a model using
expectation information. But there are reasons to believe that none of those
two assumptions is satisfied. One of the reasons is that there are many
institutions, alongside many central banks, who routinely publish forecasts
about future developments. Those forecasts are heterogenous and are revised
over time. A second reason has to do with the fact that for the same economy
there can be many DSGE models yielding different predictions about the
expectations of private agents.

Now if real-time information need not match the expectations of the
agents or that the information merely represents an exogenous signal that
agents take advantage of, a signal that is revised every period and therefore
inaccurate, the next question is how to model such an environment. We
exploit the conditional forecast technique of Maih (2010) in two important
ways. First, we allow agents to instantaneously react to anticipated events to
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occur in the future. This is done by solving the DSGE model under the as-
sumption that the information set of the agents includes anticipated shocks.
Secondly, the information on future events in then used to back out the dis-
tribution of those future shocks. This distribution is eventually fed to the
filtering procedure to compute the likelihood function.

In our application, we use Survey of Professional Forecasters (SPF) data
on inflation, output growth and consumption growth and re-estimate the
Smets and Wouters (2007) model. A priori, there is nothing implying that
SPF forecasts are better than the private agents’ own forecasts. An issue
to address then is to what extent the agents will want to rely on the SPF
forecasts. Put differently, if we have conditioning information that is inac-
curate, how much of it should we take into account. We address that issue
by estimating the horizon up to which agents rely on existing information
about the future.

This imparts a technical difficulty in that we now have a problem of
mixed-variable estimation whereby there is a set of parameters defined over
a continuous space and one discrete parameter. This is a challenging problem
that can be addressed in many ways. One strategy would be fix the horizon
or anticipation parameter and optimize over the continuous parameters and
repeat this for all possible values of the anticipation parameter and finally
pick the value of the anticipation parameter that maximizes the objective
function. In our example, this would imply running 7 different estimations,
which is feasible given that there is only one discrete parameter to optimize
over and that the search space is small. But this strategy rapidly becomes
problematic if one more or several discrete parameters are added as it would
be the case if the anticipation parameter is shock specific (i.e. all the shocks
no longer have the same anticipation horizon) or variable specific. We use a
different strategy: we treat the anticipation parameter as continuous when
guessing parameter values and round it to the nearest integer within its
bounds before solving the model.

Previewing the results, the specification of the Smets and Wouters (2007)
model estimated using SPF data nests its benchmark in which agents do
not rely on exogenous information as a special case. In that model the
anticipation parameter is 0. The estimated anticipation parameter in the
augmented model is well above 0, suggesting that private agents do rely on
SPF information. The values estimated for the economic parameters as well
as the shock processes are significantly affected relative to the benchmark.
All in all, our results suggest that allowing private agents to exploit SPF
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data improves the fit of the model and may qualitatively affect its economic
implications. Ignoring SPF information, the estimated shocks appear to be
a mix of structural shocks and expected shocks.

The rest of the paper briefly reviews the literature to better emphasize
our contributions (section 2). Then we present the framework for estimating
DSGE models combining historical and real-time data (section 3), before
applying the technique presented to the Smets and Wouters (2007) model
(section 4).

2 Related literature

We are not aware of any paper attempting to estimate a DSGE model using
real time information on expectations. But nevertheless our work could be
easily related to the literature estimating this class of models using expecta-
tion data. For instance DelNegro and Eusepi (2010) fit two DSGE models to
US data using observations on inflation expectations. Their modeling strat-
egy is to consider the expectations obtained from the Survey of Professional
(SPF) Forecasters as being the expectations of private agents1. In this paper,
we take a different approach and simply treat expectations of the SPF as in-
formation that is available before private agents form their own expectations
and make decisions. It is information that private agents can choose to take
advantage of or to disregard. So rather than having expectation data in the
measurement equation, our approach proceeds by conditioning the forecasts
of private agents on the information set at their disposal. A special case of
our approach, as we will show, is the case where the predictions of the SPF
coincide with the predictions of private agents.

Our framework could be given different interpretations. First it could be
interpreted as implying that the model is misspecified so that it is ill-equipped
to capture the actual expectations of private agents and so, conditioning on
that information may help improve the forecasts of other variables in the
model. A second interpretation is that of a partial information. The SPF
has some information about future shocks for which agents have a zero-
mean prior. In reality, the SPF itself does not forecast the future accurately.
Nevertheless, the decision-making process of rational agents could be such

1If the SPF expectations are those of the private agents, this potentially holds true not
just for inflation, but also for other variables the SPF provides forecasts for.
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that they find it profitable to listen to the ”news” from the SPF to have a
better idea about the shocks that possibly could hit the system in the future.

Naturally, perhaps, our framework is also related to the literature on news
shocks like Fujiwara, Hirose, and Shintani (2009), Christiano, Ilut, Motto,
and Rostagno (2008), to mention a few. In this literature, news shocks are
typically modeled as ad-hoc additional lagged shocks in the shock processes
of a DSGE model. One consequence is that lagged shocks at all horizons have
the same impact on the expectations. In addition, in such a setup, anticipated
shocks always materialize. The approach we follow in this respect is more
flexible. Rather than changing the structural model, we solve the structural
model under the assumption that agents may have some information about
the future. In this sense events occurring at different horizons are discounted
differently and anticipated events need not materialize.

Finally, as already hinted above, our approach is related to the condi-
tional forecasting literature in VARs (see Doan, Litterman, and Sims (1984),
Waggoner and Zha (1999), Andersson, Palmqvist, and Waggoner (2008)), in
DSGE models (Christoffel, Coenen, and Warne (2007), Benes, Binning, and
Lees (2008)) and using relative entropy (Robertson, Tallman, and White-
man (2005)). But more specifically we follow Maih (2010), who develops
conditional forecasting techniques for DSGE models, where the condition-
ing information is allowed to be a full distribution, a truncated density (soft
conditions), or just a central tendency (hard conditions). But while Maih
(2010), just as in all the aforementioned papers, considers an environment
in which conditioning information occurs to agents for the first time, in this
paper we assume that the information structure of the agents is the same
from period to period. In particular, in each period the SPF, provides agents
with real-time information about its forecasts of future events and updates
those forecasts as time goes by. That is, we allow the views of the SPF about
future events to change every period, hence the real time dimension.

With the exception of Waggoner and Zha (1999), none of those papers
mentioned above attempts to estimate model parameters using conditional
information. But since Waggoner and Zha (1999) use a VAR, in their case
conditioning information occurs at the end of the sample only. In this paper
we estimate model parameters in the context of a DSGE model, using infor-
mation that is revised over time and also estimate the horizon up to which
private agents use a conditioning information that is likely not to materialize
but which may still be useful.
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3 DSGE estimation using real-time informa-

tion on expectations: the econometrics

The DSGE model is given by

EtFθ (yt, yt−1, yt+1, εt) = 0 (1)

with
εt ∼ N (0, I)

In equation (1), Et represents the expectation operator given the infor-
mation at time t, yt is an n× 1 vector of endogenous variables, εt is a r × 1
vector of exogenous variables, θ is the vector collecting all the structural
parameters of the model and Fθ is linear in its arguments.

In every period, the SPF provides private agents with information about
what will happen in the next k periods. The information typically comes in
the form of a density

DtYt ∼ N (µt,Ωt)

where
Yt ≡

[
y′t, y

′
t+1, ..., y

′
t+k

]
Private agents interpret this information as implying that some non-zero

mean shocks, which they otherwise would expect to have zero mean, will
occur in the future. Next they use the Maih (2010) techniques to find the
implied distribution of those shocks. Recognizing that the information is
uncertain, the SPF is not clairvoyant, and that the reliability of the SPF
information may decrease over time, they choose a horizon s ≤ k, up to which
they want to look into the future. In the end at time t, the information set
of the agents is It =

{
θ, yt−1, ε

t
t, ε

t
t+1, ..., ε

t
t+s−1

}
where εtt+j ≡ Et (εt+j) , j =

1, 2, ..., s. In this case the solution of the model takes the form

yt = T (θ) yt−1 +R (θ) ηt (2)

where

ηt ≡
[(
εtt
)′
,
(
εtt+1

)′
, ...,

(
εtt+s−1

)′]′
(3)

and
R ≡ [R0, R1, ..., Rs−1]

When s = 1, we have the traditional framework.
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3.1 From conditional information on endogenous to
conditional information on shocks

Using the dynamics of the model, this can be written as

Yt =
...
T yt−1 + Φη̄t

where

...
T ≡


T
T 2

...
T k

 and η̄t ≡
[
(ηt)

′ , (ηt+1)′ , ..., (ηt+k)
′]′

such that ηt = Stη̄t.
Then DtYt ∼ N (µt,Ωt) implies

DtΦη̄t ∼ N (µt −Dt

...
T yt−1,Ωt)

Following Maih (2010) we let η̄t = M1tγ1t + M2tγ2t, where M1t is an
orthonormal basis for the null space of the q× rsk matrix DtΦ and M2t is an
orthonormal basis for the column space of DtΦ. In that case DtΦM1t = 0 and
DtΦM2t is invertible. This assumes that DtΦ is of full rank q. γ1t ∼ N (0, I)
is a (rsk − q) × 1 vector of disturbances that do not affect the restrictions,
while the distribution of the q × 1 vector γ2t is given by

γ2t ∼ N
[
(DtΦM2t)

−1 (µt −Dt

...
T yt−1) , (DtΦM2t)

−1 Ωt

(
(DtΦM2t)

−1)′]
so that

η̄t ∼ N
[
M2t (DtΦM2t)

−1 (µt −Dt

...
T yt−1) ,M2t (DtΦM2t)

−1 Ωt

(
(DtΦM2t)

−1)′M ′
2t +M1tM

′
1t

]
implying that

η̄t = M2t (DtΦM2t)
−1 (µt −Dt

...
T yt−1) + ωtξt (4)

where ωt is such that

ωtω
′
t = M2t (DtΦM2t)

−1 Ωt

(
(DtΦM2t)

−1)′M ′
2t +M1tM

′
1t (5)

and ξt ∼ N [0, I].
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3.2 Conditional state-space system

Using (4) and (2) we get the following solution for the restricted dynamics

[
yt
η̄t

]
=

[
RStM2t (DtΦM2t)

−1

M2t (DtΦM2t)
−1

]
µt+

[
T −RStM2t (DtΦM2t)

−1Dt

...
T 0

−M2t (DtΦM2t)
−1Dt

...
T 0

] [
yt−1

η̄t−1

]
+

[
RStωt
ωt

]
ξt

from which it is clear that the restrictions in future periods beyond the next
one are taken into account.

When µt = Dt

...
T yt−1 the mean of the information provided by the SPF

matches the mean of the unconditional forecasts of the agents and E (η̄t) = 0.
When Ωt = DtΦΦ′D′t, V (η̄t) = M1tM

′
1t + M2tM

′
2t = I, the uncertainty of

the restrictions of the SPF matches the uncertainty of the agents. This
suggests a way of estimating Ωt and µt when they are not available, but also
shows that the case where the expectations of the SPF correspond to the
forecasts of private agents is a special case of our framework. When both of
the conditions are satisfied, then η̄t ∼ N [0, I] so that conditioning does not
bring in any additional information. In that case estimating a model with
s > 1 is equivalent to estimating a model with s = 1.

The state space model consists of a transition equation of the form

αt+1 = bt + Ttαt +Rtξt+1, ξt+1 ∼ N (0, I) (6)

where bt, Tt and Rt are define below and the measurement equation

y∗t = Ztαt + εt, εt ∼ N (0, Ht) (7)

with

αt ≡
[
yt
η̄t

]

3.3 Signal extraction and estimation

We define

at ≡ E (αt|It−1) , Pt ≡ V (αt|It−1) , at|t ≡ E (αt|It) , Pt|t ≡ V (αt|It)

The likelihood function is computed using the Kalman filter for given
measurements {y∗t }

n
t=1, the sequence of restrictions {Dt, µt,Ωt}nt=1, the state
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matrices T,R, {Zt}nt=1 and initial conditions P0 and a0, which can be chosen
to be the unconditional mean and covariance matrix of the state vector αt

2.
Then for t = 1, 2, ..., n we have the following recursions for the Kalman

filter:

vt = y∗t − Ztat

Ft = ZtPtZ
′
t +Ht

Mt = PtZ
′
t

at|t = at +MtF
−1
t vt

Pt|t = Pt −MtF
−1
t M ′

t

Tt ≡
[
T −RStM2t (DtΦM2t)

−1Dt

...
T 0

−M2t (DtΦM2t)
−1Dt

...
T 0

]
bt ≡

[
RStM2t (DtΦM2t)

−1

M2t (DtΦM2t)
−1

]
µt

ωt = chol
(
M2t (DtΦM2t)

−1 Ωt

(
(DtΦM2t)

−1)′M ′
2t +M1tM

′
1t

)
Rt ≡

[
RStωt
ωt

]
at+1 = bt + Ttat|t

Pt+1 = TtPt|tT
′
t +RtR

′
t

The likelihood function is useful for the estimation of the parameters and
is given by:

log likt = −1

2

n∑
t=1

(
log |Ft|+ p log 2π + v′tF

−1
t vt

)
2An excellent exposition of the Kalman filter can be found in Durbin and Koopman

(2001).
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4 Application to the Smets and Wouters (2007)

model

In this section, we apply the technique developed in the previous sections
to the medium-scale New Keynesian model of Smets and Wouters (2007).
One of the advantages of choosing the Smets and Wouters (2007) model is
has been shown to fit the data well and in particular, its forecasting per-
formance compares well with VARs. For the sake of brevity, only the set
of log-linearized equations are presented in the appendix and with refer to
Smets and Wouters (2007) for the details and derivations of those equations3.

For the variables used in the measurement equations of the Kalman filter
we use the same data (spanning 1966Q1:2004Q4) as Smets and Wouters
(2007), to which, again, we refer to for details. Besides those variables,
we also use expectation data on (GDP growth, Inflation(GDP deflator) and
consumption growth. The two first series are available 5 quarters in advance
(from quarter 2 to 6) and span the period 1968Q4:2004Q4 in our estimations
(2004Q4 is the date of the last observation in the Smets and Wouters (2007)
data). The third is available for 6 quarters in advance (quarters 1 to 6) and
span the period 1981Q3 to 2004Q4.

We also use the same prior distributions as Smets and Wouters for all the
parameters, except the anticipation parameter for which we do not have a
strong prior. The prior on this last parameter is thus taken to be uniform
over the interval [0,6], where 0 means that expectations from the SPF are
not taken into account by private agents, which is the Smets and Wouters
(SW) model. An anticipation parameter of 1 means that agents use only
expectations for the period following the one they are in, while an anticipation
parameter of 6 means they use all the 6 quarters of information available.
All the prior distributions are given of table 2 (columns 2 and 3) for the
economic parameters and table 3 (columns 2 and 3) for the shock processes
(persistence and standard deviations).

Most of the empirical exercises we go through will consist in comparing
the results of the SW model estimated using various specifications of condi-
tional information, against the benchmark, in which agents do not make use
of SPF information. In particular, we will compare the benchmark model
against the model with the best conditioning information and then analyze

3The latex equations have been generated almost entirely automatically by dynare,
based on the original code by Smets and Wouters (2007).
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the effects of adding less accurate information. The reason for using various
specifications of the conditioning information is because, as pointed out by
Maih (2010), the forecasting performance of a model using conditional in-
formation depends on how well the model is good at capturing the actual
correlations between the conditioning variables and the other variables in the
system, but also on the accuracy of the conditioning information.

Table 1 reports the correlations between the expectations of inflation,
GDP growth and consumption growth as provided by the SPF and the ac-
tual realization of those variables. We immediately see that the conditional
information on both GDP growth and consumption growth is not as good
as the conditioning information on inflation. Also, for all the three variables
the accuracy of the forecasts provided by the SPF decreases with the length
of the forecast horizon.

Conditioning on poor information is potentially detrimental for the fore-
cast performance of the model in terms of the other variables in the system.
And so, rather than conditioning on all the variables at the same time, we
proceed to estimate 5 alternative models: a) the benchmark model without
conditioning information, b) the model in which we condition on inflation
only, which given the correlation results in table 1, will be the leading al-
ternative model, c) the model in which we condition on inflation and GDP
growth, d) a model in which we condition on inflation and consumption
growth and e) a model in which we condition on inflation, GDP growth and
consumption growth. As the SPF information does not come in the form of
a multivariate density, we estimate the joint density of the restrictions to be
the one generated by the model.

We begin by discussing the parameter estimates and the model fit in
section 4.1, then we analyze the implications of the estimated parameters
in terms of variance and historical decompositions (section 4.2) and then
impulse responses (section 4.3). One of the benefits of our empirical strategy
using real-time information is that we can also get smoothed estimates of
the expected shocks, which we will use to see how agents combining the SW
model with SPF information would have been surprised (section 4.4). We
then move on to investigating the forecast performance of the alternative
models (section 4.5). All the results are based on the posterior mode.
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4.1 Parameter estimates and models fit

Tables 2 and 3 report the estimates of the economic parameters and those
of the shock processes respectively. Column 5 reports the estimates of the
benchmark model (SW), column 6 reports the estimates of the model condi-
tioning on inflation only (Infl), column 7 reports the estimates of the model
conditioning on inflation and output growth (Infl+GDP), column 8 reports
the estimates of the model conditioning on inflation and consumption growth
(Infl+Cons) and column 9 reports the estimates of the model conditioning
on inflation, output growth and consumption growth (Infl+GDP+Cons).

Overall, the parameters appear to be very sensitive to the specification of
conditioning information. One robust result emerges though, which is that
the anticipation parameter (Anticipation) is estimated to be 2 for all the
models using conditioning information. This parameter is well identified by
the data as suggested by the curvature of the posterior kernel in that di-
mension at the posterior mode (see figure 1 for the Infl model). A value of
2 implies that private agents do rely on the exogenous expectation informa-
tion provided by the SPF, but only for two quarters and this despite their
having access to an additional 4 quarters of potentially useful information.
This also implies that the expectations of the SPF do not correspond to the
unconditional expectations of private agents in the SW model.

Besides the anticipation parameter, the economic parameters in table
2 can be divided into three main groups. The first group comprises the
parameters pertaining to preferences. For those parameters, compared to
the SW model, the Infl model implies a somewhat similar discount factor (β)
(0.9986 against 0.9987), a negative and imprecisely estimated steady state
of labor supply (l̄), a higher steady-state elasticity of the capital adjustment
cost function (ϕ), a higher elasticity of intertemporal substitution (σc), lower
habit persistence (λ), a lower probability of not adjusting wages (ξw), a
higher elasticity of labor supply with respect to real wages (σl) and a higher
wage indexation to past inflation (ιw). Smets and Wouters (2007) note that
relaxing their prior distributions, the degree of wage stickiness rises more
than their benchmark estimate. Imposing additional conditional information
significantly affects the values of the estimated parameters in this first group.
In particular, the discount factor falls to about 0.9980 in both the Infl+Cons
and Infl+GDP+Cons models, while the degree of wage stickiness increases
substantially.

The second group comprises the parameters related to production. For
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those parameters and compared to the SW model, the Infl model suggests a
lower price stickiness parameter (ξp), a higher indexation of current inflation
to past inflation (ιp), a higher elasticity of the capital utilization adjustment
cost function (ψ), somewhat similar fixed costs in production (Φ) and capital
share in production (α) and a slightly higher trend growth rate (γ). As for
the parameters in the first group, forcing additional conditioning information
on changes the values of the parameters in a significant manner. For instance,
the trend growth rate that the Infl model gets above the benchmark (a feature
that Smets and Wouters would see as desirable), falls substantially in the
three other conditional models.

In the third group we include the monetary policy parameters. Relative to
the SW model, the Infl model implies a somewhat lower response of interest
rate to inflation (rπ) , a lower interest rate smoothing (ρ), a substantially
lower response of interest rate to deviations of the output gap from the flex-
price output gap (ry), a lower response of inflation to changes in output
growth (r∆y) and a lower steady-state inflation target.

Turning to the estimates of the shock processes, in table 3, overall, the
Infl specification implies higher persistence but lower standard deviations of
the shocks. Notable exceptions are the persistence of the wage markup shock
(respectively ρw), which is lower than in the benchmark.

The models can also be compared on their ability to fit the data. The
Laplace approximation of the marginal data density (MDD) for the SW
model is estimated to be (-922.39). For the conditional models, the Laplace
approximation of the MDD hard to compute directly given that there is one
parameter defined over a discrete space. We approximate the MDD by fixing
the anticipation parameter at its estimated value and then re-estimate the
other parameters. Starting at the previously found mode, the optimization
algorithm does not move and so we get back the exact same parameters.
Using that strategy, the MDD for all the conditional models appear to be
significantly better than the benchmark (see table 2). So on this count, the
data seem to prefer the conditional models.

Although the differences in MDDs across conditional models are not sub-
stantial, the Infl+Cons model appears to be the one with the best perfor-
mance. Adding GDP expectation information decreases the MDD. Despite
these results, we choose to focus on the Infl model in the light of the results
on the accuracy of the conditional information.
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4.2 Variance and historical decompositions

Table 4 reports the variance decompositions in forecast errors of GDP, Infla-
tion and the Fed’s funds rate at various horizons for the Infl model. In the
short run, GDP is driven by government spending shocks and risk premium
shocks, echoing the findings of Smets and Wouters (2007). However, our
results suggest that another important driving force of GDP in the short run
is the technology shock and not the investment-specific technology shock.
The results also suggest that the importance of the neutral technology shock
for GDP growth increases over time as well as that of wage markup shocks.
But wage markup shocks do not significantly dominate productivity shocks
as would be the case in the SW model.

In the short run, inflation is dominated by price and wage markup shocks
but while the former dominates the latter in the short run, in the long run
wage markup shocks become the chief mover of inflation.

In the short run, interest rates are explained by monetary policy and risk
premium shocks, with the first one being the most important. In the medium
to long run, wage markup shocks and to a lesser extent investment-specific
technology shocks also become important for the variations of the interest
rate. In the long run, investment specific technology, monetary policy and
wage markup shocks are the driving forces of the Fed’s funds rate.

The variance decompositions are consistent with the historical decompo-
sitions of inflation and output displayed in figure 10. Here we follow Smets
and Wouters (2007) and bundle risk premium, investment-specific technol-
ogy and government spending shocks into the group of demand shocks, while
markup shocks comprise wage markup and price markup shocks. The history
of inflation is clearly dominated by markup shocks, while the history of GDP
growth fluctuations can be to a large extent ascribed to productivity shocks.

4.3 Impulse responses

Impulse responses (of output, consumption, investment, hours worked, real
wages, inflation, interest rate and capacity utilization) to the various shocks
of the models are displayed in figures 2 to 8. The blue line represents the
impulse responses of a shock occurring in the current period and the responses
to such unanticipated shocks are qualitatively in line with those implied by
the SW model. In particular, a positive unanticipated shock to productivity
(see figure 3) leads to an expansion of aggregate demand, output, real wages
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and a fall in the number of hours. The subsequent fall in the real interest
rate is not enough to prevent a fall in inflation.

When shocks are anticipated, however, as shown by the green line, the
short-run response of hours, and of interest rate, is positive. Fujiwara, Hirose,
and Shintani (2009) find the same results using a different methodology.
Another example in which short-run responses are different depending on
whether they are anticipated or not is given in figure 4, where following a
positive government spending shock, output, interest rate and hours increase
if the shock is unanticipated and decrease otherwise.

4.4 Evolution of beliefs

If agents are able to foresee future shocks to some extent, they will attempt to
mitigate the effects of those shocks. In this section, we investigate the extent
to which conditional information helps anticipate future shocks. This is done
by analyzing smoothed estimates of ηt (see equation 3), which represent the
evolution of beliefs in terms of shocks. Figure 9 depicts the evolution of the
deviations of the expected shocks from their actual realizations in the Infl
model. The differences are scaled by the standard deviations of the respective
shocks.

Overall, the deviations are stationary around 0 but fluctuate consider-
ably. And so, despite conditioning information on inflation, shock surprises
are substantial. Wage markup shocks, which, in the variance decomposi-
tions, were found to be important drivers of the business cycle, are alongside
investment-specific technology shocks are the shocks for which agents make
the most predictions errors. Over the period analyzed, the most predictable
shocks are the risk premium and the monetary policy shocks4. In fact the
variance of the prediction errors on monetary policy and risk premium shocks
have decrease considerably since the middle of the 80s.

It is not surprising that monetary policy and risk premium shocks pre-
diction errors move closely together since in the SW model, risk premium
shocks represent the wedge between the interest rate controlled by the cen-
tral bank and the return on assets held by households. Under the estimated
policy rule, monetary policy reacts strongly to inflation and if inflation is
accurately predicted, monetary policy shocks surprises will tend to be small.

4It would be interesting to extend this analysis to include the latest financial crisis
period and revisit this point.
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A look at the correlation between actual inflation and its predictions by the
SPF seems to support this idea (see table 1).

Finally we can also relate the forecast errors of figure 9 to the histori-
cal decompositions of figure 10. The sharp reduction in output growth of
1975 is related to miss-predictions of government spending and productivity
shocks. The decline of output in 1980Q3 is associated with poor predictions
of monetary policy, investment specific, government spending and risk pre-
mium shocks. Productivity shocks and wage markup shocks prediction errors
can also be associated with the year 2000 recession.

4.5 Forecast performance

As argued earlier, one of the advantages for considering the Smets Wouters
model for this exercise is that it has been shown to fit the data well. In par-
ticular, its forecasting performance compares well with VARs and BVARs.
In this section, we are interested in investigating whether adding conditional
information improves the forecast performance relative to the benchmark.
As estimation is expensive, and especially so in the presence of parameters
defined over a discrete space, we do not re-estimate the models. We keep the
parameters constant in the computation of 8-step ahead forecasts for all the
models and starting from the beginning of the sample. For the conditional
models, when conditional information is available, we use 2 quarters of in-
formation only, which is the estimated anticipation horizon. It is important
here to remember that for both inflation and output growth, conditioning
information is available only at the second quarter, while information on
consumption growth is available for both the first and the second quarters.

Figure 11 plots the ratios of the RMSFE for the benchmark model over
the RMSFE for all the conditional models. Hence values above 1 imply a
better performance of the conditional models and values below 1 imply a
deterioration of the performance. By itself, inflation is very useful. The Infl
model outperforms the benchmark not just for inflation, but also for GDP
growth, investment growth, hours worked and the Fed’s fund rate for all
the horizons considered. The Infl model also outperforms the benchmark on
consumption growth up to 6 quarters. So for those variables, there seems to
be a systematic evidence that inflation information contributes to a consistent
improvement in forecast accuracy. The Infl model is still competitive in terms
of wage growth also as it is un-dominated by the benchmark. All in all,
conditioning on inflation we are able to improve not only the medium-term
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forecasts but also the short-term ones.
Adding expectation information on consumption, we see that the forecast

performance deteriorates markedly in the Infl+Cons model for GDP growth
and wage growth, especially in the medium term. It is remarkable that this
is also the case for consumption growth but perhaps not surprising given that
the consumption information is not very accurate. This stands in contrast
with the results obtained using the MDD, for which the Infl+Cons model
was the best model.

If instead of consumption growth information we add GDP growth in-
formation, the forecasts in the Infl+GDP model remain competitive but are
not as good at the forecasts of the Infl model. It seems that bad information
on consumption growth is more damaging than bad information on output
growth if we compare the Infl+Cons model to the Infl+GDP+Cons model.

We here retrieve some of the results in Maih (2010), namely that con-
ditioning does not always improve the forecasting performance and in some
cases it might even deteriorate forecast accuracy. This depends, as said ear-
lier, on the quality of the conditioning information, but also on how good the
model is at capturing the correlations between the conditioning variables and
the other variables of interest. As we saw, a good information on inflation
does not necessarily translate into better forecasts for wage growth. This
suggests that the correlation between inflation and wage growth is not well
captured by the model and that fitting one variable sometimes comes at the
expense of fitting one of several other variables. This final point emphasizes
the usefulness of the conditional forecasting technique of Maih (2010) as a
misspecification detection tool.

4.6 Robustness

[To be written]

5 Conclusions

[To be written]
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A Log-linearized Smets and Wouters (2007)

model

Those equations are almost entirely generated automatically from the Smets
and Wouters (2007) code using Dynare.

A.1 Cross-parameter restrictions

Steady state inflation

π = 1 +
π̄

100

Common quarterly gross trend growth rate of GDP, consumption, invest-
ment and wages

γ = 1 +
γ̄

100

Discount factor

β =
1

1 +
χβ
100

φp = Φ

where Φ is the fixed-cost parameter in the production function

β̄ = β γ(−σc)

cr =
π

β̄

crk = β(−1) γσc − (1− τ)

where τ is the depreciation of capital
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cw =

(
αα (1− α)1−α

Φ (crk)α

) 1
1−α

cikbar = 1− 1− τ
γ

cik = γ (cikbar)

clk =
1− α
α

crk

cw

where α is the capital share in production

cky = Φ (clk)α−1

ciy = cik × cky

ccy = 1− cg − ciy

crkky = crk × cky

cwhlc =
cky

(1−α) 1
φw

α
(crk)

1− cg − ciy
where φw is one plus the steady-state labor-market markup

Steady-state nominal interest rate

r̄ = 100 (cr − 1)
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A.2 Main equations

A.2.1 Sticky price economy

Definition of marginal costs

mct = α rkt + (1− α) wt − εat (8)

Equilibrium condition for capacity utilization

zt =
1
ψ

1−ψ
rkt (9)

where ψ is a positive function of the elasticity of the capital utilization
adjustment cost function normalized to lie between 0 and 1 and such that
when ψ = 1, it is extremely costly to change the utilization of capital.

Equilibrium condition for the rental rate of capital

rkt = wt + lt − kst (10)

Definition of current capital services

kst = zt + kt−1 (11)

Investment Euler equation

it = εit +
1

1 + γ β̄

(
it−1 + it+1 γ β̄ + qt

1

ϕγ2

)
(12)

where ϕ is the steady state elasticity of the capital adjustment cost function.
Arbitrage (Euler) equation for the real value of existing capital (qt)

qt = (−rt) + πt+1 + εbt
1

1−λ
γ

σc (1+λ
γ )

+ rkt+1

crk

1− τ + crk
+ qt+1

1− τ
1− τ + crk

(13)

Consumption Euler equation
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ct = εbt+ct−1

λ
γ

1 + λ
γ

+ct+1
1

1 + λ
γ

+(lt − lt+1)
(σc − 1) cwhlc

σc

(
1 + λ

γ

) −(rt − πt+1)
1− λ

γ

σc

(
1 + λ

γ

)
(14)

Resource constraint

yt = εgt + ct (1− cg − ciy) + it ciy + zt (crk) cky (15)

Production function

yt = Φ (εat + α kst + (1− α) lt) (16)

Price Phillips curve

πt = εpt +
1

1 + ιp γ β̄

ιp πt−1 + πt+1 γ β̄ +mct

(1−ξp) (1−ξp γ β̄)
ξp

1 + (Φ− 1) εp

 (17)

Wage Phillips curve

wt = εwt + 1
1+γ β̄

wt−1 + γ β̄
1+γ β̄

wt+1 + ιw
1+γ β̄

πt−1 − 1+ιw γ β̄
1+γ β̄

πt + γ β̄
1+γ β̄

πt+1+

1
1+(φw−1) εw

(1−ξw) (1−ξw γ β̄)
ξw (1+γ β̄)

(
σl lt + ct

1
1−λ

γ

− ct−1

λ
γ

1−λ
γ

− wt
)

(18)

Monetary policy reaction function

rt = πt rπ (1− ρ)+(1− ρ) ry

(
yt − yft

)
+r∆y

(
yt − yft − yt−1 + yft−1

)
+ρ rt−1+εrt

(19)

Capital law of motion

kt = kt−1 (1− cikbar) + cikbar × it + εit ϕ (cikbar) γ2 (20)
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A.2.2 Flexible-price economy

Relations analogous to the sticky price economy apply for the flexible price
economy

εat = α rkft + (1− α) wft (21)

zft = rkft
1
ψ

1−ψ
(22)

rkft = wft + lft − k
sf
t (23)

ksft = zft + kft−1 (24)

ift = εit +
1

1 + γ β̄

(
ift−1 + ift+1 γ β̄ + qft

1

ϕγ2

)
(25)

qft = (−rrft) + εbt
1

1−λ
γ

σc (1+λ
γ )

+ rkft+1

crk

1− τ + crk
+ qft+1

1− τ
1− τ + crk

(26)

cft = εbt+c
f
t−1

λ
γ

1 + λ
γ

+cft+1

1

1 + λ
γ

+
(
lft − l

f
t+1

) (σc − 1) cwhlc

σc

(
1 + λ

γ

) −rrft 1− λ
γ

σc

(
1 + λ

γ

)
(27)

yft = εgt + cft (1− cg − ciy) + ift ciy + zft (crk) cky (28)
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yft = Φ
(
εat + α ksft + (1− α) lft

)
(29)

wft = lft σl + cft
1

1− λ
γ

− cft−1

λ
γ

1− λ
γ

(30)

kft = kft−1 (1− (cikbar)) + ift (cikbar) + εit (cikbar) ϕγ2 (31)

A.3 Shock processes

Total factor productivity

εat = ρa ε
a
t−1 + ηat (32)

Risk premium

εbt = ρb ε
b
t−1 + ηbt (33)

Government spending

εgt = ρg ε
g
t−1 + ηgt + ηat ρga (34)

Investment-specific technology

εit = ρI ε
i
t−1 + ηIt (35)

Monetary policy

εrt = ρr εrt−1 + ηrt (36)

Price markup
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εpt = ρp ε
p
t−1 + ηpt − µp η

p
t−1 (37)

Wage markup

εwt = ρw ε
w
t−1 + ηwt − µw ηwt−1 (38)

A.4 Measurement equations

GDP growth

dlGDPt = γ̄ + yt − yt−1 (39)

Consumption growth

dlCONSt = γ̄ + ct − ct−1 (40)

Investment growth

dlINVt = γ̄ + it − it−1 (41)

Wage growth

dlWAGt = γ̄ + wt − wt−1 (42)

Inflation

dlPt = π̄ + πt (43)

Nominal interest rate

FEDFUNDSt = rt + r̄ (44)
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Hours worked

lHOURSt = lt + l̄ (45)

where l̄ is the steady-state hours worked
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1 2 3 4 5 6
GDP growth NA 0.2731 0.2570 0.2375 0.2321 0.0760
Consumption growth 0.2063 0.2571 0.1453 0.2297 0.2136 -0.0635
Inflation NA 0.8221 0.7557 0.6741 0.5976 0.5340

Table 1: Correlations between actual data and predictions of the Survey of
Professional Forecasters for quarters 1 to 6
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Figure 1: Check plot for the anticipation parameter
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TFP Risk Gov Invest Mon. pol price mkp wage mkp
1-step ahead, in percent

GDP 24.86 14.31 38.35 5.71 11.16 2.93 2.67
Inflation 6.63 2.05 0.39 3.61 4.95 48.82 33.54
Fed Funds rate 9.00 13.71 2.79 1.20 66.21 4.57 2.53

8-step ahead, in percent
GDP 32.76 3.69 8.42 10.63 5.37 10.24 28.89
Inflation 7.13 2.58 0.91 8.68 8.68 21.83 50.19
Fed Funds rate 13.04 12.17 3.20 23.61 21.22 6.62 20.14

∞-step ahead, in percent
GDP 35.47 1.15 3.76 6.48 1.72 13.89 37.52
Inflation 7.21 2.46 1.42 10.09 8.60 21.33 48.89
Fed Funds rate 12.15 9.41 4.86 31.54 16.39 6.33 19.32

Table 4: Variance decompositions for the model with conditioning informa-
tion on Inflation
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Figure 2: Impulse responses to a risk premium shock (unanticipated (blue),
anticipated (green))
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Figure 3: Impulse responses to a technology shock (unanticipated (blue),
anticipated (green))
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Figure 4: Impulse responses to a government spending shock (unanticipated
(blue), anticipated (green))
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Figure 5: Impulse responses to a an investment specific technology shock
(unanticipated (blue), anticipated (green))
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Figure 6: Impulse responses to a monetary policy shock (unanticipated
(blue), anticipated (green))
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Figure 7: Impulse responses to a price markup shock (unanticipated (blue),
anticipated (green))
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Figure 8: Impulse responses to a wage markup shock (unanticipated (blue),
anticipated (green))
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Figure 9: Scaled revisions of expected shocks at horizon 2

39



1965 1970 1975 1980 1985 1990 1995 2000

−0.5

0

0.5

1

1.5

2

pinfobs

 

 
Productivity demand monetary policy markup Rest

1965 1970 1975 1980 1985 1990 1995 2000

−3

−2

−1

0

1

2

3
dy     

Figure 10: Historical decomposition of inflation and GDP growth. Following
Smets and Wouters (2007), demand shocks include (risk premium, investment
technology and government spending shocks); Markup shocks include (wage
markup and price markup shocks). The variable denoted by rest refers to
initial conditions. 40
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