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1.  Introduction 

There is widespread agreement that unexpected large and persistent fluctuations in the real price 

of oil are detrimental to the welfare of both oil-importing and oil-producing economies. Reliable 

forecasts of the price of oil have the potential of ameliorating these detrimental effects by 

allowing firms, consumers and governments to prepare for energy price fluctuations. For 

example, central banks and private sector forecasters view the price of oil as one of the key 

variables in generating macroeconomic projections and in assessing macroeconomic risks. Of 

particular interest is the question of the extent to which the price of oil is helpful in predicting 

recessions. For example, Hamilton (2009), building on the analysis in Edelstein and Kilian 

(2009), provides evidence that the recession of late 2008 was amplified and preceded by an 

economic slowdown in the automobile industry and a deterioration in  consumer sentiment. 

Thus, more accurate forecasts of the price of oil have the potential of improving forecast 

accuracy for a wide range of macroeconomic outcomes and of improving macroeconomic policy 

responses. 

In addition, some sectors of the economy depend directly on forecasts of the price of oil 

for their business. For example, airlines rely on such forecasts in setting airfares, automobile 

companies decide their product menu and product prices with oil price forecasts in mind, and 

utility companies use oil price forecasts in deciding whether to extend capacity or to build new 

plants. Likewise, homeowners rely on oil price forecasts in deciding the timing of their heating 

oil purchases or whether to invest in energy-saving home improvements.  

Finally, forecasts of the price of oil (and the price of its derivatives such as gasoline or 

heating oil) are important in modeling purchases of energy-intensive durables goods such as 

automobiles or home heating systems.1  They also play a role in generating projections of energy 

use, in modeling investment decisions in the energy sector, in predicting carbon emissions and 

climate change, and in designing regulatory policies such as automotive fuel standards or 

gasoline taxes.2  

 Section 2 compares alternative measures of the price of crude oil. In section 3, we discuss 

the rationales of alternative specifications of the oil price variable in empirical work. Section 4 

studies the extent to which the nominal price of oil and the real price of oil are predictable based 

                                                            
1 See, e.g., Kahn (1986), Davis and Kilian (2010). 
2 See, e.g., Goldberg (1998), Allcott and Wozny (2010), Busse, Knittel and Zettelmeyer (2010), Kellogg (2010). 
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on macroeconomic aggregates. We document strong evidence of predictability in population. 

Predictability in population, however, need not translate into out-of-sample forecastability.  

We compare a wide range of out-of-sample forecasting methods for the nominal price of 

oil. For example, it is common among policy-makers to treat the price of oil futures contracts as 

the forecast of the nominal price of oil. In sections 5 and 6, we focus on the ability of daily and 

monthly oil futures prices to forecast the nominal price of oil in real time compared with a range 

of simple time series forecasting models. We find some evidence that the price of oil futures has 

additional predictive content compared with the current spot price at the 12-month horizon, but 

not at shorter horizons. The magnitude of the MSPE reduction is modest even at the 12-month 

horizons, and there are indications that this result is sensitive to fairly small changes in the 

sample period. At horizons in excess of two years, there is no evidence at all that oil futures 

prices have predictive power for the price of oil. In particular, at the long horizons of interest to 

policymakers, oil futures prices are inferior to the no-change forecast. 

There also is evidence that recent percent changes in nominal non-oil commodity prices 

may be used to substantially and significantly reduce the mean-squared prediction error (MSPE) 

of the no-change forecast of the nominal price of oil at horizons of 1 and 3 months. The gains 

may be as large as 43% at the 3-month horizon. In contrast, models based on the dollar exchange 

rates of major commodity exporters, models based on the Hotelling model, a variety of simple 

time series models, and survey forecasts of the nominal price of oil, are not successful at 

significantly lowering the MSPE at short horizons. At horizons of several years, forecasts based 

on adjusting the current spot price for survey inflation expectations systematically outperform 

the no-change forecast by a wide margin. In the intermediate range, none of these alternative 

forecasting approaches appears to outperform the no-change forecast of the nominal price of oil. 

The best econometric forecast of the price of oil need not coincide with the price 

expectations of market participants. In section 7 we evaluate survey forecasts of the nominal 

retail price of gasoline against the no-change forecast benchmark. We also contrast explicit 

survey forecasts with the price of the corresponding futures contracts. Following Anderson, 

Kellogg and Sallee (2010), we document that, after controlling for inflation, long-term household 

gasoline price expectations are well approximated by a random walk. This finding has immediate 

implications for modeling purchases of energy-intensive consumer durables.  



3 
 

The variable relevant for economic modeling is the real price of oil. Section 8 compares 

alternative forecasting models for the real price of oil. We provide evidence that reduced-form 

autoregressive and vector autoregressive models of the global oil market are more accurate than 

the random walk forecast of the real price of oil at short horizons. The extent of these MSPE 

reductions depends on the definition of the oil price series, however, and after taking account of 

the constraints on the availability of data in real time the MSPE reductions are relatively small. 

At longer horizons, the no-change forecast of the real price of oil appears to be the predictor with 

the lowest MSPE in general. 

An important limitation of reduced-form forecasting models from a policy point of view 

is that they provide no insight into what is driving the forecast and do not allow the policy maker 

to explore alternative hypothetical scenarios. In section 9, we illustrate how recently developed 

structural vector autoregressive models of the global oil market may be used to generate 

conditional projections of how the oil price forecast would deviate from the unconditional 

benchmark provided by the corresponding reduced-form VAR, conditional on alternative 

scenarios such as a surge in speculative demand similar to previous historical episodes, a 

resurgence of the global business cycle, or increased U.S. oil production.  

 Much of the work on forecasting the price of oil has focused on the dollar price of oil. 

This is natural because crude oil is typically traded in U.S. dollars, but there also is considerable 

interest in forecasting the real price of oil faced by other countries such as the Euro area, Canada, 

or Japan.  In section 10, we discuss the changes required in forecasting the real price of oil in that 

case and show that accurate forecasts may require different forecasting models for different 

countries, given the important role of exchange rate fluctuations. 

Section 11 focuses on the problem of jointly forecasting U.S. macroeconomic aggregates 

such as real GDP growth and the price of oil. Of particular interest is the forecasting ability of 

nonlinear transformations of the price of oil such as the nominal net oil price increase or the real 

net oil price increase. The net oil price increase is a censored predictor that assigns zero weight 

net oil price decreases.  There is no evidence that this type of asymmetry is reflected in the 

responses of U.S. real GDP to innovations in the real price of oil, as documented in Kilian and 

Vigfusson (2010), but Hamilton (2010) suggests that the net oil price increase specification is 

best thought of as a parsimonious forecasting device. We provide a comprehensive analysis of 

this conjecture. 
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Point forecasts of the price of oil are important, but they fail to convey the large 

uncertainty associated with oil price forecasts. That uncertainty is captured by the predictive 

density.  In section 12 we discuss various approaches of conveying the information in the 

predictive density including measures of price volatility and of tail conditional expectations with 

particular emphasis on defining appropriate risk measures. Section 13 contains a discussion of 

directions for future research. The concluding remarks are in section 14. 

 

2. Alternative Oil Price Measures 

Figure 1 plots alternative measures of the nominal price of oil. The longest available series is the 

West Texas Intermediate (WTI) price of crude oil. Data on U.S. refiner’s acquisition cost for 

domestically produced oil, for imported crude oil and for a composite of these series are 

available starting in 1974.1. Figure 1 highlights striking differences in the time series process for 

the price of oil prior to 1973 and after 1973. The WTI data until 1973 tend to exhibit a pattern 

exhibiting a step-function. The price remains constant for extended periods, followed by discrete 

adjustments. The U.S. wholesale price of oil for 1948-1972 used in Hamilton (1983) is 

numerically identical with this WTI series. As discussed in Hamilton (1983, 1985) the discrete 

pattern of crude oil price changes during this period is explained by the specific regulatory 

structure of the oil industry during 1948-72. Each month the Texas Railroad Commission and 

other U.S. state regulatory agencies would forecast demand for oil for the subsequent month and 

would set the allowable production levels for wells in the state to meet demand. As a result, 

much of the cyclically endogenous component of oil demand was reflected in shifts in quantities 

rather than prices. The commission was generally unable or unwilling to accommodate sudden 

disruptions in oil production, preferring instead to exploit these events to implement sometimes 

dramatic price increases (Hamilton 1983, p. 230). 

 Whereas the WTI price is a good proxy for the U.S. price for oil during 1948-72, when 

the U.S. was largely self-sufficient in oil, it becomes less representative after 1973, when the 

share of U.S. imports of oil rapidly expanded. The price discrepancy between unregulated 

foreign oil and regulated domestic oil created increasing pressure to deregulate the domestic 

market. As regulatory control weakened in the mid-1970s, adjustments to the WTI price became 

much more frequent and smaller in magnitude, as shown in the right panel of Figure 1. By the 

mid-1980s, the WTI had been deregulated to the point that there was strong comovement  
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between all three oil price series most of the time. 

 Figure 2 shows the corresponding price data adjusted for U.S. CPI inflation. The left 

panel reveals that in real terms the price of oil had been falling considerably since the late 1950s. 

That decline was corrected only by the sharp rise in the real price of oil in 1973/74. There has 

been no pronounced trend in the real price of oil since 1974, but considerable volatility. Whereas 

the definition of the real price of oil matters is of lesser importance after 1986, one key 

difference prior to 1986 is that the refiners’ acquisition cost for imported crude oil fell in 1974-

76, whereas the real WTI price rose. A second key difference is that the real WTI price spiked in 

1980, whereas the real price of oil imports remained largely stable. That pattern was only 

reversed with the outbreak of the Iran-Iraq War in late 1980. 

 Figure 3 once more highlights the striking differences between the pre- and post 1973 

period. It shows the percent growth rate of the real price of oil. The structural change in late 1973 

is readily apparent.3 Whereas the pre-1973 period is characterized by long periods of low 

volatility interrupted by periodic large positive price spikes, the post-1973 period is characterized 

by high month-to-month volatility. It has been suggested that perhaps this volatility has increased 

systematically after the collapse of OPEC in late 1985. The answer is somewhat sensitive to the 

exact choice of dates. If one were to date the OPEC period as 1973.10-1985.12, for example, 

there is no evidence of an increase in the variance of the percent change in the real WTI price of 

oil. The volatility in the OPEC period is virtually identical to that in the post-OPEC period of 

1986.1-2010.6. Shifting the starting date of the OPEC period to 1974.1, in contrast, implies a 

considerable increase in volatility after 1985. Extending the ending date of the OPEC period to 

include the price collapse in 1986 induced by OPEC actions, which seems reasonable, on the 

other hand, renders the volatility much more similar across subperiods. Finally, combining the 

earlier starting data and the later ending date, there is evidence of a reduction in the real price 

volatility after the collapse of OPEC rather than an increase. Below we therefore treat the post-

1973 data as homogenous.  

 Which price series is more appropriate for the analysis of post-1973 data depends in part 

on the purpose of the study. The WTI price data are questionable to the extent that these data 

were regulated until the mid-1980s and do not reflect the true scarcity of oil nor the price 

                                                            
3 In related work, Dvir and Rogoff (2010) present formal evidence of a structural break in the process driving the 
real price of oil in 1973. 
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actually paid by U.S. refiners. The refiners’ acquisition cost for imported crude oil provides a 

good proxy for oil price fluctuations in global oil markets, but may not be representative for the 

price that U.S. refineries paid for crude oil (which is the price of oil relevant to U.S. consumers). 

The latter price may be captured better by a composite of the acquisition cost of domestic and 

imported crude oil, neither of which, however, is available before January 1974.  Below we will 

consider several alternative price series. 

 

3. Alternative Oil Price Specifications 

Although an increasing number of empirical studies of the post-1973 data focus on the real price 

of oil, many other studies have relied on the nominal price of oil.  One argument for the use of 

nominal oil prices has been that the nominal price of oil – unlike the real price of oil – is 

exogenous with respect to U.S. macroeconomic conditions and hence linearly unpredictable on 

the basis of lagged U.S. macroeconomic conditions.4 This argument may have some merit for the 

pre-1973 period, but is implausible for the post-1973 period. If the U.S. money supply 

unexpectedly doubles, for example, then, according to standard macroeconomic models, so will 

all nominal prices denominated in dollars (including the nominal price of oil), leaving the 

relative price or real price of crude oil unaffected. Clearly, one would not want to interpret such 

an episode as an oil price shock involving a doubling of the nominal price of oil. Indeed, 

economic models of the impact of the price of oil on the U.S. economy correctly predict that 

such a nominal oil price shock should have no effect on the U.S. economy because such 

theoretical models inevitably are specified in terms of the real price of oil, which has not 

changed in this example. 

 Another argument in the literature has been that the nominal price of oil can be 

considered exogenous after 1973 because it is set by OPEC. This interpretation is without basis. 

First, there is little evidence to support the notion that OPEC has been successfully acting as a 

cartel in the 1970s and early 1980s, and the role of OPEC has further diminished since 1986 (see, 

e.g., Skeet 1988; Smith 2005; Almoguera and Herrera 2007). Second, even if we were to accept 

the notion that an OPEC cartel sets the nominal price of oil, economic theory predicts that this 

cartel price will endogenously respond to U.S. macroeconomic conditions. This theoretical 

                                                            
4 For a review of the relationship between the concepts of (strict) exogeneity and predictability in linear models see 
Cooley and LeRoy (1985). 
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prediction is consistent with anecdotal evidence of OPEC oil producers raising the price of oil 

(or equivalently lowering oil production) in response to unanticipated U.S. inflation, low U.S. 

interest rates and the depreciation of the dollar. Moreover, as observed by Barsky and Kilian 

(2002), economic theory predicts that the strength of the oil cartel itself (measured by the extent 

to which individual cartel members choose to deviate from cartel guidelines) will be positively 

related to the state of the global business cycle (see Green and Porter 1984). Thus, both nominal 

and real oil prices must be considered endogenous with respect to the global economy, unless 

proven otherwise.  

A third and distinct argument has been that consumers of refined oil products choose to 

respond to changes in the nominal price of oil rather than the real price of oil, perhaps because 

the nominal price of oil is more visible. In other words, consumers suffer from money illusion. 

There is no direct empirical evidence in favor of this behavioral argument which contradicts 

standard economic models of the transmission of oil price shocks. Rather the case for this 

specification, if there is one, has to be based on the predictive success of such models; a success 

that, however, has yet to be demonstrated empirically. We will address this question in section 

11.  

 Even proponents of using the nominal price in empirical models of the transmission of oil 

price shocks have concluded that there is no stable dynamic relationship between percent 

changes in the nominal price of oil and in U.S. macroeconomic aggregates. There is evidence 

from in-sample fitting exercises, however, of a predictive relationship between suitable nonlinear 

transformations of the nominal price of oil and U.S. real output, in particular. The most 

successful of these transformations is the net oil price increase measure of Hamilton (1996, 

2003). Let ts  denote the nominal price of oil in logs and  the difference operator. Then the net 

oil price increase is defined as: 

, *max 0, ,net
t t ts s s        

where *
ts  is the highest oil price in the preceding 12 months or, alternatively, the preceding 36 

months. This transformation involves two distinct ideas. One is that consumers in oil-importing 

economies respond to increases in the price of oil only if the increase is large relative to the 

recent past. If correct, the same logic by construction should apply to decreases in the price of 

oil, suggesting a net change transformation that is symmetric in increases and decreases.  
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The second idea implicit in Hamilton’s definition is that consumers do not respond to net 

decreases in the price of oil, allowing us to omit the net decreases from the model. In other 

words, consumers respond asymmetrically to net oil price increases and net oil price decreases 

and they do so in a very specific fashion. Although there are theoretical models that imply the 

existence of an asymmetry in the response of the economy to oil price increases and decreases, 

these models do not imply the specific nonlinear structure embodied in the net increase measure 

nor do they imply that net decrease measure should receive zero weight. Nevertheless, 

Hamilton’s nominal net oil price increase variable has become one of the leading specifications 

in the literature on predictive relationships between the price of oil and the U.S. economy. 

Hamilton (2010), for example, interprets this specification as capturing nonlinear changes in 

consumer sentiment in response to nominal oil price increases.5  

Like with other oil price specifications, there is reason to expect lagged feedback from 

global macroeconomic aggregates to the net oil price increase. Whereas Hamilton (2003) made 

the case that net oil price increases in the 1970s, 1980s and 1990s were capturing exogenous 

events in the Middle East, Hamilton (2009) concedes that the net oil price increase of 2003-08 

was driven in large part by a surge in the demand for oil. Kilian (2009a,b; 2010), on the other 

hand, provides evidence based on structural VAR models that most net oil price increases 

contain a large demand component driven by global macroeconomic conditions. This finding is 

also consistent with the empirical results in Baumeister and Peersman (2010). Testing for 

feedback from macroeconomic aggregates to the net oil price increase is complicated by the fact 

that we are dealing with a censored oil price variable (see Kilian and Vigfusson 2010). For that 

reason we focus on percent changes in nominal and real oil prices in the next section. Nonlinear 

joint forecasting models for U.S. real GDP and the price of oil are discussed in section 9. 

 

4. Granger Causality Tests 

Much of the existing work on predicting the price of oil has focused on testing for the existence 

of a predictive relationship from macroeconomic aggregates to the price of oil. The existence of 

predictability in population is a necessary precondition for out-of-sample forecastability (see 

                                                            
5 Interestingly, the behavioral rationale for the net oil price increase measure applies equally to the nominal price of 
oil and the real price of oil. Although Hamilton (2003) applied this transformation to the nominal price of oil, 
several other studies have recently explored models that apply the same transformation to the real price of oil (see, 
e.g., Kilian and Vigfusson 2010; Gupta, Herrera, and Wada 2010). 
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Inoue and Kilian 2004a). Within the linear VAR framework the absence of predictability from 

one variable to another in population may be tested using Granger non-causality tests. 

 

4.1. Nominal Oil Price Predictability 

4.1.1. The Pre-1973 Evidence 

Granger causality from macroeconomic aggregates to the price of oil has received attention in 

part because Granger non-causality is one of the testable implications of strict exogeneity. The 

notion that the percent change in the nominal price of oil may be considered exogenous with 

respect to the U.S. economy was bolstered by evidence in Hamilton (1983). Hamilton (1983) 

observed that there is no apparent Granger causality from U.S. domestic macroeconomic 

aggregates to the percent change in the nominal price of oil during 1948-1972. Of course, the 

absence of Granger causality is merely a necessary condition for strict exogeneity. Moreover, a 

failure to reject the null of no Granger causality is at best suggestive; it does not establish the 

validity of the null hypothesis. Hamilton’s case for the exogeneity of the nominal price of oil 

with respect to the U.S. economy therefore rested primarily on the unique institutional features of 

the oil market during this period, discussed in section 2, and on historical evidence that 

unexpected supply disruptions under this institutional regime appear to be associated with 

exogenous political events in the Middle East, allowing us to treat the resulting price spikes as 

exogenous with respect to the U.S. economy. For a more nuanced view of these historical 

episodes see Kilian (2008b; 2009a,b; 2010). Even if we accept Hamilton’s interpretation of the 

pre-1973 period, the institutional conditions that Hamilton (1983) appealed to ceased to exist in 

the early 1970s, and Hamilton’s results in this paper are mainly of historical interest. The real 

question is to what extent there is evidence that oil prices can be predicted from macroeconomic 

aggregates in the post-1973 period. 

 

4.1.2. The Post-1973 Evidence 

There is widespread agreement among oil economists that, starting in 1973, nominal oil prices 

must be considered endogenous with respect to U.S. macroeconomic variables (see Kilian 

2008a). Whether this endogeneity makes the nominal price of oil predictable on the basis of 

lagged U.S. macroeconomic aggregates depends on whether the price of oil behaves like an asset 

price or not. In the former case, one would expect the nominal price of oil to incorporate 
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information about expected U.S. macroeconomic conditions immediately, rendering the nominal 

price of oil linearly unpredictable on the basis of lagged U.S. macroeconomic aggregates. This 

line of reasoning is familiar from the analysis of stock and bond prices.6 In the latter case, the 

endogeneity of the nominal price of oil with respect to the U.S. economy implies that lagged 

changes in U.S. macroeconomic aggregates have predictive power for the nominal price of oil in 

the post-1973 data (see, e.g., Cooley and LeRoy 1985). 

 A recent study by Kilian and Vega (2010) helps resolve the question of which 

interpretation is more appropriate. Kilian and Vega find no evidence of systematic feedback from 

news about a wide range of U.S. macroeconomic aggregates to the nominal price of oil within a 

month. This lack of evidence is in sharp contrast to the evidence for typical asset prices, so lack 

of power cannot explain the absence of significant feedback from U.S. macroeconomic news to 

the nominal price of oil. These two results in conjunction allow us to rule out the pure asset price 

interpretation of the nominal price of oil. We conclude that, if the nominal price of oil is 

endogenous with respect to lagged U.S. macroeconomic aggregates, then these macroeconomic 

aggregates must have predictive power at least in population. 

 Predictability in the context of linear vector autoregressions may be tested using Granger 

causality tests.  Table 1a investigates the evidence of Granger causality from selected nominal 

U.S. macroeconomic variables to the nominal price of oil. All results are based on pairwise 

vector autoregressions. The lag order is fixed at 12. Similar results would have been obtained 

with 24 lags. We consider four alternative nominal oil price series. The evaluation period is 

alternatively 1973.1-2009.12 or 1975.1-2009.12, reflecting the availability of each oil price 

series.  It is not clear a priori which oil price series is best suited for finding predictability. On the 

one hand, one would expect the evidence of predictability to be stronger for oil price series that 

are unregulated (such as the refiners’ acquisition cost for imported crude oil) than for partially 

regulated domestic price series. On the other hand, to the extent that the 1973/74 oil price shock 

episode was driven by monetary factors, as proposed by Barsky and Kilian (2002), one would 

expect stronger evidence in favor of such feedback from the WTI price series that includes this 

episode.  

 There are several reasons to expect the dollar-denominated nominal price of oil to 

respond to changes in nominal U.S. macroeconomic aggregates. One channel of transmission is 

                                                            
6 Hamilton (1994, p. 306) illustrates this point in the context of a model of stock prices and expected dividends.  
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purely monetary and operates through U.S. inflation.  For example, Gillman and Nakov (2009) 

stress that changes in the nominal price of oil must occur in equilibrium just to offset persistent 

shifts in U.S. inflation, given that the price of oil is denominated in dollars. Indeed, the Granger 

causality tests in Table 1a indicate highly significant lagged feedback from U.S. headline CPI 

inflation to the percent change in the nominal WTI price of oil for the full sample, consistent 

with the findings in Gillman and Nakov (2009). The evidence for the other oil price series is 

somewhat weaker with the exception of the refiners’ acquisition cost for imported crude oil, but 

that result may simply reflect a loss of power when the sample size is shortened.7 

Gillman and Nakov view changes in inflation in the post-1973 period as rooted in 

persistent changes in the growth rate of money.8 Thus, an alternative approach of testing the 

hypothesis of Gillman and Nakov (2009) is to focus on Granger causality from monetary 

aggregates to the nominal price of oil. Given the general instability in the link from changes in 

monetary aggregates to inflation, one would not necessarily expect changes in monetary 

aggregates to have much predictive power for the price of oil, except perhaps in the 1970s (see 

Barsky and Kilian 2002). Table 1a nevertheless shows that there is considerable lagged feedback 

from narrow measures of money such as M1 for the refiners’ acquisition cost and the WTI price 

of oil based on the 1975.2-2009.12 evaluation period. The much weaker evidence for the full 

WTI series may reflect the stronger effect of regulatory policies on the WTI price during the 

early 1970s. The evidence for broader monetary aggregates such as M2 having predictive power 

for the nominal price of oil is much weaker, with only one test statistically significant. 

A third approach to testing for a role for U.S. monetary conditions relies on the fact that 

rising dollar-denominated non-oil commodity prices are thought to presage rising U.S. inflation. 

Hence, one would expect changes in nominal CRB spot prices to Granger cause changes in the 

nominal price of oil. Indeed, Table 1a indicates highly statistically significant lagged feedback 

from CRB sub-indices for the spot price of industrial raw materials and for metals. 

                                                            
7 It can be shown that similar results hold for the CPI excluding energy, albeit not for the CPI excluding food and 
energy. 
8 For an earlier exposition of the role of monetary factors in determining the price of oil see Barsky and Kilian 
(2002). Both Barsky and Kilian (2002) and Gillman and Nakov (2009) view the shifts in U.S. inflation in the early 
1970s as caused by persistent changes in the growth rate of the money supply, but there are important differences in 
emphasis. Whereas Barsky and Kilian stress the real effects of unanticipated monetary expansions on real domestic 
output, on the demand for oil and hence on the real price of oil, Gillman and Nakov stress that the relative price of 
oil must not decline in response to a monetary expansion, necessitating a higher nominal price of oil, consistent with 
anecdotal evidence on OPEC price decisions (see, e.g., Kilian 2008b). These two explanations are complementary. 
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In contrast, neither short-term interest rates nor trade-weighted exchange rates have 

significant predictive power for the nominal price of oil. According to the Hotelling model, one 

would expect the nominal price of oil to grow at the nominal rate of interest, providing yet 

another link from U.S. macroeconomic aggregates to the nominal price of oil. Table 1a, 

however, shows no evidence of statistically significant feedback from the 3-month T-Bill rate to 

the price of oil. This finding is not surprising as the price of oil clearly was not growing at the 

rate of interest even approximately (see Figure 1). Nor is there evidence of significant feedback 

from lagged changes in the trade-weighted nominal U.S. exchange rate. This does not mean that 

all bilateral exchange rates lack predictive power. In related work, Chen, Rossi and Rogoff 

(2010) show that the floating exchange rates of small commodity exporters (including Australia, 

Canada, New Zealand, South Africa and Chile) with respect to the dollar have remarkably robust 

forecasting power for global prices of their commodity exports. The explanation is that these 

exchange rates are forward looking and embody information about future movements in 

commodity export markets that cannot easily be captured by other means.  

Although Chen et al.’s analysis cannot be extended to oil exporters such as Saudi Arabia 

because Saudi Arabia’s exchange rate has not been floating freely, the bilateral dollar exchange 

rates of Australia, Canada, New Zealand and South Africa may serve as a proxy for expected 

broad-based movements in industrial commodity prices that may also be helpful in predicting 

changes in the nominal price of oil. According to Chen et al., the share of nonagricultural exports 

is 100% in South Africa, 71% in Australia, 50% in Canada and only 8% in New Zealand. In 

general, the larger the share of nonagricultural exports, the higher one would expect the 

predictive power for industrial commodities to be. For the price of oil, the share of energy 

exports such as crude oil, coal and natural gas may be an even better indicator of predictive 

power, suggesting that Canada (34%) should have the highest predictive power for the price of 

oil, followed by Australia (29%), South Africa (22%) and New Zealand (0%). Table 1b shows 

strong evidence of predictability for all bilateral exchange rates but that of New Zealand, 

consistent with this intuition.  Moreover, when using the dollar exchange rate of the Japanese 

Yen and of the British Pound as a control group, there is no significant evidence of Granger 

causality from exchange rates to the price of oil. The results in Table 1b are also very much in 

line with the direct evidence of predictive power from nonagricultural commodity price indices 

in Table 1a.  



13 
 

4.1.3. Reconciling the Pre- and Post-1973 Evidence on Predictability 

Tables 1a and 1b suggest that indicators of U.S. inflation have significant predictive power for 

the nominal price of oil. This result is in striking contrast to the pre-1973 period. As shown in 

Hamilton (1983) using quarterly data and in Gillman and Nakov (2009) using monthly data, 

there is no significant Granger causality from U.S. inflation to the percent change in the nominal 

price of oil in the 1950s and 1960.  The difference in results is consistent with the earlier 

observation of a structural break in the process determining the price of oil in 1973 as well as a 

simultaneous break in the process governing the relationship between the price of oil and the 

U.S. economy. There are additional reasons to be skeptical of Granger causality evidence for the 

pre-1973 period, however. To the extent that the nominal price of oil is adjusted only at discrete 

intervals during that period, the nominal oil price data are generated by a discrete-continuous 

choice model and conventional vector autoregressions are not appropriate for testing 

predictability. One way of illustrating this problem is by fitting a random walk model with drift 

to these data and plotting randomly generated draws from the fitted model against the actual 

data. Figure 4 shows one such sequence. Without loss of generality, Figure 4 illustrates that the 

fitted time series model model – like any conventional time series model – is unable to replicate 

the discontinuous adjustment process underlying the pre-1973 WTI data. This is true even 

allowing for leptokurtic error distributions. In other words, autoregressive or moving average 

time series processes are inappropriate for these data and tests based on such models have to be 

viewed with caution.  

This problem may be ameliorated by deflating the nominal price of oil, which renders the 

oil price data continuous and more amenable to VAR analysis (see Figure 2). Additional 

problems arise, however, when combining oil price data generated by a discrete-continuous 

choice process with data from the post-Texas Railroad Commission era that are fully continuous. 

It is well known that estimates of vector autoregressions may be unreliable in small samples. 

This has prompted many applied researchers to combine oil price data for the pre-1973 and post-

1973 period in the same model in an effort to improve the power of inference. This approach is 

obviously inadvisable when dealing with nominal oil price data, as already discussed above.  

Perhaps less obviously, this approach is equally unappealing when dealing with vector 

autoregressions involving the real price of oil. The problem is not only that the real oil price data 

are not homogenous over time, as shown in Figures 2 and 3, but that the nature and speed of the 
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feedback from U.S. macroeconomic aggregates to the real price of oil differs by construction, 

depending on whether the nominal price of oil is temporarily fixed or not. For that reason, 

regression estimates of the relationship between the real price of oil and domestic 

macroeconomic aggregates obtained from the entire post-war period are not informative about 

the strength of these relationships in post-1973 data.9 In the analysis of the real price of oil below 

we therefore restrict the evaluation period to start no earlier than 1973.1. 

 

4.2. Real Oil Price Predictability in the Post-1973 Period 

It is well established in natural resource theory that the real price of oil increases in response to 

low expected real interest rates and in response to high real aggregate output.10 Any analysis of 

the role of expected real interest rates is complicated by the fact that inflation expectations are 

difficult to pin down, especially at longer horizons, and that the relevant horizon for resource 

extraction is not clear. We therefore focus on the predictive power of fluctuations in real 

aggregate output. Table 2 reports p-values for tests of the hypothesis of Granger non-causality 

from selected measures of real aggregate output to the real price of oil.   

A natural starting point is U.S. real GDP.  Economic theory implies that U.S. real GDP 

and the real price of oil are mutually endogenous and determined jointly. For example, one 

would expect an unexpected increase in U.S. real GDP, all else equal, to increase the flow 

demand for crude oil and hence the real price of oil. Unless the real price of oil is forward 

looking and already embodies all information about future U.S. real GDP, a reasonable 

conjecture therefore is that lagged U.S. real GDP should help predict the real price of oil. Recent 

research by Kilian and Murphy (2010) has shown that the real price of oil indeed contains an 

asset price component, but that this component most of the time explains only a small fraction of 

the historical variation in the real price of oil. Thus, we would expect fluctuations in U.S. real 

GDP to predict the real price of oil at least in population. Under the assumption that the joint 

process can be approximated by a linear vector autoregression, this implies the existence of 

Granger causality from U.S. real GDP to the real price of oil  
                                                            
9 This situation is analogous to that of combining real exchange rate data for the pre- and post-Bretton Woods 
periods in studying the speed of mean reversion toward purchasing power parity. Clearly, the speed of adjustment 
toward purchasing power parity will differ if one of the adjustment channels is shut down, as was the case under the 
fixed exchange rate system, than when both prices and exchange rates are free to adjust as was the case under the 
floating rate system. Thus, regressions on long time spans of real exchange rate data produce average estimates that 
by construction are not informative about the speeds of adjustment in the Bretton Woods system. 
10 For a review of this literature see Barsky and Kilian (2002). 
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Notwithstanding this presumption, Table 2 indicates no evidence of Granger causality 

from the U.S. real GDP to the real price of oil. This finding is robust to alternative methods of 

detrending and alternative lag orders.  In the absence of instantaneous feedback from U.S. real 

GDP to the real price of oil, a finding of Granger noncausality from U.S. real GDP to the real 

price of oil – in conjunction with evidence that the real price of oil Granger causes U.S. real GDP 

– would be consistent with the real price of oil being strictly exogenous with respect to U.S. real 

GDP. It can be shown, however, that the evidence of Granger causality from the real price of oil 

to U.S. real GDP is not much stronger.  Based on the LT, HP and DIF models (applied 

symmetrically to both time series in the VAR model), there is only one marginal rejection at the 

10% level.  This rejection occurs for the real WTI price in differences when evaluated on the 

1973.I-2009.IV period. There are no rejections using other data transformations or shorter 

evaluation periods. The fact that there are few rejections, if any, in either direction suggests that 

the Granger noncausality test may simply lack power for samples of this length. In fact, this is 

precisely the argument that prompted some researchers to combine data from the pre-1973 and 

post-1973 period – a strategy that we do not recommend for the reasons discussed in section 

4.1.3.  

Another likely explanation of the failure to reject the null of no predictability is model 

misspecification. It is well known that Granger causality tests in a bivariate model may be due to 

an omitted third variable, but equally relevant is the possibility of Granger noncausality in a 

bivariate model arising from omitted variables (see Lütkepohl 1982). This possibility is more 

than a theoretical curiosity in our context.  Recent models of the determination of the real price 

of oil after 1973 have stressed that this price is determined in global markets (see, e.g., Kilian 

2009a; Kilian and Murphy 2010).  In particular, the demand for oil depends not merely on U.S. 

demand, but on global demand. The bivariate model for the real price of oil and U.S. real GDP 

by construction omits fluctuations in real GDP in the rest of the world. The relevance of this 

point is that offsetting movements in real GDP abroad can easily offset the effect of changes in 

U.S. real GDP, obscuring the dynamic relationship of interest and lowering the power of the 

Granger causality test. Only when real GDP fluctuations are highly correlated across most 

countries would we expect U.S. real GDP to be a good proxy for world real GDP.11  In addition, 

                                                            
11 For example, the conjunction of rising growth in emerging Asia with unchanged growth in the U.S. all else equal 
would cause world GDP growth and hence the real price of oil to increase, but would imply a zero correlation 
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as the U.S. share in world GDP evolves, by construction so do the predictive correlations 

underlying Table 2. In this regard, Kilian and Hicks (2010) have documented dramatic changes 

in the PPP-adjusted share in GDP of the major industrialized economies and of the main 

emerging economies in recent years that cast further doubt on the U.S. real GDP results in Table 

2. For example, today, China and India combined have a larger share of world GDP than the 

United States.  

A closely related third point is that fluctuations in real GDP are a poor proxy for 

business-cycle driven fluctuations in the demand for oil. It is well known, for example, that in 

recent decades the share of services in U.S. real GDP has greatly expanded at the cost of 

manufacturing and other sectors. Clearly, real GDP growth driven by the non-service sector will 

be associated with disproportionately higher demand for oil and other industrial commodities 

than real GDP growth in the service sector. This provides one more reason that one would not 

expect a strong or stable predictive relationship between U.S. real GDP and the real price of oil.   

An alternative quarterly predictor that partially addresses these last two concerns is 

quarterly world industrial production from the U.N. Monthly Bulletin of Statistics. This series has 

recently been introduced by Baumeister and Peersman (2010) in the context of modeling the 

demand for oil. Although there are serious methodological concerns regarding the construction 

of any such index, as discussed in Beyer, Doornik and Hendry (2001), one would expect this 

series to be a better proxy for global fluctuations in the demand for crude oil than U.S. real GDP.  

Indeed, Table 2 shows strong evidence of Granger causality from world industrial production to 

the real WTI price in the full sample period for the LT model. For the four shorter series there 

are three additional rejections for the LT model; the other p-value is not much higher than 0.1. 

The reduction in p-values compared with U.S. real GDP is dramatic. The fact that there is 

evidence of predictability only for the linearly detrended series makes sense. As discussed in 

Kilian (2009b), the demand for industrial commodities such as crude oil is subject to long 

swings. Detrending methods such as HP filtering (and even more so first differencing) eliminate 

much of this low frequency covariation in the data, removing the feature of the data we are 

interested in testing. 

                                                                                                                                                                                                
between U.S. real GDP growth and changes in the real price of oil. Alternatively, slowing growth in Japan and 
Europe may offset rising growth in the U.S., keeping the real price of oil stable and implying a zero correlation of 
U.S. growth with changes in the real price of oil. This does not mean that there is no feedback from lagged U.S. real 
GDP. Indeed, with lower U.S. growth the increase in the real price of oil would have slowed in the first example and 
without offsetting U.S. growth the real price of oil would have dropped in the second example. 
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Additional insights may be gained by focusing on monthly rather than quarterly 

predictors. The first contender in Table 3 is the Chicago Fed National Activity Index (CFNAI). 

This is a broad measure of monthly real economic activity in the United States obtained from 

applying principal components analysis to a broad range of monthly indicators of real activity 

expressed in growth rates (see Stock and Watson 1999). As in the case of quarterly U.S. real 

GDP, there is no evidence of Granger causality. If we rely on U.S. industrial production as the 

predictor, there is weak evidence of feedback to the domestic price of oil for the LT model. For 

other measures of the real price of oil, none of the test statistics is significant, although we again 

note the sharp drop in p-values as we replace the CFNAI by industrial production. 

There are no monthly data on world industrial production, but the OECD provides an 

industrial production index for the OECD economies. As expected, the rejections of Granger 

noncausality become much stronger when we focus on OECD industrial production. Table 3 

indicates strong and systematic Granger causality, especially for the LT specification. Even 

OECD industrial production is a flawed proxy for business-cycle fluctuations in the global 

demand for crude oil, however. One chief concern – apart from the usual problems with 

constructing the country weights – is that it omits countries such as China and India whose 

additional demand for oil in recent years has been crucial in causing the surge in the real price of 

oil. Thus, there is strong reason to expect the predictive relationship between OECD industrial 

production and the real price of oil to be unstable. 

One alternative is the index of global real activity recently proposed in Kilian (2009a). 

This index does not rely on any country weights and has truly global coverage. It has been 

constructed with the explicit purpose of measuring fluctuations in the broad-based demand for 

industrial commodities associated with the global business cycle.12 As expected, the last row of 

Table 3 indicates even stronger evidence of Granger causality from this index to the real price of 

                                                            
12 This index is constructed from ocean shipping freight rates. The idea of using fluctuations in shipping freight rates 
as indicators of shifts in the global real activity dates back to Isserlis (1938) and Tinbergen (1959). The panel of 
monthly freight-rate data underlying the global real activity index was collected manually from Drewry’s Shipping 
Monthly using various issues since 1970. The data set is restricted to dry cargo rates. The earliest raw data are 
indices of iron ore, coal and grain shipping rates compiled by Drewry’s. The remaining series are differentiated by 
cargo, route and ship size and may include in addition shipping rates for oilseeds, fertilizer and scrap metal. In the 
1980s, there are about 15 different rates for each month; by 2000 that number rises to about 25; more recently that 
number has dropped to about 15. The index was constructed by extracting the common component in the nominal 
spot rates. The resulting nominal index is expressed in dollars per metric ton, deflated using the U.S. CPI and 
detrended to account for the secular decline in shipping rates. For this paper, this series has been extended based on 
the Baltic Exchange Dry Index, which is available from Bloomberg. The latter index, which is commonly discussed 
in the financial press, is essentially identical to the nominal index in Kilian (2009a), but only available since 1985. 
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oil, regardless of the definition of the real price of oil. It also highlights a fourth issue. There is 

evidence that allowing for two years worth of lags rather than one year often strengthens the 

significance of the rejections. This finding mirrors the point made in Hamilton and Herrera 

(2004) that it is essential to allow for a rich lag structure in studying the dynamic relationship 

between the economy and the price of oil. 

Although none of the proxies for global fluctuations in demand is without limitations, we 

conclude that there is a robust pattern of Granger causality, as we correct for problems of model 

misspecification and of data mismeasurement that undermine the power of the test. This 

conclusion is further strengthened by evidence in Kilian and Hicks (2010) based on distributed 

lag models that revisions to professional real GDP growth forecasts have significant predictive 

power for the real price of oil during 2000.11-2008.12 after weighting each country’s forecast 

revision by its PPP-GDP share. Predictability in population, of course, does not necessarily 

imply out-of-sample forecastability (see Inoue and Kilian 2004a). The next two sections 

therefore examine alternative approaches to forecasting the nominal and the real price of oil out-

of-sample.  

 

5. Short-Horizon Forecasts of the Nominal Price of Oil 

The most common approach to forecasting the nominal price of oil is to treat the price of the oil 

futures contract of maturity h as the h-period forecast of the price of oil.13 In particular, many 

central banks and the International Monetary Fund (IMF) use the price of NYMEX oil futures as 

a proxy for the market’s expectation of the spot price of crude oil. A widespread view is that 

prices of NYMEX futures contracts are not only good proxies for the expected spot price of oil, 

but also better predictors of oil prices than econometric forecasts. Forecasts of the spot price of 

oil are used as inputs in the macroeconomic forecasting exercises that these institutions produce. 

For example, the European Central Bank (ECB) employs oil futures prices in constructing the 

inflation and output-gap forecasts that guide monetary policy (see Svensson 2005). Likewise the 

IMF relies on futures prices as a predictor of future spot prices (see. e.g., International Monetary 
                                                            
13 Futures contracts are financial instruments that allow traders to lock in today a price at which to buy or sell a fixed 
quantity of the commodity at a predetermined date in the future. Futures contracts can be retraded between inception 
and maturity on a futures exchange such as the New York Mercantile Exchange (NYMEX). The NYMEX offers 
institutional features that allow traders to transact anonymously. These features reduce individual default risk and 
ensure homogeneity of the traded commodity, making the futures market a low-cost and liquid mechanism for 
hedging against and for speculating on oil price risks. The NYMEX light sweet crude contract is the most liquid and 
largest volume market for crude oil trading. 
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Fund 2005, p. 67; 2007, p. 42). Futures-based forecasts of the price of oil also play a role in 

policy discussions at the Federal Reserve Board. This is not to say that forecasters do not 

recognize the potential limitations of futures-based forecasts of the price of oil. Nevertheless, the 

perception among many macroeconomists, financial analysts and policymakers is that oil futures 

prices, imperfect as they may be, are the best available forecasts of the spot price of oil. Such 

attitudes have persisted notwithstanding recent empirical evidence to the contrary and 

notwithstanding the development of theoretical models aimed at explaining the lack of predictive 

ability of oil futures prices and spreads (see, e.g., Knetsch 2007; Alquist and Kilian 2010). 

 Interestingly, the conventional wisdom in macroeconomics and finance is at odds with 

long-held views about storable commodities in agricultural economics. For example, Peck 

(1985) emphasized that “expectations are reflected nearly equally in current and in futures prices. 

In this sense cash prices will be nearly as good predictions of subsequent cash prices as futures 

prices", echoing in turn the discussion in Working (1942) who was critical of the “general 

opinion among economists that prices of commodity futures are … the market expression of 

consciously formed opinions on probable prices in the future” whereas “spot prices are not 

generally supposed to reflect anticipation of the future in the same degree as futures prices”. 

Working specifically criticized the error of “supposing that the prices of futures … tend to be 

more strongly influenced by these anticipations than are spot prices”. The next section 

investigates the empirical merits of these competing views in the context of oil markets. 

 

5.1. Forecasting Methods Based on Monthly Oil Futures Prices 

Alquist and Kilian (2010) recently provided a comprehensive evaluation of the forecast accuracy 

of models based on monthly oil futures prices using data ending in 2007.2. Below we update 

their analysis until 2009.12 and expand the range of alternative forecasting models under 

consideration.14 In this subsection, attention is limited to forecast horizons of up to one year. Let 

)(h
tF  denote the current nominal price of the futures contract that matures in h periods, tS  the 

current nominal spot price of oil, and ][ htt SE   the expected future spot price at date t+h 

conditional on information available at t.   

                                                            
14 Because the Datastream data for the daily WTI spot price of oil used in Alquist and Kilian (2010) were 
discontinued, we rely instead on data from the Energy Information Administration. As a result the estimation 
window for the forecast comparison is somewhat shorter in some cases than in Alquist and Kilian (2010).  
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A natural benchmark for forecasts based on the price of oil futures is provided by the 

random walk model without drift. This model implies that changes in the spot price are 

unpredictable, so the best forecast of the spot price of crude oil is simply the current spot price: 

  ttht SS  |
ˆ   1, 3, 6, 9,12h               (1) 

In contrast, the common view that oil futures prices are the best available predictor of future oil 

prices implies the forecasting model: 

  ( )
|

ˆ h
t h t tS F    1, 3, 6, 9,12h  .            (2) 

A closely related approach to forecasting the spot price of oil is to use the spread between the 

futures price and the spot price as an indicator of whether the price of oil is likely to go up or 

down. If the futures price equals the expected spot price, the spread should be an indicator of the 

expected change in spot prices. The rationale for this approach is clear from dividing 

( ) [ ]h
t t t hF E S   by ,tS  which results in ( )[ ] .h

t t h t t tE S S F S   We explore the forecasting 

accuracy of the spread based on several alternative forecasting models. The simplest model is: 

 

   ( )
|

ˆ 1 /ln( )h
tt tt h tS S F S  ,   1, 3, 6, 9,12h           (3) 

To allow for the possibility that the spread may be a biased predictor, it is common to relax the 

assumption of a zero intercept: 

   ( )
|

ˆ 1 /ˆ ln( )h
tt tt h tS S F S   ,  1, 3, 6, 9,12h           (4) 

Alternatively, one can relax the proportionality restriction: 

   ( )
|

ˆ 1 /ˆ ln( )h
tt tt h tS S F S  ,  1, 3, 6, 9,12h           (5) 

Finally, we can relax both the unbiasedness and proportionality restrictions: 

   ( )
|

ˆ 1 /ˆˆ ln( )h
tt tt h tS S F S    ,  1, 3, 6, 9,12h  .         (6) 

Here ̂  and ̂  denote least-squares estimates obtained in real time from recursive regressions.  

 The objective is to compare the real-time forecast accuracy of models (1)-(6). Our 

empirical analysis is based on daily prices of crude oil futures traded on the NYMEX from the 

commercial provider Price-Data.com. The time series begins in March 30, 1983, when crude oil 
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futures were first traded on the NYMEX, and extends through December 31, 2009. Contracts are 

for delivery at Cushing, OK. Trading ends four days prior to the 25th calendar day preceding the 

delivery month. If the 25th is not a business day, trading ends on the fourth business day prior to 

the last business day before the 25th calendar day. A common problem in constructing monthly 

futures prices of a given maturity is that an h-month contract may not trade on a given day. We 

identify the h-month futures contract trading closest to the last trading day of the month and use 

the price associated with that contract as the end-of-month value. Our approach is motivated by 

the objective of computing in a consistent manner end-of-month time series of oil futures prices 

for different maturities. This allows us to match up end-of-month spot prices and futures prices 

as closely as possible. The daily spot price data are obtained from the webpage of the Energy 

Information Administration and refer to the price of West Texas Intermediate crude oil available 

for delivery at Cushing, OK. 

 Tables 4 through 8 assess the predictive accuracy of various forecasting models against 

the benchmark of a random walk without drift for horizons of 1, 3, 6, 9, and 12 months. The 

forecast evaluation period is 1991.1-2009.12. The assessment of which forecasting model is most 

accurate may depend on the loss function of the forecaster (see Elliott and Timmermann 2008). 

We report results for the MSPE and the relative frequency with which a forecasting model 

correctly predicts the sign of the change in the spot price based on the success ratio statistic of 

Pesaran and Timmermann (2009). We formally test the null hypothesis that a given candidate 

forecasting model is as accurate as the random walk without drift against the alternative that the 

candidate model is more accurate than the no-change forecast. Suitably constructed p-values are 

shown in parentheses (as described in the notes to Table 1). It should be noted that commonly 

used tests of equal predictive accuracy for nested models (including the tests we rely on in this 

chapter) by construction are tests of the null of no predictability in population rather than tests of 

equal out-of-sample MSPEs (see, e.g., Inoue and Kilian 2004a,b; Clark and McCracken 2010). 

This means that these tests will reject the null of equal predictive accuracy more often than they 

should under the null, suggesting caution in interpreting test results that are only marginally 

statistically significant. We will discuss this point in more detail further below. This concern 

does not affect nonnested forecast accuracy comparisons. 

Row (2) of Tables 4 through 8 shows that the oil futures price has lower MSPE than the 

no-change forecast at all horizons considered, but the differences are mostly marginal and none 
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of the differences is statistically significant. For all practical purposes, the forecasts are equally 

accurate. Nor do futures forecasts have important advantages when it comes to predicting the 

sign of the change in the nominal price of oil. Only at the 12-month horizons is the success ratio 

significant at the 10 percent level. The improvement in this case is 5.7%. At the 1-month and 3-

month horizon, the success ratio of the futures price forecast actually is inferior to tossing a coin. 

Similarly, rows (3)-(6) in Tables 4 through 8 show no systematic difference between the MSPE 

of the spread-based forecasts and that of the random walk forecast. In no case is there a 

statistically significant reduction in the MSPE from using the spread model. In the rare cases 

when one of the spread models significantly helps predict the direction of change, the gains in 

accuracy are quite moderate.  No spread model is uniformly superior to the others. 

We conclude that there is no compelling evidence that, over this period, oil futures prices 

were more accurate predictors of the nominal price of oil than simple no-change forecasts. Put 

differently, a forecaster using the most recent spot price would have done just as well in 

forecasting the nominal price of oil. This finding is broadly consistent with the empirical results 

in Alquist and Kilian (2010).15 To the extent that some earlier studies have reported evidence 

more favorable to oil futures prices, the difference in results can be traced to the use of shorter 

samples (see, e.g., Chernenko, Schwarz and Wright 2004; Wu and McCallum 2005). 

 

5.2. Other Forecasting Methods 

The preceding subsection demonstrated that simple no-change forecasts of the price of oil tend to 

be as accurate in the MSPE sense as forecasts based on oil futures prices, but this does not rule 

out that there are alternative predictors with even lower MSPE. Next we broaden the range of 

forecasting methods to include some additional predictors that are of practical interest. One 

approach is the use of parsimonious regression-based forecasting models of the spot price of 

crude oil. Another approach is the use of survey data. While economists have used survey data 

extensively in measuring the risk premium embedded in foreign exchange futures, this approach 

has not been applied to oil futures, with the exception of recent work by Wu and McCallum 

(2005). Yet another approach is to exploit the implication of the Hotelling (1931) model that the 

                                                            
15 Although we have focused on the WTI price of oil, qualitatively similar results would also be obtained on the 
basis of Brent spot and Brent futures prices, which are available from the same data sources. The evaluation period 
for the Brent price series, however, is much shorter, casting doubt on the reliability of the results, which is why we 
focus on the WTI data. 
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price of oil should grow at the rate of interest. Finally, we also consider forecasting models that 

adjust the no-change forecast for inflation expectations and for recent percent changes in asset 

prices. 

 

5.2.1. Parsimonious Econometric Forecasts 

One example of parsimonious econometric forecasting models is the random walk model without 

drift introduced earlier. An alternative is the double-differenced forecasting model proposed in 

Hendry (2006). Hendry observed when time series are subject to infrequent trend change, the no-

change forecast may be improved upon by extrapolating today’s oil price at the most recent 

growth rate: 

   |
ˆ 1

h

ttt h tS sS     1, 3, 6, 9,12h             (7) 

where ts  denotes the percent growth rate between 1t   and .t  In other words, we apply the no-

change forecast to the growth rate rather than the level. Although there are no obvious 

indications of structural change in our sample period, it is worth exploring this alternative 

method, given the presence of occasional large fluctuations in the price of oil.  Row (7) in Tables 

4 through 8 shows that the double differenced specification does not work well in this case. 

Especially at longer horizons, this forecasting method becomes erratic and suffers from very 

large MSPEs. Nor is this method particularly adept at predicting the sign of the change in the 

nominal price of oil. 

 Yet another strategy is to extrapolate from longer-term trends. Given that oil prices have 

been persistently trending upward (or downward) at times, it is natural to consider a random 

walk model with drift.  One possibility is to estimate this drift recursively, resulting in the 

forecasting model:  

   |
ˆ ˆ1tt h tS S     1, 3, 6, 9,12h             (8) 

Alternatively, a local drift term may be estimated using rolling regressions: 

  ( )
|

ˆ (1 )h
t h t t tS S s      1, 3, 6, 9,12h  ,                    (9) 

where thtS |
ˆ
  is the forecast of the spot price at t+h; and ( )1 h

ts  is the geometric average of the 

monthly percent change for the preceding h months, i.e., the percent change in the spot price 
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between t and t-h+1. This local drift model postulates that traders extrapolate from the spot 

price’s recent behavior when they form expectations about the future spot price. The local drift 

model is designed to capture “short-term forecastability” that arises from local trends in the oil 

price data.  

Rows (8)-(9) in Tables 4 through 8 document that allowing for a drift typically increases 

the MSPE and in no case significantly lowers the MSPE relative to the no-change forecast, 

whether the drift is estimated based on rolling regressions or is estimated recursively. Nor does 

allowing for a drift significantly improve the ability to predict the sign of the change in the 

nominal price of oil.  

 

5.2.2. Forecasts Based on the Hotelling Model 

Another forecasting method is motivated by Hotelling’s (1931) model, which predicts that the 

price of an exhaustible resource such as oil appreciates at the risk-free rate of interest: 

  /12
| ,

ˆ (1 )h
t h t t t hS S i     3, 6,12h            (10) 

where ,t hi  refers to the annualized interest rate at the relevant maturity h.16 Although the 

Hotelling model may seem too stylized to generate realistic predictions, we include it in this 

forecast accuracy comparison. We employ the Treasury bill rate as a proxy for the risk free 

rate.17 Row (10) in Tables 5, 6, and 8 shows no evidence that adjusting the no-change forecast 

for the interest rate significantly lowers the MSPE.  The Hotelling model is better at predicting 

the sign of the change in the nominal price of oil than the no-change forecast, although we 

cannot assess the statistical significance of the improvement, given that there is no variability at 

all in the sign forecast. 

 

5.2.3. Survey Forecasts 

Given the significance of crude oil to the international economy, it is surprising that there are 

few organizations that produce monthly forecasts of spot prices. In the oil industry, where the 

spot price of oil is critical to investment decisions, oil firms tend to make annual forecasts of 
                                                            
16 Assuming perfect competition, no arbitrage, and no uncertainty, oil companies extract oil at a rate that equates: (1) 
the value today of selling the oil less the costs of extraction; (2) and the present value of owning the oil, which, 
given the model’s assumptions, is discounted at the risk free rate. In competitive equilibrium, oil companies extract 
crude oil at the socially optimal rate. 
17 Specifically, we use the 3-month, 6-month, and 12-month constant-maturity Treasury bill rates from the Federal 
Reserve Board’s website http://federalreserve.gov/releases/H15/data.htm 
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future spot prices for horizons as long as 15-20 years, but these are not publicly available. The 

U.S. Department of Energy’s Energy Information Administration (EIA) has published quarterly 

forecasts of the nominal price of oil since 1983. The Economist Intelligence Unit has produced 

annual forecasts since the 1990s for horizons of up to 5 years. None of these sources provides 

monthly forecasts. 

A source of monthly forecasts of the price of crude oil is Consensus Economics Inc., a 

U.K.-based company that compiles private sector forecasts in a variety of countries. Initially, the 

sample consisted of more than 100 private firms; it now contains about 70 firms. Of interest to us 

are the survey expectations for the 3- and 12-month ahead spot price of West Texas Intermediate 

crude oil, which corresponds to the type and grade delivered under the NYMEX futures contract. 

The survey provides the arithmetic average, the minimum, the maximum, and the standard 

deviation for each survey month beginning in October 1989 and ending in December 2009. We 

use the arithmetic mean at the relevant horizon: 

   | ,
ˆ CF

t h t t hS S     3, 12h             (11) 

Row (11) in Tables 5 and 8 reveals that the survey forecast never significantly reduces the MSPE 

relative to the no-change forecast and may increase the MSPE substantially. The survey forecast 

is particularly poor at the 3-month horizon. At the 12-month horizon the survey forecast has a 

lower MSPE than the no-change forecast, but the gain in accuracy is not statistically significant. 

There also is a statistically significant but negligible gain in directional accuracy. 

 Further analysis shows that until 2008.12 the consensus survey forecast had a much 

higher MSPE than the no-change forecast at both the 3-month and 12-month horizons. This 

pattern changes only toward the end of the sample. There is evidence that the accuracy of the 

survey forecasts improves at the 12-month horizon, especially in 2009 as the oil market recovers 

from its collapse in the second half of 2008. It appears that professional forecasters correctly 

predicted a long-term price recovery in this instance, although there were not successful in 

predicting the timing of the 2009 recovery. Notwithstanding these caveats, there is no 

compelling evidence overall that survey forecasts outperform the no-change forecast.  

 We conclude that the no-change forecasts of the nominal price of oil not only are as 

accurate as forecasts based on monthly futures prices, but tend to be at least as accurate as 

forecasts based on simple econometric models or survey forecasts. This result is consistent with 

views among oil experts. For example, Peter Davies, chief economist of British Petroleum, has 
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noted that “we cannot forecast oil prices with any degree of accuracy over any period whether 

short or long” (see Davies 2007).  

 

5.2.4. Predictors based on other Nominal Prices  

The evidence on Granger causality in section 4.1.2 suggests that some asset prices may have 

predictive power in real time for the nominal price of oil. The last rows of Tables 4 through 8 

explore that question. One approach building on Chen, Rossi and Rogoff (2010) is to use recent 

percent changes in the bilateral nominal dollar exchange rate of selected commodity exporters:  

   |
ˆ (1 )i h

t h t t tS S e      1,3, 6, 9,12,h     (12) 

where  , , .i Canada Australia South Africa  We do not include New Zealand given its poor 

showing in section 4.1.2. Tables 4 through 8 show that this approach does not significantly 

reduce the out-of-sample MSPE regardless of the exchange rate choice. There is some evidence 

that the Australian exchange rate has significant predictive power for the sign of the change in 

nominal price of oil, but not at all horizons. For the other exchange rates, the evidence is even 

weaker. This is consistent with the energy share in Australia’s commodity exports being higher 

than for Canada and South Africa. We also considered the alternative specification 

   | ,
ˆ (1 )i

t h t t t hS S e      1,3, 6, 9,12,h     (13) 

based on the percent change in the exchange rate over the most recent h months. That 

specification produces similar results for directional accuracy. For the MSPE, there are 

significant MSPE gains of about 13% up to horizon 3 for the Australian dollar and of about 7% 

up to horizon 6 for the Canadian dollar. The Rand performs less well. The directional accuracy 

results for all three alternative models are somewhat erratic with no model performing well 

consistently. These results are not shown in the tables to conserve space.  

 Another approach is to explore the forecasting value of recent percent changes in non-oil 

CRB commodity prices in the same manner: 

   |
ˆ (1 )com h

t h t t tS S p      1,3, 6, 9,12,h   ,com ind met  (14) 

The use of these CRB spot prices typically does not produce statistically significant reductions in 

the MSPE. In fact, it tends to worsen the MSPE ratio at long horizons, but it significantly 

improves directional accuracy at all horizons. Another model specification 
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   | ,
ˆ (1 )com

t h t t t hS S p      1,3, 6, 9,12,h    ,com ind met  (15) 

is based on percent change in the CRB price index over the most recent h months. This 

specification is less successful at predicting the direction of change at longer horizons, but may 

yield large and significant reductions in the MSPE at horizons 1 and 3, consistent with the earlier 

evidence on Granger causality. The MSPE reductions may be as large as 43% in some cases, 

establishing strong evidence of forecastability. 

Finally, in Table 8, we include results forecasts that adjust the no-change forecast of the 

nominal price of oil for the 1-year inflation expectations in the Michigan Survey of Consumers. 

   | ,
ˆ (1 )MSC

t h t t t hS S      12h            (16) 

There are no similar survey expectations for shorter horizons. This more direct approach does 

not reduce the MSPE relative to the no-change forecast. The same result holds when using 

suitably scaled 10-year inflation forecasts from the Survey of Professional Forecasters. 

| ,
ˆ (1 )SPF

t h t t t hS S      12h            (17) 

The fact that these results are weaker than those obtained using inflation measures in Granger 

causality tests is likely to reflect in part the fact that there was not much variation in inflation 

expectations in our sample period, but considerable variation historically. 

 We conclude that despite some success of the asset price approach in predicting the sign 

of the change in the nominal price of oil, only persistent changes in selected CRB commodity 

price sub-indices reduce the MSPE of the no-change forecast and only at very short horizons. 

Beyond the 6-month horizon, based on the MSPE criterion, the no-change forecast remains the 

gold standard of forecasting the nominal price of oil in real time. 

 

5.3. Short-Horizon Forecasts Based on Daily Oil Futures Prices 

Following the extant literature, our analysis so far has relied on monthly data for oil futures 

prices and spreads constructed from daily observations. The construction of monthly data allows 

one to compare the accuracy of these forecasts to that of alternative forecasts based on data only 

available at monthly frequency. A complementary approach is to utilize all daily oil future prices 

and compare their forecasting accuracy to the no-change forecast only. This alternative approach 

makes use of all the oil futures price data and hence may have more accurate size and higher 

power. It is not without drawbacks, however. Ideally, one would like to compare the price of a 
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futures contract for delivery in h months with the price of delivery exactly h months later, where 

one month corresponds to 21 business days. That price, however, is not observed. The spot price 

quoted on the day of delivery instead will be the price for delivery sometime in the month 

following the date on which the futures contract matures. In fact, the date of delivery associated 

with a given spot price can never be made exact. We therefore follow the convention of 

evaluating futures price forecasts against the spot price prevailing when the futures contract 

matures. A reasonable case can be made that this is what practitioners view as the relevant 

forecasting exercise.  

Note that the daily data are sparse in that there are many days for which no price quotes 

exist. We eliminate these dates from the sample and stack the remaining observations similar to 

the approach taken in Kilian and Vega (2010) in the context of modeling the impact of U.S. 

macroeconomic news on the nominal price of oil. Table 9 summarizes our findings. The MSPE 

ratios in Table 9 indicate somewhat larger gains in forecasting accuracy from using oil futures 

prices than in Tables 4 through 8. There are a number of caveats, however. First, the h-month oil 

futures forecasts are not forecasts for a horizon of h months, as in Tables 4 through 8, but rather 

for a horizon that may vary arbitrarily between h and h+1 months. For example, an oil futures 

contract quoted on August 13 for delivery starting on October 1 would be considered a 1-month 

contract for the purpose of Table 9, but so would be an oil futures contract quoted on August 25 

for delivery starting on October 1. This is an inherent limitation of working with daily oil futures 

price data. This concern suggests caution in interpreting short-horizon results, but obviously 

becomes less important as h increases. A second concern is that the sample period spanned by 

the daily data extends back to January 1986, whereas the data in Tables 4 through 8 start in 1990. 

This difference is not driving the results in Table 9. It can be shown that making the sample 

period compatible with that in the earlier Tables would yield substantively identical results.  

The third and most important concern is the statistical significance of the results in Table 

9. Given that the sample size in Table 9 is larger than in Tables 4 through 8 by a factor of about 

10, care must be exercised in interpreting the p-values. As is well known, for sufficiently large 

sample sizes, any null hypothesis is bound to be rejected at conventional significance levels, 

making it inappropriate to apply the same significance level as in Tables 4 through 8. In 

recognition of this problem, Leamer (1978, p. 108-120) proposes a rule for constructing sample-

size dependent critical values. For example, for the F-statistic, the appropriate level of statistical 
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significance is  (1/ )1 ( 1) ( 1),1, .tfcdf t t t      For 216,t   as in Table 4, this rule of thumb 

implies a threshold for rejecting the null hypothesis of 0.0209.   In contrast, for 5968t   the 

same rule implies a much higher threshold of 0.0032.   Applying this rule to the p-values in 

Table 9, none of the MSPE reductions are statistically significant except at the 12-month 

horizon. The MSPE ratio at the 12-month horizon is 0.93 is similar to the ratio of 0.94 reported 

in Table 8 based on monthly data. The statistical significance of these MSPE gains in Table 9 is 

likely to be due to the larger sample size, illustrating the power gains from using daily data. 

There also is evidence that at horizons 6, 9 and 12, the oil futures price has statistically 

significant directional accuracy, but the gains are quantitatively negligible except perhaps at 

horizon 12. These results lead us to revise somewhat our earlier findings. We conclude that there 

is statistically significant evidence that oil futures prices improve on the accuracy of the no-

change forecast of the nominal price of oil at the 1-year horizon, but not at shorter horizons. The 

magnitude of these gains in accuracy is modest – at least by the standards of the literature on 

forecasting macroeconomic aggregates such as inflation rates. Moreover, there are indications 

that this result is sensitive to changes in the sample period and may not be robust as more data 

accumulate. After eliminating the data beyond March 2008, for example, the MSPE ratio of the 

12-month futures price exceeds 1 and only when extending the sample period beyond July 2008 

is the MSPE reduction statistically significant. This result, together with the lack of evidence for 

slightly shorter or slightly longer futures contracts, suggests caution in interpreting the evidence 

for the 12-month contract in Table 9.  

 

6. Long-Horizon Forecasts of the Nominal Price of Oil 

For oil industry managers facing investment decisions or for policymakers pondering the 

medium-term economic outlook a horizon of one year is too short. Crude oil futures may have 

maturities as long as seven years. Notwithstanding the low liquidity of oil futures markets at such 

long horizons, documented in Alquist and Kilian (2010), it is precisely these long horizons that 

many policymakers focus on. For example, Greenspan (2004a) explicitly referred to the 6-year 

oil futures contract in assessing effective long-term supply prices. For similar statements also see 

Greenspan (2004b), Gramlich (2004) and Bernanke (2004). In this section we focus on 

forecasting the nominal price of oil at horizons up to seven years. 
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It can be shown that the daily data are too sparse at horizons beyond one year to allow the 

construction of time series of end-of-month observations for oil futures prices. However, we can 

instead evaluate each daily futures price quote for contracts of any given maturity against the 

spot price that is realized on the day that contract expires. We already used this approach in 

Table 9 for horizons up to one year. One drawback of extending this approach to longer horizons 

is that the evaluation period for long-horizon contracts may exclude many of the particularly 

informative observations at the end of our sample period. Another drawback is that long-horizon 

futures prices are sparsely quoted, greatly reducing the sample size as the horizon is lengthened. 

For that reason, one would expect the results to be far less reliable than the earlier short-horizon 

results. Nevertheless, they provide the only indication we have of the usefulness of oil futures 

prices at the horizons at which they are employed by many policy makers. 

Table 10 shows the results for horizons of 2, 3, 4, 5, 6, and 7 years. In sharp contrast with 

Table 9 the MSPE ratios are consistently above 1, indicating that oil futures prices are less 

accurate than the no-change forecast. In no case is there evidence of significant reductions in the 

MSPE. The test for directional accuracy is statistically significant at the two-year horizon, but 

not at longer horizons. In fact, in many cases the success ratios at longer horizons are distinctly 

worse than tossing a coin. Table 10 provides no evidence in support of the common practice at 

central banks of appealing to the price of long-horizon oil futures contracts as an indication of 

future spot prices. In particular, at a horizon of six years, which figures prominently in policy 

statements and speeches, central bankers would have been much better off relying on the no-

change forecast than on oil futures prices. 

An interesting question is whether the poor accuracy of forecasts from oil futures prices 

beyond one year simply reflects a sharp drop-off in the liquidity of oil futures markets at longer 

horizons. This does not appear to be the case. Figure 5 plots two measures of the liquidity of the 

oil futures market by horizon. Open interest is the total number of futures contracts, either long 

or short, that have been entered into for a given delivery month and have not yet been offset by 

another transaction or by physical delivery of oil. It measures the total number of contracts 

outstanding for delivery in a specific month. Volume is the total number of contracts traded 

during a specific period of time. Contracts are denoted in units of 1,000 barrels of crude oil. 

Although both average open interest and average trading volume drop off quickly with 

increasing maturity, it is not the case that average liquidity at the daily frequency is 
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discontinuously lower at horizons beyond one year than at the 12-month horizon. Rather the 

decline in average liquidity is smooth.  

 

7. Do Survey Expectations Track Econometric Forecasts of Nominal Energy Prices? 

Models of purchases of energy-intensive durables depend not on the price of crude oil, but on the 

retail price of energy. A case in point is the demand for automobiles. Although there can be 

substantial discrepancies between the evolution of the price of crude oil and the price of gasoline 

in the short run, long horizon forecasts of the price of gasoline will track long-horizon forecasts 

of the price of crude oil (see Kilian 2010). In modeling automobile purchases researchers often 

need to take a stand on consumers’ expectations of gasoline prices. A variety of modeling 

strategies have been explored, often with widely different results. Candidates include ARIMA 

models, no-change forecasts, oil futures prices and gasoline futures prices (see, e.g., Kahn 1986; 

Davis and Kilian 2010; Allcott and Wozny 2010). The issue is not only one of finding a 

forecasting method that achieves the smallest possible out-of-sample forecast error, but of 

understanding how consumers form their price expectations. An obvious concern is that actual 

consumer expectations may differ from the predictions generated by the forecasting methods 

considered so far. Unfortunately, time series data on consumer expectations of gasoline prices 

are rare, which has prevented a systematic investigation of this important question. 

 Recently, Anderson, Kellogg and Sallee (2010) obtained a previously unused data set 

from the Michigan Survey of Consumers on U.S. households’ expectations of gasoline prices. 

The survey asks consumers about how many cents per gallon they think gasoline prices will 

increase or decrease during the next five years compared to now. Median responses are available 

for 1984.10-2010.1, but there are gaps in the data, preventing the construction of a continuous 

monthly time series. Expectations data may be constructed by adding the expected change in the 

price of gasoline to the current monthly U.S. city average retail price of gasoline (quoted in cents 

per gallon including taxes), as reported by the Energy Information Administration (EIA). Figure 

6a shows that median 5-year survey forecast systematically exceeds the current gasoline price. 

The magnitude of the gap varies over time.  

As Anderson et al. observe, a likely explanation of this pattern is that households form 

their expectations by adding long-term inflation expectations to the current price of gasoline. If 

we adjust the survey gasoline price forecast for the 10-year inflation forecast in the Survey of 
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Professional Forecasters (suitably scaled to the 5-year horizon), the two series line up rather well 

on average, implying that households’ expectations of gasoline prices closely resemble a random 

walk forecast for the real price of gasoline (see Figure 6b).18 Only on rare occasions such as 

immediately before the peak of the nominal price of oil in mid-2008 and near the oil price trough 

of 2008/2009 do household expectations depart from the no-change forecast. In the first instance, 

households predicted an even higher price of oil; in the second instance they did not expect the 

price of oil to drop as sharply as it did. 

The evidence in Figure 6b supports the view that the no-change forecast for the real price 

of gasoline is a better proxy than alternative forecasting models for modeling durables purchases. 

That evidence also is of interest more generally, given the finding in Edelstein and Kilian (2009) 

that fluctuations in retail energy prices are dominated by fluctuations in gasoline prices. Finally, 

the absence of money illusion in households’ gasoline price forecasts is of independent interest.  

 An out-of-sample forecast accuracy comparison between the survey forecast and the no- 

change forecast of the nominal price of gasoline shows that survey data are quite accurate with 

an MSPE ratio of only 0.765. The p-value for the null hypothesis of equal predictive accuracy is 

0.000.  The success ratio of 0.907 also is extraordinarily high.19 The reason for these rather 

strong improvements on the no-change forecast is that at such long horizons the inflation 

component of the nominal price of gasoline becomes very large and cannot be ignored. In other 

words, it is a fairly safe bet that the price of gasoline must increase in nominal terms over a five-

year horizon.20  

The same logic applies to the nominal price of oil. As we showed in section 4, predicting 

the price of oil at the one-year horizon based on expected inflation (much like households 

apparently predict the price of gasoline), would not have been more successful than the no-

change forecast. Repeating that exercise at the 5-year horizon, however, using the same SPF 

inflation expectations data as in Figure 6, produces a highly significant MSPE ratio of 0.855 and 

                                                            
18 The corresponding 5-year Michigan survey inflation expectations are only available back to mid-2004, making the 
Survey of Professional Forecasters (SPF) data the best available proxy for 5-year inflation expectations (after 
suitable scaling). These data were obtained from the Federal Reserve Bank of Philadelphia. Although the SPF data 
are quarterly, the data evolve so smoothly that assigning the same quarterly value to each month in that quarter is 
likely to provide a good approximation. 
19 The Pesaran-Timmermann test for directional accuracy cannot be applied because there is no variability in the 
predicted sign, making it impossible to judge the statistical significance of the success ratio. 
20 A question of obvious interest is how the survey predictor compares with the price of gasoline futures. That 
comparison is not feasible due to data limitations. The longest maturity in the NYMEX gasoline futures market is 3 
years, and the 3-year futures contract only became available in 2007. 
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a very high success ratio of 0.811 for the nominal price of oil as well. This simple forecasting 

rule is also much more accurate than the forecast implied by the 5-year oil futures price. 

Figure 6c shows that, notwithstanding this improved long-horizon forecast accuracy, 

households committed systematic forecast errors during the most recent oil price surge. Between 

1998 and 2004, households persistently underestimated the price of gasoline. This evidence may 

help explain the continued popularity of SUVs, light trucks and other energy-inefficient 

automobiles during this period. Presumably, consumers would not have chosen to buy as many 

SUVs, had they foreseen the subsequent increase in gasoline prices at the time of their purchase 

decision. 

 There are no household surveys of oil price expectations, but, as discussed earlier, there 

are the monthly data on the views of professional forecasters in the Consensus Economics 

forecast.  Figure 7 highlights some systematic differences between these professional forecasts 

and the corresponding household gasoline price expectations. Whereas households’ gasoline 

price forecast tends to exceed the current gasoline price by the expected inflation rate, 

professional oil price forecasts most of the time are below the current price of oil. Figure 7a 

shows that professional forecasters tend to smooth the predicted path relative to the current price. 

This smoothing is especially apparent during large oil price fluctuations such as those in 

1990/91, in 1999/2000, and in 2003-2009. This tendency contributes to the large and persistently 

negative forecast errors shown in Figure 7b. 

 One possible explanation of the less than satisfactory accuracy of these survey forecasts 

in section 4 is that professional macroeconomic forecasters may not be experts on the oil market. 

Figure 8 focuses on an alternative time series of 1-quarter and 4-quarters ahead forecasts of the 

U.S. nominal refiners’ acquisition cost for imported crude oil. These data were collected from 

the EIA’s Short-term Economic Outlook, which is published by the U.S. Department of Energy. 

Given the difference in frequency and oil price definition the results are not strictly speaking 

comparable with our earlier analysis of the monthly WTI price. Nevertheless, these data are 

illuminating. Figure 8 illustrates that even these expert forecasts generally underpredicted the 

price of crude oil between 2004 and mid-2008, especially at longer horizons, while 

overpredicting it following the collapse of the price of oil in mid 2008 and underpredicting it 

again more recently. A natural question is how the EIA forecasts compare to the no-change 

forecast on the basis of the EIA’s preliminary data releases for the current refiners’ acquisition 
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cost for imported crude oil. The latter data are provided by the same source. The DM test for 

equal predictive accuracy suggests that the MSPE ratio of 0.92 for the 1-quarter-ahead forecast is 

statistically significant at the 10% level, but the MSPE ratio of 0.97 for the 4-quarters-ahead 

forecast is not. We conclude that even the EIA has had at best modest success in forecasting the 

nominal price of oil in the short run and none at longer horizons. 

 

8. Short-Horizon Forecasts of the Real Price of Oil 

Our analysis in section 4 suggests that we stand a better chance of forecasting the real price of oil 

out-of-sample using monthly data, given the availability of more appropriate predictors at the 

monthly frequency.  A natural benchmark for all forecasting models of the real price of oil is 

again the no-change forecast. At short horizons, inflation is expected to be at best moderate and 

there is every reason to expect the high forecast accuracy of the random walk model without drift 

relative to less parsimonious models to carry over to the real price of oil (see Kilian 2010).21  

 

8.1. Real U.S. Refiner’s Acquisition Cost for Imported Crude Oil 

8.1.1. Unrestricted AR, ARMA and VAR Models 

A useful starting point is a forecast accuracy comparison of selected monthly AR and ARMA 

models for the real price of oil in log levels and in log differences.  Both classes of models are 

evaluated in terms of their ability to predict the log-level of the real price of oil in recursive 

settings. 

 Below we consider two alternative measures of the real price of oil: The U.S. refiners’ 

acquisition cost for imported crude oil, which may be thought of as a proxy for the price of oil in 

global oil markets, and the WTI price; in both cases the deflator is the U.S. CPI. First consider 

the refiners’ acquisition cost. Estimation starts in 1973.2, and the evaluation period is 1991.12-

2009.8 to facilitate direct comparisons with VAR models of the global market for crude oil in 

this and the next section. All MSPE results are expressed as fractions of the MSPE of the no-

change forecast. Some models are based on fixed lag orders of 12 or 24, whereas others rely on 

the Schwarz Information Criterion (SIC) or the Akaike Information Criterion (AIC) for lag order 

                                                            
21 This does not necessarily mean that the real price of oil actually follows a random walk, but merely that the bias-
variance tradeoff favors parsimonious models in small samples. In fact, the local-to-zero asymptotic approximation 
suggests that using the no-change forecast may lower the asymptotic MSPE even relative to the correctly specified 
non-random walk model, provided the local drift parameter governing the predictive relationship is close enough to 
zero (see, e.g., Inoue and Kilian (2004b), Clark and McCracken 2010).  
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selection (see Inoue and Kilian 2006; Marcellino, Stock and Watson 2006).  We search over 

 0,...,12 .p  The forecast accuracy results are robust to allowing for a larger upper bound. 

There are no theoretical results in the forecasting literature on how to assess the null of 

equal predictive accuracy when comparing iterated AR or ARMA forecasts to the no-change 

forecast. In particular, the standard tests discussed in Clark and McCracken (2001, 2005) or 

Clark and West (2007) are only designed for direct forecasts. Below we assess the significance 

of the MSPE reductions based on bootstrap p-values for the MSPE ratio constructed under the 

null of a random walk model without drift.22  The upper panel of Table 11 suggests that AR and 

ARMA models in log-levels have lower recursive MSPE than the no-change forecast at short 

horizons. The accuracy gains may approach 17% in some cases and are highly statistically 

significant. Beyond the six-month horizon, all gains in forecast accuracy evaporate. There also 

are statistically significant gains in directional accuracy at horizons 1 and 3, and in some cases at 

horizon 6. There is little to choose between the AR(12), ARMA(1,1), AR(SIC) and AR(AIC) 

specifications overall. The AR(24) model has slightly better directional accuracy at longer 

horizons, but at the cost of a higher MSPE ratio.   

The lower panel of Table 11 shows the corresponding forecasting models in log-

differences. Note that after imposing the unit root, the autoregressive lag order is reduced by one. 

For example, an ARMA(1,1) model in levels corresponds to an MA(1) model in differences.  We 

find that models in log-differences generally are about as accurate as models in log-levels. There 

is robust evidence of statistically significant MSPE reductions at horizons 1 and 3 and there are 

statistically significant gains in directional accuracy at horizons of up to 6 months in some cases. 

There is little to choose between the five forecasting models in log-differences. 

We conclude (1) that forecasting the real price of oil based on models in log-levels is by 

no means inferior to forecasting based on models in log-differences; (2) that simple AR or 

ARMA models with fixed lag orders perform quite well; and (3) that the no-change forecast of 

the real price of oil can be improved upon at horizons of 1 month and 3 months, but generally not 

at horizons beyond half a year.  

All models in Table 11 have in common that the information set is restricted to past 

values of the real price of oil. The question we turn to next is whether suitably chosen 

                                                            
22 Because there is no reason to expect the limiting distribution of the DM test statistic to be pivotal in this context, 
we bootstrap the average loss differential instead. 
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macroeconomic predictors can be used to improve further on the no-change forecast. Recently, a 

number of structural vector autoregressive models of the global market for crude oil have been 

proposed (see, e.g., Kilian 2009). These models produce empirically plausible estimates of 

impact of demand and supply shocks in the oil market. A natural conjecture is that such models 

may also have value for forecasting. Here we focus on the VAR model in Kilian and Murphy 

(2010). The sample period is 1973.2-2009.8. The variables in this model include the percent 

change in global crude oil production, the global real activity measure we already discussed in 

section 4, the log of the real price of oil, and a proxy for the change in global above-ground 

crude oil inventories. The real price of oil is measured by the U.S. refiners’ acquisition cost for 

imported crude oil, extrapolated back to 1973.2 as in Barsky and Kilian (2002), and deflated by 

the U.S. CPI. For further discussion of the data see Kilian and Murphy (2010). The VAR model 

may be consistently estimated without taking a stand on whether the real price of oil is I(0) or 

I(1) (see Sims, Stock and Watson 1990). 

We focus on recursive rather than rolling regression forecasts throughout this section. 

This approach makes sense in the absence of structural change, given the greater efficiency of 

recursive regressions and the small sample size. The presence of structural breaks at unknown 

points in the future would in any case invalidate the use of forecasting model rankings obtained 

in forecast accuracy comparisons whether one uses rolling or recursive regression forecasts (see 

Inoue and Kilian 2006). 

A natural starting point for the forecast accuracy comparison is the unrestricted VAR 

model.  An obvious concern with forecasting from unrestricted vector autoregressions is that 

these highly parameterized models are subject to considerable estimation uncertainty which 

tends to inflate the out-of-sample MSPE. For that reason unrestricted VAR models are rarely 

used in applied forecasting. The upper panel of Table 12 shows results for unrestricted VAR 

models with 12 lags. Column (1) corresponds to the four-variable model used in Kilian and 

Murphy (2010). Table 12 shows that this unrestricted VAR forecast has lower recursive MSPE 

than the no-change forecast at all horizons but one and nontrivial directional accuracy.23 Despite 

the lack of parsimony, the reductions in the MSPE are somewhat larger than for the AR and 

ARMA models in Table 11. Bootstrap p-values for the MSPE ratio constructed under the null of 

                                                            
23 It also outperforms the random walk model with drift in both of these dimensions, whether the drift is estimated 
recursively or as the average growth rate over the most recent h months. These results are not shown to conserve 
space. 
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a random walk model without drift indicate statistically significant reductions in the MSPE at 

horizons 1, 3, and 6. At longer horizons it becomes harder to beat the no-change forecast 

benchmark and there are no statistically significant reductions in the MSPE. There also is 

evidence of statistically significant gains in directional accuracy at horizons 1 and 3. 

The forecasting success of the VAR approach clearly depends on the choice of variables 

and of the lag length. The remaining columns of the upper panel of Table 12 show analogous 

results for five other unrestricted VAR(12) models obtained by dropping one or more of the 

variables included in model (1). None of these models performs as well as the original four-

variable model with two exceptions. The bivariate model (4) which includes only the change in 

oil inventories and the real price of oil has slightly lower MSPE than the four-variable VAR(12) 

model and similar directional accuracy, as does the trivariate model (6) specification that drops 

oil production from the baseline model.  

The lower panel of Table 12 suggests that including 24 lags in the unrestricted model 

tends to reduce the MSPE reductions. All VAR(24) models but model (2) still significantly 

improve on the MSPE of the no-change forecast at horizons 1 and 3, but their MSPE ratio tends 

to exceed unity at higher horizons. Likewise, all six VAR(24) models yield statistically 

significant gains in directional accuracy at short horizons. Only the four VAR(24) models that 

include the global real activity variable in the model, however, retain their superior directional 

accuracy at all horizons. Unlike in the corresponding VAR(12) models, the gains in directional 

accuracy are statistically significant at all horizons. 

We conclude that there is important predictive information in the change in oil 

inventories and in global real activity in particular, whereas the inclusion of oil production 

growth appears less important for forecasting.  Moreover, based on the MSPE metric, suitably 

chosen VAR models systematically outperform the no-change forecast at short horizons. At 

longer horizons, the no-change forecast remains unbeaten, except based on the sign metric. This 

result immediately extends to longer horizons because none of the alternative forecasting models 

are suitable for extrapolating to long horizons. 

 It is important to keep in mind, however, that Table 12 may overstate the true statistical 

significance of the short-horizon MSPE reductions. One indication of this problem is that Table 

12 sometimes indicates statistically significant rejections of the no-change forecast benchmark 

even when the MSPE ratio exceeds 1, indicating that the VAR has a strictly higher recursive 
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MSPE. The reason for this counterintuitive result is that, as discussed earlier, standard tests of 

equal predictive accuracy do not test the null of equal out-of-sample MSPEs, but actually test the 

null of no predictability in population – much like the Granger causality tests we applied earlier – 

as pointed out by Inoue and Kilian (2004a). This point is readily apparent from the underlying  

proofs of asymptotic validity as well as the way in which critical values are simulated. 

The distinction between population predictability and out-of-sample predictability does 

not matter asymptotically under fixed parameter asymptotics, but fixed parameter asymptotics 

typically provide a poor approximation to the finite-sample accuracy of forecasting models. 

Under more appropriate local asymptotics (designed to mimic the weak predictive power of 

many regressors) it can be shown that the null of no predictability in population is distinct from 

the null of equal out-of-sample MSPEs. It is always easier to reject the former than the latter. In 

other words, conventional tests of equal predictive accuracy test the wrong null hypothesis and 

may spuriously reject the no-change forecast in favor of the alternative. This is the deeper reason 

for the very low p-value obtained, for example, for model (1) with 24 lags at horizon 3. The 

intuition for this rejection is that under the null that the real price of oil is unpredictable one 

would expect much higher MSPE ratios than 1.047, so the fact that the MSPE of the VAR model 

is so close to 1 actually is evidence in favor of the VAR model being the population model.  

Which model is the population model, of course, is irrelevant for the question of which 

model generates more accurate forecasts in finite samples, so we have to interpret this rejection 

with some caution. This type of insight recently has prompted the development of alternative 

tests of equal predictive accuracy based on local-to-zero asymptotic approximations to the 

predictive regression. Clark and McCracken (2010) for the first time proposed a correctly 

specified test of the null of equal out-of-sample MSPEs. Their analysis is limited to direct 

forecasts from much simpler forecasting models, however, and cannot be applied in Table 12.24  

This caveat suggests that we discount only marginally statistically significant rejections of the no 

                                                            
24 The size problem of conventional tests of equal predictive accuracy gets worse, when the number of extra 
predictors under the alternative grows large relative to the sample size. This point has also been discussed in a much 
simpler context by Anatolyev (2007) who shows that modifying conventional test statistics for equal predictive 
accuracy may remove these size distortions. Related results can be found in Calhoun (2010) who shows that 
standard tests of equal predictive accuracy for nested models such as Clark and McCracken (2001) or Clark and 
West (2007) will choose the larger model too often when the smaller model is more accurate in out-of-sample 
forecasts and also proposes alternative asymptotic approximations based on many predictors. None of the remedies 
is directly applicable in the context of Table 12, however. 
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predictability null hypothesis in Table 12 and focus on the highly statistically significant test 

results. The tests for directional accuracy are not affected, of course. 

 

8.1.2. Real Time Data Caveats 

The results so far are encouraging in that they suggest that VAR models (even more so than AR 

or ARMA models) may produce useful short-horizon forecasts of the real price of oil. An 

important caveat regarding the results in Tables 12 and 13 is that the forecast accuracy 

comparison is not conducted in real time. The concern is not so much about revisions of the data 

over time, but the fact that not all the variables are publicly available in real time, which may 

help explain the evidence of forecastability we documented in Table 12 and 13 in particular. This 

caveat applies even to the no-change forecast. The reason is that the refiners’ acquisition cost 

data become available only with a delay of about three months and the CPI data used to deflate 

the refiners’ acquisition cost are available only with a one-month delay. It is important not to 

overstate this caveat, however. Table 11, for example, shows statistically significant forecast 

accuracy gains even at horizon 3, although the extent of these gains becomes much smaller with 

increasing horizon. 

Additional caveats apply to the VAR evidence. Although the dry cargo shipping rate data 

underlying the real activity index are available in real time and not subject to revisions, the data 

on global crude oil production only become available with a delay of 4 months and the data used 

to approximate global crude oil inventories with a delay of five months. This is less of a concern 

for the oil production data which tend to evolve rather smoothly than for the more volatile data 

on changes in crude oil inventories for which there is no good real time proxy. One way of 

addressing this concern is to focus on models that do not include these data. For example, model 

(3) in Table 12, consisting only of real activity and the real price of oil, with 12 lags still has 

significantly lower MSPE than the no-change forecast even at the 6-month horizon, although the 

extent of these gains becomes much smaller with increasing horizon. 

Another way of addressing this concern is by noting that Table 12 shows statistically 

significant forecast accuracy gains for models (1) and (6) with 12 lags even at horizon 6. 

Moreover, the same model with 24 lags significantly improves directional accuracy even 12 

months ahead. This evidence suggests that even if we discarded the last five months of data, we 

are likely to forecast as accurately as the no-change forecast or slightly more accurately, given 
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that the influence of the last five observations on the model parameter estimates tends to be 

small. Thus, although Table 12 may overstate the evidence against the no-change forecast, the 

results are not merely academic.  

 

8.2. Real WTI Price  

Tables 13 and 14 show the corresponding results based on the real WTI price of oil instead of the 

real U.S. refiners’ acquisition cost for imported crude oil. These results are not so much intended 

to validate those in Tables 11 and 12, given the inherent differences in the definition of the oil 

price data, but are of independent and complementary interest. The estimation and evaluation 

periods are unchanged to allow direct comparisons. The nominal WTI price is available without 

delay and is not subject to revisions, reducing concerns over the real time availability of the oil 

price data. 

Table 13 provides robust evidence that AR and ARMA models improve on the no-change 

forecast of the real WTI price of oil at horizons 1 and 3 with the exception of models with 24 

lags. The largest MSPE reductions are only 5%, however, and all such accuracy gains vanish at 

longer horizons. The VAR results in Table 14 paint a similar picture. None of the VAR(12) 

models has significantly lower MSPE than the no-change forecast beyond horizon 6. In general 

the reductions in MSPEs are smaller than in Table 12. The largest MSPE reduction is 16% at 

horizon 3. Likewise, the evidence that forecasts from VAR models with 24 lags have directional 

accuracy is weaker than in Table 12. By the MSPE metric, only in rare cases the VAR(24) 

models are more accurate than the no-change forecast of the real WTI price of oil. This finding 

highlights that the definition of the real price of oil matters for the degree of forecastability. 

Clearly, the real price of WTI crude oil is more difficult to forecast than the real U.S. refiners’ 

acquisition cost for imported crude oil and the case against the no-change forecast after 

accounting for real time data constraints is somewhat weaker.  

 

8.3. Restricted VAR Models 

Although the results for the unrestricted VAR models in Tables 12 and 14 are encouraging, there 

is reason to believe that alternative estimation methods may reduce the MSPE of the VAR 

forecast even further. One candidate is the use of Bayesian shrinkage estimation methods. In the 

VAR model at hand a natural starting point would be to shrink all lagged parameters toward zero 
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under the maintained assumption of stationarity. This leaves open the question of how to 

determine the weights of the prior relative to the information in the likelihood. Giannone, Lenza 

and Primicieri (2010) recently proposed a simple and theoretically founded data-based method 

for the selection of priors in recursively estimated Bayesian VARs (BVARs).  Their 

recommendation is to select priors using the marginal data density (i.e., the likelihood function 

integrated over the model parameters), which only depends on the hyperparameters that 

characterize the relative weight of the prior and the information in the data. They provide 

empirical examples in which the forecasting accuracy of that model in recursive settings is not 

only superior to unrestricted VARs models, but is comparable to that of single-equation dynamic 

factor models (see Stock and Watson 1999).  

Table 15 compares the forecasting accuracy of this approach with that of the unrestricted 

VAR models considered in Tables 12 and 14. In all cases, we shrink the model parameters 

toward a white noise prior mean with the desired degree of shrinkage being determined by the 

data-based procedure in Giannone et al. (2010).  For models with 12 lags, there is no strong 

evidence that shrinkage estimation reduces the MSPE. Although there are some cases in which 

imposing Bayesian priors reduces the MSPE slightly, in other cases it increases the MSPE 

slightly. For models with 24 lags, however, shrinkage estimation often greatly reduces the MSPE 

ratio and typically produces forecasts about as accurate as forecasts from the corresponding 

model with 12 lags. As in Tables 12 and 14, there is evidence of MSPE reductions at horizons of 

up to 6 months.  For example, model (1) with 12 lags yields MSPE reduction of 20% at horizon 

1, 12% at horizon 3, and 3% at horizon 6 with no further gains at longer horizons. Model (1) 

with 24 lags yields gains of 20%, 12% and 1%, respectively. Moreover, as in Tables 12 and 14 

one would expect those forecast accuracy gains to be largely an artifact of the use of data that are 

not available in real time. Such VAR forecasting models can nevertheless be useful for studying 

how baseline no-change forecasts of the real price of oil must be adjusted under hypothetical 

forecasting scenarios, as illustrated in the next section. 

 

9. Structural VAR Forecasts of the Real Price of Oil 

Recent research has shown that historical fluctuations in the real price of oil can be decomposed 

into the effects of distinct oil demand and oil supply shocks associated with unpredictable shifts 

in global oil production, real activity and a forward looking or speculative element in the real 
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price of oil (see, e.g., Kilian and Murphy 2010). Changes in the composition of these shocks help 

explain why conventional regressions of macroeconomic aggregates on the price of oil tend to be 

unstable. They also are potentially important in interpreting oil price forecasts. 

In section 8 we showed that recursive forecasts of the real price of oil based on the type 

of oil market VAR model proposed in Kilian and Murphy (2010) for the purpose of structural 

analysis are not necessarily inferior to simple no-change forecasts. The case for the use of VAR 

models, however, does not rest on their predictive accuracy alone. Policymakers expect oil price 

forecasts to be interpretable in light of an economic model. They also expect forecasters to be 

able to generate projections conditional on a variety of hypothetical economic scenarios. 

Questions of interest include, for example, what effects an unexpected slowing of Asian growth 

would have on the forecast of the real price of oil; or what the effect would of an unexpected 

decline in global oil production associated with peak oil. Answering questions of this type is 

impossible using reduced-form time series models. It requires a fully structural VAR model (see 

Waggoner and Zha 1999).  

In this section we illustrate how to generate such projections from the structural moving 

average representation of the recursively estimated VAR model of Kilian and Murphy (2010) on 

data extending to 2009.8. This model allows the identification of three structural shocks: (1) a 

shock to the flow of the production of crude oil (“flow supply shock), (2) a shock to the flow 

demand for crude oil and other industrial commodities (“flow demand shock”) that reflects 

unexpected fluctuations in the global business cycle, and (3) a shock to the demand for oil 

inventories arising from forward-looking behavior (“speculative demand shock”). The structural 

demand and supply shocks in this model are identified by a combination of sign restrictions and 

bounds on impact price elasticities. This model is set-identified, but the admissible models can 

be shown to be quite similar, allowing us to focus on one such model with little loss of 

generality. We focus on the same model that Kilian and Murphy use as the basis for their 

historical decompositions.  

  There is a strict correspondence between standard reduced-form VAR forecasts and 

forecasts from the structural moving representation. The reduced-form forecast corresponds to 

the expected change in the real price of oil conditional on all future shocks being zero. 

Departures from this benchmark can be constructed by feeding pre-specified sequences of future 

structural shocks into the structural moving average representation. A forecast scenario is 
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defined as a sequence of future structural shocks. The implied movements in the real price of oil 

relative to the baseline forecast obtained by setting all future structural shocks to zero correspond 

to the revision of the reduced-form forecast implied by this scenario.  

We consider three scenarios of economic interest. The forecast horizon is 24 months for 

illustrative purposes. The first scenario involves a successful stimulus to U.S. oil production, as 

had been considered by the Obama administration prior to the 2010 oil spill in the Gulf of 

Mexico. Here we consider the likely effects of a 20% increase in U.S. crude oil output in 2009.9, 

after the estimation sample of Kilian and Murphy (2010) ends.  This is not to say that such a 

dramatic and sudden increase would be feasible, but that it would be a best-case scenario. Such a 

U.S. oil supply stimulus would translate to a 1.5% increase in world oil production, which is well 

within the variation of historical data. We simulate the effects of such a stimulus by calibrating a 

one-time structural oil supply shock such the impact response of global oil production growth in 

2009.9 is 1.5 %. All other future structural shocks are set to zero. Figure 9 shows that the 

resulting reduction in the real price of oil expressed in percent relative to the baseline forecast is 

negligible. Even a much larger U.S. oil supply stimulus would do little to affect the forecast of 

the real price of oil, suggesting that policies aimed at creating such a stimulus will be ineffective 

at lowering the real price of oil. 

The second scenario involves a recovery of global demand for oil and other industrial 

commodities. We ask how an unexpected surge in the demand for oil similar to that occurring 

during 2007.1-2008.6, but starting in 2009.9, would affect the real price of oil. This scenario 

involves feeding into the structural moving average representation future aggregate demand 

shocks corresponding to the sequence of global aggregate demand shocks that occurred in 

2007.1-2008.6, while setting all other future structural shocks equal to their expected value of 

zero. Figure 9 shows a persistent increase in the real price of oil starting in early 2010 that peaks 

in early 2011 about 50% above the price of oil in 2009.8. Taking the no-change forecast as the 

baseline forecasts, this means that the peak occurs at a price of about 100 dollars.  Alternatively, 

one could express these results relative to the unconditional VAR forecast. 

Finally, we consider the possibility of a speculative frenzy such as occurred starting in 

mid-1979 after the Iranian Revolution. This scenario involves feeding into the model future 

structural shocks corresponding to the sequence of speculative demand shocks that occurred 

between 1979.1 and 1980.2 and were a major contributor to the 1979/80 oil price shock episode. 
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Figure 9 shows that this event would raise the baseline forecast temporarily by as much as 30%. 

Most of the effects would have dissipated by mid-2011.  

These results, while necessarily tentative, illustrate how structural models of oil markets 

may be used to assess risks in oil price forecasts and to investigate the sensitivity of reduced 

form forecasts to specific economic events, especially in conjunction with the formal risk 

measures discussed in section 12. Conditional projections, of course, are only as good as the 

underlying structural models. Our example highlights the importance of refining these models 

and of improving structural forecasting methods, perhaps in conjunction with Bayesian methods 

of estimating VAR forecasting models. 

 

10. Forecasting the Real Price of Oil in other Countries 

It is natural to focus on forecasting the real price of oil in dollars because crude oil is traded in 

dollars. This perspective, however, is too limited. From the point of European oil importers, for 

example, it is the real price of oil in Euros that matters. Figure 10 shows the real price of oil 

between 1991.1 and 2009.12 in the U.S., the Euro zone, Japan, the U.K. and Canada. These data 

have been constructed from the U.S. refiners’ acquisition cost for imported crude oil with the 

help of data on nominal exchange rates and consumer prices. For expository purposes all data 

have been expressed in log deviations from their mean over this sample period. Although the 

overall picture is similar, Figure 10 illustrates that there can be substantial differences in the real 

price of oil across countries at times. For example, the real exchange rate cushioned the increase 

in the real price of oil experienced by the Euro area in 2007/08, but amplified it in 2000/01. 

 These differences in the evolution of the real price of oil across countries shown in Figure 

10 suggest that there is no a priori reason to expect the accuracy of alternative forecasting models 

of the real price of oil to be the same across countries. A model that works well for one country 

need not work well for other countries. Table 16 explores this question for Japan, the U.K. and 

Canada.  We focus on the AR(12) model for illustrative purposes. The estimation and evaluation 

period are the same as in tables 11 and 13, allowing direct comparisons. The upper panel shows 

results based on the U.S. refiners’ acquisition cost for imported crude oil and the lower panel 

results based on the WTI price. For each country we fit an AR(12) model to the price of oil 

expressed in terms of domestic consumer goods.  These prices are obtained by multiplying the 

U.S. real price of crude oil by the appropriate monthly real exchange rates. The results in the 
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upper panel are quite similar to those in Table 11. For all three countries the AR(12) model has 

significantly lower MSPE than the no-change forecast at  horizons 1 and 3 and in some cases at 

horizon 6 as well. At longer horizons, the no-change forecast is more accurate. The results in the 

lower panel are similar to those in Table 13 in that the evidence against the no change forecast is 

somewhat weaker. For Japan and Canada the no-change forecast is rejected at horizons 1 and 3, 

but for the U.K. there is no rejection at any horizon. The gains in accuracy, even if statistically 

significant, tend to be smaller than in the upper panel. This example suggests that – subject to the 

earlier caveats – the forecast accuracy gains we documented for the U.S. real price of oil 

continue to hold for other countries. We defer to future work the question of whether the relative 

accuracy of alternative AR and ARMA forecasting methods is the same for other countries as for 

the United States. 

 Extending the VAR approach of section 8 to other countries raises additional 

complications. One simple approach would be to augment the baseline reduced-form forecasting 

model for the real price of oil in dollars by including the real exchange rate. This approach, 

however, may cost too many degrees of freedom in practice. A simple alternative approach is to 

leave unchanged the VAR model, but to convert all forecasts of the real price of oil at the real 

exchange rate as of the date from which the forecasts are generated. This amounts to imposing a 

no-change forecast for the real exchange rate. At short horizons, the real exchange rate is 

dominated by fluctuations in the nominal exchange rate. It is well known that the change in the 

nominal exchange rate is unpredictable in real time. This suggests that the no-change forecast of 

the real exchange rate will provide a good approximation at least at short horizons. The same 

approach may be used in constructing the conditional predictions from structural VAR models 

discussed in section 9, which avoids having to reconsider the identification of the structural VAR 

shocks.  

 

11. The Ability of Oil Prices to Forecast U.S. Real GDP 

One of main reasons the price of oil is considered important by many macroeconomists is its 

perceived predictive power for U.S. real GDP. Assessing that predictive power requires a joint 

forecasting model for the price of oil and for domestic real activity.  In this section we first 

examine the forecasting accuracy of linear models and then examine a variety of nonlinear 

forecasting models.  
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11.1. Linear Autoregressive Models 

A natural starting point is a linear VAR(p) model for the real price of oil and for U.S. real GDP 

expressed in quarterly percent changes. The general structure of the model is 1( )t t tx B L x e  , 

where [ , ] ,t t tx r y    tr  denotes the log of real price of oil, ty  the log of real GDP,   is the 

difference operator, te the regression error, and 2 1
1 2 3( ) ... .p

pB L B B L B L B L       The 

benchmark model for real GDP growth is the AR(p) model obtained with 
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The specification of the components of ( )B L  marked as   is irrelevant for this forecasting 

model. We determined the lag order of this benchmark model based on a forecast accuracy 

comparison involving all combinations of horizons  1,...,8h and lag orders  1,..., 24 .p The 

AR(4) model for real GDP growth proved to have the lowest MSPE or about the same MSPE as 

the most accurate model at all horizons. The same AR(4) benchmark model has also been used 

by Hamilton (2003) and others, facilitating comparisons with existing results in the literature. 

 We compare the benchmark model with two alternative models. One model is the 

unrestricted VAR(p) model obtained with  
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The other is a restricted VAR model of the form 
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The restriction 12 ( ) 0B L   is implied by the hypothesis of exogenous oil prices. Although that 

restriction is not literally true, in section 4 we mentioned that in linear models the predictive 

content of U.S. real GDP for the real price of oil, while not zero, appears to be weak.  Thus, a 

natural conjecture is that the added parsimony from imposing zero feedback from lagged real 

GDP to the real price of oil may help reduce the out-of-sample MSPE of multi-step ahead real 

GDP forecasts. 

 The real price of oil is obtained by deflating the refiners’ acquisition cost for imported 

crude oil by the U.S. CPI. All data start in 1974.Q1. The forecast evaluation ends in 2010.Q2.  
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All three models are estimated recursively on data starting in 1974.Q1. The initial estimation 

period ends in 1990.Q1, right before the invasion of Kuwait in August of 1990. The maximum 

length of the recursive sample is restricted by the end of the data and the forecast horizon. We 

evaluate the MSPE of each model for the cumulative growth rates at horizons  1,...,8 ,h  

corresponding to the horizons of interest to policymakers. 

 The first column of Table 17 shows that, at horizons of three quarters and beyond, 

including the real price of oil in the autoregressive models may reduce the MSPE for real GDP 

growth by up to 8% relative to the AR(4) model for real GDP growth.  The unrestricted VAR(4) 

model for the real price of oil is about as accurate as the restricted VAR(4) model in the second 

column. Imposing exogeneity marginally reduces the MSPE at some horizons, but the 

differences are all negligible. This fact is remarkable given the greater parsimony of the model 

with exogenous oil prices. We conclude that there are no significant gains from imposing 

exogeneity in forecasting from linear models. Next consider a similar analysis for the nominal 

price  of oil. Although the use of the nominal price of oil in predicting real GDP is not supported 

by standard economic models, it is useful to explore this alternative approach in light of the 

discussion in section 3. Table 17 shows that the unrestricted VAR(4)  model based on the real 

price of oil is consistently at least as accurate as the same model based on the nominal price of 

oil. We conclude that there are no gains in forecast accuracy from replacing the real price of oil 

by the nominal price. Imposing exogeneity, as shown in the last column, again makes little 

difference.  

 MSPE ratios are informative about relative forecasting accuracy, but are not informative 

about how accurate these models are in practice. Figure 11 focuses on the ability of recursively 

estimated AR(4) and VAR(4)  models based on the real price of oil to predict the recessions of 

1991, 2001, and 2007/8. The upper panel plots the one-year forecasts against the forecast 

realizations. In no case, do the models forecast the large economic declines in the data. The 

lower panel shows the corresponding one-quarter forecasts and realizations. Although the 

forecast accuracy improves in general at the one-quarter forecast horizon, the objective of 

forecasting large economic declines remains elusive.  

One possible explanation is that this forecast failure simply reflects our inability to 

forecast more accurately the real price of oil. Put differently, the real GDP forecasts would be 

more accurate if only we had more accurate forecasts of the real price of oil.  Conditioning on 
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realized values of the future price of oil, however, does not greatly improve the forecast accuracy 

of the linear VAR model for cumulative real GDP growth, so this explanation can be ruled out. 

An alternative explanation could be that the predictive relationship between the price of oil and 

domestic macroeconomic aggregates is time-varying. One source of time variation is that the 

share of energy in domestic expenditures has varied considerably over time. This suggests that 

we replace the percent change in the real price of oil in the linear VAR model by the percent 

change in the real price of oil weighted by the time-varying share of oil in domestic 

expenditures, building on the analysis in Edelstein and Kilian (2009). Hamilton (2009) reported 

some success in employing a similar strategy. Finally, another potential explanation investigated 

below is that the linear forecasting model may be inherently misspecified. Of particular concern 

is the possibility that nonlinear dynamic models may generate more accurate out-of-sample 

forecasts of cumulative real GDP growth. 

 

11.2. Nonlinear Dynamic Models 

In related work, Hamilton (2003) suggested that the predictive relationship between oil prices 

and U.S. real GDP is nonlinear in that (1) oil price increases matter only to the extent that they 

exceed the maximum oil price in recent years and that (2) oil price decreases do not matter at all. 

This view was based on the in-sample fit of a single-equation conditional expectations model of 

the form: 
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Where ts denotes the log of the nominal price of oil and , ,3net yr
ts  the corresponding 3-year net 

increase in the nominal price of oil.  

Hamilton’s line of reasoning has prompted many researchers to construct asymmetric 

responses to positive and negative oil price innovations from censored oil price VAR models. 

Censored oil price VAR models refer to linear VAR model for , ,3[ , ] ,net yr
t ts y    possibly 

augmented by other variables. Recently, Kilian and Vigfusson (2009) have shown that impulse 

response estimates from VAR models involving censored oil price variables are inconsistent 

even when equation (18) is correctly specified. Specifically, they demonstrated, first, that 

asymmetric models of the transmission of oil price shocks cannot be represented as censored oil 
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price VAR models and are fundamentally misspecified whether the data generating process is 

symmetric or asymmetric. This misspecification renders the parameter estimates inconsistent and 

inference invalid. Second, standard approaches to the construction of structural impulse 

responses in this literature are invalid, even when applied to correctly specified models. Instead, 

Kilian and Vigfusson proposed a modification of the procedure discussed in Koop, Pesaran and 

Potter (1996). Third, standard tests for asymmetry based on single-equation models are neither 

necessary nor sufficient for judging the degree of asymmetry in the structural response functions, 

which is the question of ultimate interest to users of these models. Kilian and Vigfusson 

proposed a direct test of the latter hypothesis and showed empirically that there is no statistically 

significant evidence of asymmetry in the response functions for U.S. real GDP.  

The lack of evidence in Kilian and Vigfusson (2009) against the symmetry of the 

response functions does not necessarily imply that the reduced-form model is linear. Rather the 

analysis in Kilian and Vigfusson demonstrates that the outcome of tests of the symmetry of 

coefficients in conditional expectations models is not informative about the degree of asymmetry 

in the response functions. Hamilton (2010) agrees with Kilian and Vigfusson as far as impulse 

response analysis from censored oil price VAR models is concerned, but suggests that nonlinear 

models such as model (18) may still be useful for out-of-sample forecasting. This is a legitimate 

conjecture that we explore in some detail below. 

In this context, Hamilton (2010) mistakenly claims that Kilian and Vigfusson found no 

evidence of nonlinearity in the conditional expectation of real GDP growth and suggests that 

they reached a different conclusion from earlier studies because of differences in the data set, 

sample period, and model specification. This is not the case. Indeed there are differences in the 

data definitions and sample period, for the reasons we already discussed in sections 2 and 3, but, 

as can easily be verified, despite these and other differences, Kilian and Vigfusson arrive at the 

same substantive conclusion for the 3-year net increase model as Hamilton (2003, 2010) that 

there appears to be a statistically significant nonlinearity in the conditional expectations model   

at the 5% significance level.  

Even granting the presence of asymmetries in the conditional expectation, one point of 

contention in the literature is whether the conditional expectations model should be specified as 

 
4 4

, ,3

1 1

net yr
t i t i i t i t

i i

y y s u   
 

 

        , (18) 



50 
 

as in Hamilton (2003), or rather as: 
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as in Balke, Brown and Yücel (2002) or Gupta, Herrera, and Wada (2010), for example. The 

latter specification encompasses the linear reduced-form model as a special case. Kilian and 

Vigfusson prove that dropping the lagged percent changes from model (19) will cause an 

inconsistency of the OLS estimates, except in the theoretically implausible case that there is no 

lagged feedback from percent changes in the price of oil to real GDP. Hamilton, in contrast, 

argues in effect that 0 .i i     

 Hamilton (2010) suggests that the potentially misspecified nonlinear conditional 

expectations model (18) that omits the lagged percent changes in the price of oil is preferred for 

out-of-sample forecasting given its greater parsimony compared with the encompassing model 

(19). This motivation for the use of model (18) is new in that heretofore the focus in the literature 

including Hamilton’s own work has been on establishing nonlinear predictability in population 

rather than out-of-sample. Hamilton (2010) is, of course, correct that there is a tradeoff between 

estimation variance and bias. Indeed, in many other contexts parsimony has been shown to help 

reduce the out-of-sample MSPE, but no systematic evidence has been presented to make this 

case for this model.  Below we explore the merits of imposing 0i i   not only in the context of 

single-equation models designed for one-step ahead forecasting, but for multivariate nonlinear 

models.  

 A second point of contention is whether nonlinear forecasting models should be specified 

in terms of the nominal price of oil or the real price of oil. For linear models, a strong economic 

case can be made for using the real price of oil. For nonlinear models, the situation is less clear, 

as noted by Hamilton (2010). Because the argument for using net oil price increases is 

behavioral, one specification appears as reasonable as the other. Below we therefore will 

consider models specified in real as well as in nominal oil prices. 

 A third issue that arises only in constructing iterated forecasts for higher horizons is how 

to specify the process governing the price of oil. The case can be made that treating this process 

as exogenous with respect to real GDP might help reduce the out-of-sample MSPE, even if that 
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restriction is incorrect. Below we therefore consider specifications with and without imposing 

exogeneity.  

 In Table 18, we investigate whether there are MSPE reductions associated with the use of 

censored oil price variables at horizons  1,...,8 ,h  drawing on the analysis in Kilian and 

Vigfusson (2010). For completeness, we also include results for the percent increase 

specification proposed in Mork (1989), the forecasting performance of which has not been 

investigated to date.  We consider nonlinear models based on the real price of oil as in Kilian and 

Vigfusson as well as based on the nominal price of oil as in Hamilton (2003). The unrestricted 

multivariate nonlinear forecasting model takes the form 
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where  , ,3 , ,1, ,net yr net yr
t t t tr r r r       and 1( 0)t t tr r r      as in Mork (1989). Analogous 

nonlinear forecasting models may be constructed based on the nominal price of oil, denoted in 

logs as :ts  
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where  , ,3 , ,1, , .net yr net yr
t t t ts s s s        

 In addition, we consider a restricted version of models (20) and ( 20 ) which imposes the 

hypothesis that the price of oil is exogenous:  
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and 
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Alternatively, we may restrict the feedback from lagged percent changes in the price of oil, as 

suggested by Hamilton (2003). After imposing 22, 0 ,iB i   the baseline nonlinear forecasting 

model reduces to: 
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and 
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Finally, we can combine the restrictions 12, 0iB i   and 22, 0 ,iB i   resulting in forecasting 

models (23) and ( 23 ): 
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and 
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At the one-quarter horizon, real GDP growth forecasts from model ( 22 ) and ( 23 ) only depend 

on the second equation, which is equivalent to using Hamilton’s model (1). All models are 

estimated by least squares, as is standard in the literature. The forecasts are constructed by Monte 
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Carlo integration based on 10,000 draws. The estimation and evaluation periods are the same as 

in Table 17. 

Table 18 displays the MSPE ratios for all six models by horizon. All results are 

normalized relative to the AR(4) model for real GDP growth.25 The first result is that no 

nonlinear model is more accurate than the benchmark AR(4) model at the one-quarter horizon. 

This includes Hamilton’s model (18). Our findings seemingly are in contrast to Hamilton (2010) 

who reports having obtained gains in accuracy of 27% for model (18) relative to a linear VAR 

model and reductions of 22% in the root MSPE relative to the unrestricted nonlinear structural 

model used in Kilian and Vigfusson (2009) for impulse response analysis. These results, 

however, have to be interpreted with caution for a number of reasons, most importantly, because 

Hamilton’s forecast evaluation period only covers 2008.Q1-2009.Q3. Very different results are 

obtained when evaluating these models recursively over a longer period as shown in Table 18. 

When these models are compared on a level playing field, using data since 1974, there are no 

gains from using model (18) one quarter ahead. In fact, the linear VAR(4) model is 15% more 

accurate than model (18), and the nonlinear model (20) is as accurate as Hamilton’s nonlinear 

model (18) with both models being inferior to the AR(4) benchmark model. 

Second, neither the percent increase model based on Mork (1989) nor the one-year net 

increase model motivated by Hamilton (1996) are more accurate than the AR(4) benchmark. 

This is true regardless of whether the price of oil is specified in nominal or real terms and 

regardless of what additional restrictions we impose. 

Third, there are practically no gains in accuracy relative to the benchmark model from 

specifying nonlinear models in the real price of oil. Typically these models are less accurate than 

the benchmark model, regardless of the horizon. 

Fourth, although Hamilton’s single-equation model (18) performs poorly at the one-

quarter horizon, the model ( 23 ) which combines Hamilton’s assumptions with that of 

exogenous oil prices and embeds all these assumptions in a multivariate dynamic framework, 

yields large gains in accuracy relative to the benchmark model at horizons beyond one quarter. 

At the one-year horizon, the reduction in MSPE is 18%.  The use of nominal net oil price 

increases (accounting for 8 percentage points) and the omission of lagged percent changes in the 

                                                            
25 In constructing the various net oil price increase measures we used WTI data dating back an additional three 
years. 
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nominal price of oil (accounting for 9 percentage points) are mainly responsible for this gain in 

accuracy; the imposition of exogeneity only plays a minor role. A plot of the cumulative MSPE 

(not shown) reveals that this gain in accuracy is driven entirely by the 2008/09 recession, 

however. Excluding this episode, model ( 23 ) has higher MSPE than the linear AR and VAR 

models throughout the evaluation period. An interesting question for future research is how 

robust these model rankings will be, as more data become available. Notwithstanding the gains 

in accuracy from using model ( 23 ) at horizon 4 (and to a lesser extent at horizons 2 and 3), 

beyond a horizon of one year the linear VAR(4) model of Table 17 is the most accurate model. 

The gains in accuracy are modest, however. 

 An obvious question of interest is to what extent the nonlinearities improve our ability to 

forecast major economic downturns in the U.S.  Figure 12 shows that the net increase model 

( 23 ) is quite successful in forecasting the downturn of 2008 and the subsequent recovery four 

quarters ahead. If anything it appears too successful in that it seems to leave little independent 

role for the financial crisis. As noted earlier, the average success of model ( 23 ) is highly 

dependent on this one episode and one has to be concerned about the possibility that this model 

may have forecast the recession for the wrong reason. Model ( 23 ) also does reasonably well in 

2001, although it missed the recovery. This forecasting success, however, comes at a price 

because model ( 23 ) also forecast a number of recessions that did not materialize or were not 

nearly as severe as predicted by the model. For example, the net increase model forecast a 

collapse of the economy in 1991 of about the same magnitude as the 2008 recession and the 

timing was off. Model ( 23 ) also incorrectly forecast pronounced declines in economic growth 

relative to average growth in 1997 and most importantly in 2005-06.  

The corresponding one-quarter ahead results in the lower panel of Figure 12 indicate that 

the net increase model has some success in forecasting the 1990 and 2008 recessions, but, as in 

the upper panel, it also forecast a major recession in 2005-06, which did not materialize. 

Moreover, although this forecasting model gets the trough of the 1990 recession roughly right, it 

forecast sharp oscillations in growth during this episode, including another steep economic 

decline in 1991, that did not materialize.  

To summarize, no nonlinear model, including the specific net increase model proposed 

by Hamilton (2003, 2010), is more accurate than linear models at the one quarter horizon, but a 

multivariate generalization of this model is more accurate than all linear or nonlinear alternatives 
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at the one-year horizon. Beyond a horizon of one year, linear VAR models appear more accurate 

than any other forecasting model we considered, although the reductions in the MSPE are 

modest. 

We also conducted the same analysis for the WTI price of oil as well as for the producer 

price index (PPI) for crude petroleum used in Hamilton (2003). The corresponding tables are not 

shown to conserve space. For the PPI price of oil, the results are very similar to those for the 

refiners’ acquisition cost for imported crude oil, except that model ( 23 ) is somewhat less 

accurate with MSPE reductions of only 12% at horizon 4 compared with 18% in Table 18b. For 

the WTI price, the results for the nonlinear forecasting models change considerably. We find that 

all nonlinear models in Tables 18a and 18b outperform the benchmark model at horizon 4. For 

specifications in the real WTI price of oil, the reductions in MSPE are 26% for model (20), 27% 

for model (21), and 30% for models (22) and (23); for specifications in the nominal WTI price of 

oil, the reductions are 32% for models ( 20 ) and ( 21 ) and 34% for models ( 22 ) and ( 23 ).  

Even at horizon 8, all of these models reduce the MSPE of the AR(4) benchmark model by about 

25%. Moreover, models in the nominal price of oil including the unrestricted model ( 20 ) 

consistently reduce the one-quarter ahead MSPE by between 6% and 8%. These results show 

that the forecasting accuracy of nonlinear model may depend on the definition of the price of oil 

as well. 

 

11.3. Nonparametric Approaches 

Our approach in this section has been parametric. Alternatively, one could have used 

nonparametric econometric models to investigate the forecasting ability of the price of oil for 

real GDP.  In related work, Bachmeier, Li and Liu (2008) used the integrated conditional 

moment test of Corradi and Swanson (2002, 2007) to investigate whether oil prices help forecast 

real GDP growth one quarter ahead. The advantage of this approach is that – while imposing 

linearity under the null – it allows for general nonlinear models under the alternative; the 

disadvantage is that the test is less powerful than the parametric approach if the parametric 

structure is known.  They report a p-value of 0.20 for the null that nominal net increases in the 

WTI price of oil do not help forecast U.S. real GDP. The p-value for percent changes in the WTI 

price of crude oil is 0.77. Similar results are obtained for real net increases and for percent 

changes in the real WTI price. These findings are broadly consistent with ours. Bachmeier et al. 
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(2008) also report qualitatively similar results using a number of fully nonparametric approaches. 

An obvious caveat is that their analysis is based on data since 1949, which is not appropriate for 

the reasons discussed earlier, and ends before the 2008 recession. Using their nonparametric 

techniques on our much shorter sample period does not seem advisable, however, because there 

is no way of controlling the size of the test. 

 

12. The Role of Oil Price Volatility 

Point forecasts of the price of oil are important, but they fail to convey the uncertainty associated 

with oil price forecasts. That uncertainty is captured by the predictive density.  Figure 13 plots 

the 12-month ahead predictive density for the real price of oil as of 2009.12, generated from the 

no-change forecasting model. Although it is obvious that there is tremendous uncertainty about 

the future real price of oil, even when using the best available forecasting methods, it is less 

obvious how to convey and interpret that information. For example, standard questions in the 

financial press about whether the price of oil could increase to $200 a barrel, at the risk of being 

misunderstood, inevitably and always must be answered with yes because the predictive 

distribution has infinite support. That answer, however, is vacuous because it does not convey 

how likely such an event is or by how much the price of oil is expected to exceed the $200 

threshold in that event. 

 

12.1. Nominal Oil Price Volatility 

One seemingly natural way of summarizing the information in the predictive distribution is to 

report the variability of the forecasts. Interest in oil price volatility measures arises, for example, 

from financial analysts interested in pricing options and from portfolio managers interested in 

diversifying risks. Given that at short-horizons CPI inflation is negligible, it is customary in 

financial applications to focus on nominal oil price volatility. One approach to measuring oil 

price volatility is to rely on the implied volatilities of put and call options, which are available 

from January 1989 on. Implied volatility measures are computed as the arithmetic average of the 

daily implied volatilities from the put and call options associated with a futures contract of a 

given maturity. The upper panel of Figure 14 shows the 1-month implied volatility time series 

for 2001.1-2009.12, computed from daily CRB data, following the same procedure as for the 

spot and futures prices in section 5. Alternatively, we may use daily percent changes in the 
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nominal WTI price of oil to construct measures of realized volatility, as shown in the second 

panel of Figure 14 (see, e.g., Bachmeier, Li and Liu 2008).  Finally, yet another measure of 

volatility can be constructed from parametric GARCH or stochastic volatility models. The 

bottom panel of Figure 14 shows the 1-month-ahead conditional variance obtained from 

recursively estimated Gaussian GARCH(1,1) models.26 The initial estimation period is 1974.1-

2000.12. The estimates are based on the percent change in the nominal WTI price; the 

corresponding results for the real WTI price are almost indistinguishable at the 1-month 

horizon.27 Figure 14 plots all three volatility measures on the same scale. Although all three 

measures agree that by far the largest volatility peak occurred near the end of 2008, there are 

important differences. For example, the implied volatility measure increases steadily starting in 

early 2008 and peaks in December 2008. Realized volatility also peaks in December 2008, but 

does not increase substantially the second half of 2008.  Finally, GARCH volatility is even 

slower to increase in 2008 and only peaks in January 2009. This ranking is consistent with the 

view that implied volatility is the most forward looking volatility measure and GARCH volatility 

the most backward looking volatility estimate (and hence the least representative measure of real 

time volatility).  Similarly, the implied volatility and realized volatility measures indicate 

substantial secondary spikes in volatility in 2001/02 and 2003, whereas the spikes in the GARCH 

volatility estimate are much smaller and occur only with a delay.  

 It may seem that fluctuations in oil price volatility, defined in this manner, would be a 

good indicator of fluctuations in oil price risks. It is important not to equate risk and uncertainty, 

however. Whereas the latter may be captured by volatility measures, the former cannot. The 

standard risk that financial markets in oil-importing economies are concerned with is the risk of 

excessively high oil prices. That risk in general will be at best weakly correlated with oil price 

volatility. One reason is that any reduction in risk that lowers the price of oil, all else equal, will 

be associated with increased oil price volatility. This is why in 1986, for example, oil price 

                                                            
26 The standard GARCH model is used for illustrative purposes. An alternative would be a GARCH-in-Mean model. 
Given that oil is only one of many assets handled by portfolio managers, however, it is not clear that the GARCH-
in-Mean model for single-asset markets is appropriate in this context, while more general multivariate GARCH 
models are all but impossible to estimate reliably on the small samples available for our purposes (see, e.g., 
Bollerslev, Chou and Kroner 1992). 
27 We deliberately focus on oil price volatility at the 1-month horizon. Although from an economic point of view 
volatility forecasting at longer horizons would be of great interest, the sparsity of options price data makes it 
difficult to extend the implied volatility approach to longer horizons. Likewise, GARCH volatility estimates quickly 
converge to the unconditional variance at longer horizons. 
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volatility increased, as OPEC collapsed and the price of oil dropped sharply, whereas by all 

accounts consumers were pleased with lower oil prices and the diminished risk of an OPEC 

induced supply disruption. The second reason is that measures of oil price volatility by 

construction capture all fluctuations in the price of oil, not merely price fluctuations associated 

with rising or falling market risks. For these reasons standard volatility measures are of limited 

use as summary statistics for the predictive distribution of oil price forecasts. We defer to section 

12.3 for a more detailed exposition of how appropriate risk measures may be computed from the 

predictive distribution of the price of oil. 

 

12.2. Real Oil Price Volatility 

Interest in the volatility of oil prices also has been prompted by research aimed at establishing a 

direct link from oil price volatility to business cycle fluctuations in the real economy. For 

example, Bernanke (1983) and  Pindyck (1991) showed that the uncertainty of the price of oil 

(measured by the volatility of the price of oil) matters for investment decisions if firms 

contemplate an irreversible investment, the cash flow of which depends on the price of oil. An 

analogous argument holds for consumers considering the purchase of energy-intensive durables 

such as cars. Real options theory implies that, all else equal, an increase in expected volatility 

will cause marginal investment decisions to be postponed, causing a reduction in investment 

expenditures. Kellogg (2010) provides evidence that such mechanisms are at work in the Texas 

oil industry, for example.  

 Unlike in empirical finance, the relevant volatility measure in these models is the 

volatility of the real price of oil at horizons relevant to purchase and investment decisions, which 

is typically measured in years or even decades rather than days or months, making standard 

measures of short-term nominal price volatility inappropriate. Measuring the volatility of the real 

price of oil at such long forecast horizons is inherently difficult given how short the available 

time series are, and indeed researchers in practice have typically asserted rather than measured 

these shifts in long-horizon real price volatility or they have treated short-horizon volatility as a 

proxy for long-horizon volatility.28 

                                                            
28 In rare cases, the relevant forecast horizon may be short enough for empirical analysis. For example, Kellogg 
(2010) makes the case that for the purpose of drilling oil wells in Texas, as opposed to Saudi Arabia, a forecast 
horizon of only 18 months is adequate. Even at that horizon, however, there are no oil-futures options price data that 
would allow the construction of implied volatility measures. Kellogg (2010) therefore converts the one-month 
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12.3. Quantifying Oil Price Risks 

Although oil price volatility shifts play an important role in discussions of the impact of oil price 

shocks, it is important to keep in mind that volatility measures are not useful measures of the 

price risks faced by either producers or consumers of crude oil (or refined products).  Consider 

an oil producer capable of producing crude oil from existing wells as long as the price of oil 

exceeds his marginal cost of $25 a barrel. One risk faced by that oil producer is that he will go 

out of business if the price of oil falls below that threshold. Excessively high oil prices, in 

contrast, are of no concern until they reach the point of making replacement technologies 

economically viable. That might be the case at a threshold of $120 a barrel, for example, at 

which price major oil producers risk inducing the large-scale use of alternative technologies with 

adverse consequences for the long-run price of crude oil.29 Thus, the oil producer will care about 

the risk of the price of oil not being contained in the range between $25 and $120, and the extent 

to which he is concerned with violations of that range depends on his risk aversion, which need 

not be symmetric in either direction.30 There is no reason why oil producers should necessarily 

be concerned with a measure of the variability of the real price of oil. In fact, it can be shown 

that risk measures are not only quantitatively different from volatility measures, but in practice 

may move in the opposite direction. 

 Likewise, a consumer of retail motor gasoline (and hence indirectly of crude oil) is likely 

to be concerned with the price of gasoline exceeding what he can afford to spend each month 

(see Edelstein and Kilian 2009). The threshold at which consumers might trade in their SUV for 

a more energy-efficient car is near $3 a gallon perhaps. The threshold at which commuters may 

decide to relocate closer to their place of work might be at a price near $5 a gallon. The 

possibility that the price of gasoline could fall below $2, in contrast, is of comparatively little 

consequence to consumers’ economic choices, making the volatility of oil prices and related 

statistics such as the value at risk irrelevant to the typical consumer. 

 In both examples above, the appropriate specification of these agents’ decision problem 

is in terms of upside and downside price risks. The literature on risk management postulates that 
                                                                                                                                                                                                
volatility to 18-month volatilities based on the term structure of oil futures. That approach relies on the assumption 
that oil futures prices are reliable predictors of future oil prices. 
29 A similar irreversible shift in OECD demand occurred after the oil price shocks of the 1970s when fuel oil was 
increasingly replaced by natural gas. The fuel oil market never recovered, even as the price of this fuel fell 
dramatically in the 1980s and 1990s (see Dargay and Gately 2010). 
30 The threshold of $120 in this example follows from adjusting the cost estimates for shale oil production in Farrell 
and Brandt (2006) for the cumulative inflation rate since 2000. 
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risk measures must satisfy two basic requirements. One requirement is that the measure of risk 

must be related to the probability distribution ( )F  of the random variable of interest; the other 

requirement is that it must be linked to the preferences of the user, typically parameterized by a 

loss function (see Machina and Rothschild 1987). Except in special cases these requirements rule 

out commonly used measures of risk based on the predictive distribution alone such as the 

sample moments, sample quantiles or the value at risk. In deriving appropriate risk measures that 

characterize the predictive distribution for the real price of oil, it is useful to start with the loss 

function. A reasonably general class of loss functions ( )l  that encompasses the two empirical 

examples above is: 
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where t hR  denotes the real price of oil in dollars h periods from date ,t  0 1a  is the weight 

attached to downside risks, and 0   and 0   measure the user’s degree of risk aversion. 

Risks are associated with the event of t hR   exceeding an upper threshold of R or falling below 

the lower threshold of .R  It can be shown that under this loss function, the expected loss is a 

weighted average of upside and downside risks of the form 
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are the downside risk and upside risk, respectively. This definition encompasses a variety of risk 

definitions familiar from the finance literature. For example, for the special case of 0    

these expressions reduce to the (target) probabilities 0 Pr( )t hDR R R    and 

0 Pr( )t hUR R R   and for the special case of 1    they reduce to the tail conditional 

expectations 1 ( | ) Pr( )t h t h t hDR E R R R R R R      and 

1 ( | ) Pr( ).t h t h t hUR E R R R R R R       Note that the latter definition not only is concerned 

with the likelihood of a tail event, but also with how far the real price of oil is expected to be in 
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the tail. The latter term is also known as the expected shortfall (or expected excess). The 

expectations and probabilities in question in practice can be estimated by their sample 

equivalent.31  

 This digression highlights that the volatility the real price of oil in general is not the 

relevant statistic for the analysis of risks. In particular, if and only if the loss function is quadratic 

and symmetric about zero, the variance of the price of oil about zero provides an adequate 

summary statistic for the risk in oil price forecasts. Even that target variance, however, is distinct 

from conventionally used measures of oil price volatility, defined as the variance about the 

sample mean of the predictive distribution. The latter measure under no circumstances can be 

interpreted as a risk measure because it depends entirely on the predictive distribution of the 

price of oil and not at all on the user’s preferences. 

 Risk measures can be computed for any predictive distribution. The construction of the 

predictive distribution from regression forecasting models typically relies on bootstrap methods 

applied to the sequence of forecast errors obtained from fitting the forecasting model to historical 

data. This requires the forecast errors to be serially uncorrelated, as would typically be the case 

in forecasting models at horizon h = 1.  For example, when fitting a random walk model of the 

form 1 1t t ts s    , the forecast errors at horizon 1 may be resampled using standard bootstrap 

methods for homoskedastic or conditionally heteroskedastic data (see, e.g., Goncalves and Kilian 

2004).  

At longer horizons, one option is to fit the forecasting model on nonoverlapping 

observations and proceed as for h = 1. This approach is simple, but may involve a considerable 

reduction in estimation precision. For example, in constructing the predictive distribution of one-

year-ahead no-change forecasts from monthly data, one would construct for the current month 

the sequence of year-on-year percent changes relative to the same month in the preceding year 

and approximate the predictive distribution by resampling this sequence of year-on-year forecast 

errors. The other option is to construct forecast errors from overlapping observations and to 

recover the underlying white noise errors by fitting an MA(h-1) process to the sequence of h-

step- ahead forecast errors. This allows the construction of bootstrap approximations of the 

                                                            
31 Measures of risk of this type were first introduced by Fishburn (1977), Holthausen (1981), Artzner, Delbaen, Eber 
and Heath (1999), and Basak and Shapiro (2001) in the context of portfolio risk management and have become a 
standard tool in recent years (see, e.g., Engle and Brownlees 2010). For a general exposition of risk measures and 
risk management in the context of monetary policy reaction functions see Kilian and Manganelli (2007, 2008). 
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predictive density by first resampling the serially uncorrelated white noise residuals using 

suitable bootstrap methods such as the wild bootstrap and then constructing bootstrap replicates 

of the h-month-ahead forecast errors from the implied moving averages. The risk measures are 

constructed directly from the bootstrap estimate of the predictive distribution, as discussed 

above. Below we implement this approach in the context of a 12-month-ahead no-change 

forecast of the real WTI price of oil. 

 Figure 15 plots the risk that the price of oil (expressed in 2009.12 dollars) exceeds $80 

one year later ( 80)R   and the risk that it drops below $45 one year later ( 45).R   These 

thresholds have been chosen for illustrative purposes. The upper panel of Figure 15 plots the 

upside and downside risks for 0,   whereas the lower panel plots the corresponding results 

for 1.    Note that by convention the downside risks have been defined as a negative 

number to improve the readability of the plots. Although the upside risks and downside risks 

respond to sustained changes in the conditional mean forecast by construction, the relationship is 

not one-for-one.  Figure 15 shows that the ex ante probability of the real price of oil exceeding 

$80 one year later was small except during 2005-08 and after mid-2009; high probabilities of the 

real price of oil falling below $45 occurred only in 2001-04 and 2009.  The lower panel shows 

the corresponding tail conditional expectations. Allowing for some risk aversion in the form of 

1,    the upside risks in 2007-08 become disproportionately larger relative to earlier upside 

risks and relative to the downside risks. Regardless of the choice of   and ,  the balance of 

risks since mid-2009 has been tilted in the upside direction. Recent upside risks are comparable 

to those in 2006.  

 It is immediately evident that the three standard volatility measures in Figure 14 are not 

good proxies for either of the two risks shown in Figure 15. For example, in the second half of 

2008 volatility skyrockets while the upside risk plummets. The upside risk peaks in mid-2008, 

when the real price of oil peaked, but volatility only peaks in December 2009 or January 2009, 

when the real price of oil had reached a trough, much to the relief of oil consumers. Moreover, 

the spikes in volatility in 2001/02 and 2003 are not mirrored by increases in upside risk, while 

the sustained increase in upside risk after 2004 is not mirrored by a sustained increase in 

volatility.  

Nor is volatility systematically related to downside oil price risks. Although both  
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downside risks and volatility peak in early 2009 and in 2002, the sustained increase in volatility 

in early and mid-2008 is not mirrored by an increase in downside risk. Furthermore, the decline 

in downside risks during 2004 and 2005 is not reflected in systematic changes in volatility. 

It is worth emphasizing that none of these 12-month-ahead risk forecasts provided any 

warning of the collapse of the real price of oil in late 2008. To the extent that the collapse in the 

real price of oil was unpredictable based on past data, this is not surprising. The problem is not 

with the risk measures but rather with the underlying predictive distribution that these risk 

measures have been applied to. Although the predictive distribution based on the no-change 

forecast is among the best available approaches to forecasting the real price of oil, this is a useful 

reminder that even the best available approach need not be very accurate in practice. 

 

13. Avenues for Future Research  

There are a number of directions for future research on forecasting oil prices. One relates to the 

use of additional industry-level predictors not commonly considered by economists. Although 

crude oil is one of the more homogeneous commodities traded in global markets, not all 

refineries may process all grades of crude oil. Moreover, different grades of crude oil yield 

different mixes of refined products. Hence, shifts in the demand for one type of refined product, 

say, diesel fuel, have implications for the product mix of refined products (diesel, gasoline, 

kerosene, heating oil, etc.) and hence for the demand for different grades of crude oil, depending 

on the capacity utilization rates of different refineries. Situations can arise in which excess 

demand for one grade of crude oil may result in rising prices, while excess supply of another 

grade of crude oil is associated with falling prices. Models that incorporate information about 

such spreads or about the underlying determinants of demand have the potential of improving 

forecasts of the price of a given grade of crude oil. 

 A second issue that we have largely ignored is the potential role of real-time data in 

modeling the price of oil. There are two rather distinct concerns. One is that not all useful 

predictors may be available to the forecaster in real time. Even simply discarding the most recent 

data (which amounts to reinterpreting a 6-month VAR forecast effectively as a 1-month  

forecast), there are some gains in forecast accuracy relative to the no-change forecast, as we 

showed in section 8, although the gains tend to be modest at that horizon. Moreover, rather than 

discarding all recent data, one could mitigate this problem by using proxies for the missing end-
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of-sample data or by using more sophisticated methods of nowcasting (see, e.g., Reichlin, 

Giannone, and Small 2008). This is an interesting direction for future research.  

 The other concern is that many predictors and indeed some measures of the price of oil 

are subject to data revisions. Throughout this chapter we have relied on data that are either not 

subject to revisions or that have been fully revised. One additional question one could ask is how 

the results of the forecast accuracy comparison would have changed if we had only used data sets 

available as of the time the forecast is generated. As Faust, Rogers and Wright (2003) discuss, in 

the context of forecasting nominal exchange rates, such forecasts may be more accurate than 

forecasts using ex-post revised data.  A similar point has recently been made by Ravvazolo and 

Rothman (2010) and Carlton (2010) in assessing the forecastability of U.S. real GDP based on 

the price of oil.  Real-time real GDP forecasts may be constructed, for example, as one-step-

ahead forecasts based on single-equation conditional expectations models evaluated at the 

relevant forecasting horizon. One concern with such real-time regressions is that the underlying 

time series are not stationary because they include data that have been revised to different 

degrees. This feature of the regression model violates the premise of standard asymptotic tests of 

equal predictive accuracy (see Clark and McCracken 2009). It also invalidates standard methods 

of constructing bootstrap p-values for tests of equal predictive accuracy. The construction of 

alternative tests of equal predictive accuracy requires further assumptions on the nature of the 

data revisions.  

The construction and evaluation of real-time forecasts is clearly an area that calls for 

further methodological work, the development of suitable data sets, and empirical studies (also 

see, e.g., Koenig, Dolmas and Piger 2003; Croushore 2006; Clements and Galvao 2010). What 

we can say is that data revisions typically are not an issue in forecasting the nominal price of oil 

using the models we considered. Moreover, revisions to most of the monthly data we used in 

forecasting the real price of oil tend to be minor. The largest revisions typically occur for the last 

two observations in the sample, implying that 6-month forecasts of the real price of oil based on 

ex-post revised data will effectively be 3-month real time forecasts. Data revisions are likely to 

be a more important concern in assessing the forecasting power of the real price of oil for 

macroeconomic aggregates such as cumulative real GDP growth, however. 

 A third issue of interest is the role played by heterogenous oil price and gasoline price 

expectations in modeling the demand for energy intensive durables (see Anderson, Kellogg and 
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Sallee 2010). There is strong evidence that not all households share the same expectations, 

casting doubt on standard rational expectations models with homogenous agents. This also calls 

into question the use of a single price forecast in modeling purchasing decisions in the aggregate. 

This problem is compounded to the extent that different market participants (households, 

refiners, oil producers) in the same model may have very different risk assessments based on the 

same predictive oil price distribution. Both of these effects may undermine the predictive power 

of the price of oil for macroeconomic aggregates as well as the explanatory power of theoretical 

models based on oil price forecasts. 

 Finally, we have deliberately refrained from exploring the use of factor models for 

forecasting the price of oil. In related work, Zagaglia (2010) reports some success in using a 

factor model in forecasting the nominal price of oil at short horizons, although his evaluation 

period is limited to early 2003 to early 2008, given the data limitations, and it is unclear how 

sensitive the results would be to extending the evaluation period. The concern is that there are no 

price reversals over the evaluation period, so any predictor experiencing sustained growth is 

likely to have some forecasting power. Moreover, we have shown in section 5 that much simpler 

forecasting models appear capable of generating equally substantial reductions in the MSPE of 

the nominal price of oil at short horizons and do so for extended periods.  

The more important problem from an economic point of view, in any case, is forecasting 

the real price of oil. The variables that matter most for the determination of the real price of oil 

are global. Short of developing a comprehensive worldwide data set of real aggregates at 

monthly frequency, it is not clear whether there are enough predictors available for reliable real-

time estimation of the factors. For example, drawing excessively on U.S. real aggregates, as in 

Zagaglia (2010) is unlikely to be useful for forecasting the real price of oil for the reasons 

discussed in section 4.  Using a cross-section of data on energy prices, quantities, and other oil-

market related indicators may be more promising, but almost half of the series used by Zagaglia 

are specific to the United States and unlikely to be representative of global markets. Nonetheless, 

more sophisticated forecasting methods for large-dimensional data sets may prove helpful in 

improving the accuracy of oil price forecasts. 

 

14. Conclusions 

Although there are a fair number of papers dealing with the problem of predicting the price of 
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oil, it is difficult to reconcile the seemingly conflicting results in this literature. The problem is 

not only the precise definition of the oil price variable, but whether the price of oil is expressed 

in nominal or in real terms, what estimation and evaluation period is chosen, how forecast 

accuracy is evaluated, whether the conditional mean, conditional variance or conditional density 

is being forecast, whether the analysis is conducted in-sample or out-of-sample, whether the 

methods are parametric or nonparametric, and whether tests of statistical significance are 

provided or not. The most common problem in the literature is that results are sensitive to the 

choice of sample period and vanish when the sample period is extended. 

 In this chapter, our objective has been to provide a benchmark based on data that include 

the recent collapse of the price of oil in 2008 and its subsequent recovery. We started by 

discussing problems with combining data from the pre-1973 and post-1973 period, highlighting 

the structural change in the time series process of the price of oil at that time. We made the case 

for discarding pre-1973 data, given that these data, while of interest to economic historians, do 

not appear relevant for policymakers, consumers, and analysts dealing with oil price forecasts 

today. 

 A natural starting point for our analysis was the question of whether the price of oil is 

inherently unpredictable, as is sometimes claimed. We provided strong evidence that after 1973 

the nominal price of oil is predictable in population, consistent with economic theory. The most 

successful predictors are recent percent changes in U.S. consumer prices and monetary 

aggregates as well as global non-oil industrial commodity prices. An even better predictor is the 

recent percent change in the bilateral dollar exchange rate of major commodity exporters. 

 We also found strong evidence that after 1973 the real price of oil is predictable in 

population based on fluctuations in global real output, as suggested by standard economic theory. 

We illustrated how problems of omitted variables and of mismeasurement can obscure this 

predictive relationship. We emphasized the importance of accounting for structural changes in 

the composition of real output, of using measures with broad geographic coverage, and of using 

methods of detrending that can capture long swings in the demand for industrial commodities.  

 These results show clearly that the price of oil does not follow a random walk. 

Predictability in population need not translate into out-of-sample forecast accuracy, however. 

One concern is that in small samples simple parsimonious forecasting models such as the no-

change forecast often have lower MSPE than forecasts from larger-dimensional models 
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suggested by economic theory. This may occur even if the large-dimensional model is correctly 

specified, if the increase in the forecast variance from estimating the unknown parameters of the 

correctly specified model exceeds the reduction in the (squared) forecast bias from eliminating 

the model misspecification.  

We provided evidence that at horizons up to six months suitably designed unrestricted 

vector autoregressive models estimated recursively on ex post revised data tend to be more 

accurate out of sample than the no-change forecast of the real price of oil. There also is robust 

evidence that recursively estimated AR and ARMA models have lower MSPE than the no-

change forecast at horizons of 1 and 3 months. The extent of these MSPE reductions is small, 

however, especially after taking into account real-time data constraints. At longer horizons, the 

no-change forecast of the real price of oil appears to be the predictor with the lowest MSPE in 

general. 

 Forecasting the nominal price of oil is a comparatively easier task. There is strong 

evidence of large and statistically significant MSPE reductions in forecasting the nominal price 

of oil at horizons of 1 and 3 months based on recent percent changes in non-oil industrial 

commodity prices, for example. There also is evidence that simply adjusting the no-change 

forecast for the real price of oil for expected inflation yields much more accurate forecasts of the 

nominal price of oil than the no-change forecast at horizons of several years. There is no 

evidence against the no-change forecast for the nominal price of oil at intermediate horizons, 

however.  

More commonly used methods of forecasting the nominal price of oil based on the price 

of oil futures or the spread of the oil futures price relative to the spot price cannot be 

recommended.  There is no reliable evidence that oil futures prices significantly lower the MSPE 

relative to the no-change forecast at short horizons, and long-term futures prices often cited by 

policymakers are distinctly less accurate than the no-change forecast. Likewise professional and 

government forecasts of the nominal price of oil do not significantly improve on the no-change 

forecast and can be much less accurate. 

One of main reasons the price of oil is considered important by many macroeconomists is 

its perceived predictive power for U.S. real GDP. Assessing that predictive power requires a 

joint forecasting model for the price of oil and for domestic real activity. We showed that there 

are only small gains in using the price of oil in forecasting cumulative real GDP growth from 
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VAR models. This finding is robust to whether the price of oil is specified in nominal or in real 

terms and whether it is treated as exogenous or endogenous. More importantly, all linear 

autoregressive models fail to predict major economic downturns.  

We also compared a wide range of nonlinear joint forecasting models. Based on the PPI 

for oil used in Hamilton (1983) or, alternatively, the U.S. refiners’ acquisition cost for imported 

crude oil, none of these models, including the net increase model proposed by Hamilton (2010), 

is more accurate than linear models for real GDP growth at the one quarter horizon, but a 

multivariate generalization of the model proposed by Hamilton (2003, 2010) is more accurate 

than all linear or nonlinear alternatives at somewhat longer horizons with MSPE gains up to 12% 

and 18%, respectively, relative to the AR(4) benchmark model. The forecasting success of this 

model for cumulative real GDP growth is driven entirely by the 2008/09 recession. Excluding 

this episode, even the most accurate nonlinear model is less accurate than both the benchmark 

AR(4) model and the VAR(4) model. Beyond a horizon of one year the linear VAR(4) model is 

more accurate than any other forecasting model we considered, although the reductions in the 

MSPE are modest.  

Results considerably more favorable to nonlinear forecasting models are obtained using 

the WTI price of oil. In the latter case, nonlinear models for the real WTI price of oil and 

nonlinear models for the nominal WTI price of oil both forecast more accurately than the 

benchmark AR(4) model for real GDP growth at higher horizons. The accuracy gains in some 

cases are as high as 34% at the one-year horizon. At the one-quarter horizon only models for the 

nominal price of oil yield improvements and the accuracy gains are much more modest.  

There are indications, however, that these models forecast so well for the wrong reasons. 

In particular, if these forecasts are to be believed, the financial crisis played almost no role in the 

economic decline of 2008/09, which does not seem economically plausible. We showed that net 

increase models have a tendency to predict major economic declines anytime the price of oil 

increases substantially. Although such predictions proved incorrect, for example, in 2005/06, the 

ability to forecast the extreme decline of 2008/09 under quadratic loss more than compensates 

for  earlier forecasting errors and accounts for the higher average forecast accuracy of some of 

these models. 

An important limitation of reduced-form forecasting models of the real price of oil from a 

policy point of view is that they provide no insight into what is driving the forecast and do not 
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allow the policy maker to explore alternative hypothetical scenarios. We illustrated how recently 

developed structural vector autoregressive models of the global oil market may be used to 

generate conditional projections of how the oil price forecast would deviate from the 

unconditional baseline forecast, conditional on alternative economic scenarios such as a surge in 

speculative demand similar to previous historical episodes, a resurgence of the global business 

cycle, or increased U.S. oil production. The proposed method allows users to assess the risks 

associated with reduced form oil price forecasts. This task is facilitated by formal risk measures.  

We showed that oil price volatility measures commonly used to characterize predictive 

densities for the price of oil are not adequate measures of the risks faced by market participants. 

We demonstrated how appropriate risk measures can be constructed. Those risk measures, 

however, are only as good as the underlying forecasting models and would not have provided 

any advance warning of the collapse of the real price of oil in late 2008, for example. 
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Figure 4: The Impossibility of Modeling Pre-1973 WTI Data as an ARMA Process 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NOTES: The fitted model is a random walk with drift in logs. The fitted values have been exponentiated. The figure illustrates that – 
unlike the original data – the data generated at random from the fitted model will never remain unchanged for extended periods of 
time.  Hence, the class of ARMA processes is not suitable for modeling this data set. 



81 
 

1M 3M 6M 9M 12M 2Y 3Y 4Y 5Y 6Y 7Y
0

2

4

6

8

10

12

14
x 10

4 Average Open Interest

A
ve

. N
um

be
r o

f O
pe

n 
C

on
tra

ct
s

1M 3M 6M 9M 12M 2Y 3Y 4Y 5Y 6Y 7Y
0

1

2

3

4

5

6

7
x 10

4 Average Volume

A
ve

. N
um

be
r o

f C
on

tra
ct

s 
Tr

ad
ed

 
Figure 5:  Measures of Liquidity in the Oil Futures Market (by Maturity) 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NOTES: Computations by the authors based on CRB data.
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NOTES: Computations by the authors based on Michigan Consumer Survey Expectations, SPF 10-year CPI inflation forecasts, and 
EIA data for the city average of retail motor gasoline prices. This analysis draws on Anderson, Kellogg and Sallee (2010). 
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    NOTES: Computations by the authors based on data from Consensus Economics Inc. 
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Figure 8: EIA Forecasts of the U.S. Refiners’ Acquisition Cost for Imported Crude Oil 
1983.Q1-2009.Q4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
NOTES:  The quarterly price forecasts were collected manually from the EIA’s Short-term Economic Outlook and compared with the 
ex post realizations of the average quarterly nominal refiners’ acquisition cost for imported crude oil. The plot shows the price 
realizations together with the EIA forecasts made for the same point in time one and four quarters earlier.
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Figure 9: Forecasting Scenarios for the Real Price of Oil based on the Structural VAR Model of Kilian and Murphy (2010) 
Conditional Projections Expressed Relative to Baseline Forecast 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

NOTES: All results are based on the structural oil market model of Kilian and Murphy (2010). The U.S. oil production stimulus 
involves a 20% increase in U.S. oil production in 2009.9, which translates to a 1.5% increase in world oil production. For this purpose, 
a one-time structural oil supply shock is calibrated such that the impact response of global oil production is 1.5%. The 2007-08 world 
recovery scenario involves feeding in as future shocks the sequence of global aggregate demand shocks that occurred in 2007.1-
2008.6. The Iran 1979 speculation scenario involves feeding in as future shocks the speculative demand shocks that occurred between 
1979.1 and 1980.2 and were a major contributor to the 1979/80 oil price shock episode. 
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NOTES: Computations by the authors based on the U.S. refiners’ acquisition cost for imported crude oil.
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Figure 11: Autoregressive Forecasts of Cumulative Real GDP Growth based on the Real Price of Oil 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NOTES: The benchmark model is an AR(4) for real GDP growth. The alternative is an unrestricted linear VAR(4) model for real GDP 
growth and the percent change in the real price of oil.
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Figure 12: Nonlinear Forecasts of Cumulative Real GDP Growth from Models (23) and ( 23 ) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
NOTES: The benchmark model is an AR(4) for real GDP growth. One alternative is a suitably restricted VAR(4) model for real GDP 
growth and the percent change in the real price of oil augmented by four lags of the 3-year real net oil price increase. The other 
alternative is a similarly restricted VAR(4) model for real GDP growth and the percent change in the nominal price of oil augmented 
by four lags of the 3-year nominal net oil price increase. Qualitatively similar results would be obtained with 1-year net increases.   
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Figure 13: 12-Month Ahead Predictive Density of the Real WTI Price of Oil as of 2009.12 

Based on No-Change Forecast 
 



90 
 

2002 2003 2004 2005 2006 2007 2008 2009 2010
0

10

20

30

40
1-Month Implied Volatility

P
er

ce
nt

2002 2003 2004 2005 2006 2007 2008 2009 2010
0

10

20

30

40

P
er

ce
nt

Realized Volatility

2002 2003 2004 2005 2006 2007 2008 2009 2010
0

10

20

30

40
Recursive GARCH Volatility

P
er

ce
nt

Figure 14: Alternative Measures of Nominal Oil Price Volatility 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NOTES: The GARCH volatility estimate is for the percent change in the nominal WTI price. The realized volatility was obtained 
from daily WTI prices. The implied volatility measure refers to the arithmetic average of the daily implied volatilities from at-the-
money put and call options associated with 1-month oil futures contracts and was constructed by the authors from CRB data. All 
volatility estimates are monthly and expressed as standard deviations, following the convention in the literature.
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Figure 15: 12-Month Ahead Upside and Downside Risks in the Real WTI Price 
Based on No-Change Forecast 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NOTES: Risks are defined in terms of the event that the price of oil (in 2009.12 dollars) exceeds 80 dollars or falls below 45 dollars. 
For further discussion of these risk measures see Kilian and Manganelli (2007).
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Table 1a: Predictability from Selected Nominal U.S. Aggregates to the Nominal Price of Oil 
(p-values of the Wald test statistic for Granger Non-Causality) 

 Evaluation Period: 
 1973.1-2009.12 1975.2-2009.12 

Monthly 
Predictors: 

WTI WTI RAC  
Oil Imports 

RAC  
Domestic Oil 

RAC 
Composite 

CPI 
 

0.004 0.108 0.021 0.320 0.161 

M1 
 

0.181 0.039 0.010 0.000 0.000 

M2 
 

0.629 0.234 0.318 0.077 0.209 

CRB Industrial Raw 
Materials Index 

0.000 0.000 0.000 0.000 0.000 

CRB Metals Index 
 

0.000 0.002 0.005 0.000 0.003 

3-Month  
T-Bill Rate 

0.409 0.712 0.880 0.799 0.896 

Trade-Weighted 
Exchange Rate 

- 0.740 0.724 0.575 0.746 
 

NOTES: Boldface indicates significance at the 10% level. RAC stands for U.S. refiners’ acquisition cost and CRB for the Commodity 
Research Board. All variables but the interest rate are expressed in percent changes. In some cases, one needs to consider the 
possibility of cointegration in levels. All rejections above remain significant if we follow Dolado and Lütkepohl (1996) in conducting 
a lag-augmented Granger non-causality test. All test results are based on bivariate VAR(12) models. Similar results are obtained with 
bivariate VAR(24) models.
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Table 1b: Predictability from Selected Bilateral Nominal Dollar Exchange Rates to the Nominal Price of Oil 
(p-values of the Wald test statistic for Granger Non-Causality) 

 Evaluation Period: 
 1973.1-2009.12 1975.2-2009.12 

Monthly 
Predictors: 

WTI WTI RAC  
Oil Imports 

RAC  
Domestic Oil 

RAC 
Composite 

Australia 
 

0.038 0.066 0.073 0.017 0.044 

Canada  
 

0.004 0.003 0.002 0.006 0.002 

New Zealand 
 

0.128 0.291 0.309 0.045 0.169 

South Africa 
 

0.017 0.020 0.052 0.021 0.037 
 

NOTES: Boldface indicates significance at the 10% level. RAC stands for U.S. refiners’ acquisition cost. All variables are expressed 
in percent changes. All test results are based on bivariate VAR(12) models. 
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Table 2: Predictability from Selected Real Aggregates to the Real Price of Oil 
(p-values of the Wald test statistic for Granger Non-Causality) 

 Evaluation Period: 
 1973.I-2009.IV 1975.II-2009.IV 

Quarterly 
Predictors: 

WTI WTI RAC  
Oil Imports 

RAC  
Domestic Oil 

RAC 
Composite 

U.S. Real GDP 
LT 

 
0.353 

 
0.852 

 
0.676 

 
0.397 

 
0.561 

HP 0.253 0.821 0.653 0.430 0.573 
DIF 0.493 0.948 0.705 0.418 0.578 

World Industrial 
Production1 

     

LT 0.032 0.095 0.141 0.081 0.098 
HP 0.511 0.766 0.800 0.665 0.704 
DIF 0.544 0.722 0.772 0.668 0.691 

NOTES: Boldface indicates significance at the 10% level. LT denotes linear detrending; HP denotes HP filtering with smoothing 
parameter 1600,   and DIF denotes first differencing. RAC stands for U.S. refiners’ acquisition cost. All test results are based on 
bivariate VAR(4) models. Similar results are obtained with bivariate VAR(8) models. In the baseline specification the real price of oil 
is expressed in log-levels. Similar results are obtained when both variables are detrended by the same method.  
1 Data source: U.N. Monthly Bulletin of Statistics. These data end in 2008.III because the U.N. has temporarily suspended updates of 
this series, resulting in a shorter evaluation period. 
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Table 3: Predictability from Selected Real Aggregates to the Real Price of Oil 
(p-values of the Wald test statistic for Granger Non-Causality) 

 Evaluation Period: 
 1973.1-2009.12 1976.2-2009.12 
 

Monthly 
WTI WTI RAC  

Oil Imports 
RAC  

Domestic Oil 
RAC 

Composite 
Predictors: 12p      24p  12p     24p  12p     24p  12p     24p  12p     24p 
Chicago Fed 

National Activity 
Index (CFNAI) 

 
0.823    0.951 

 
0.735   0.952 

 
0.881   0.998 

 
0.707   0.979 

 
0.784   0.995 

U.S. Industrial 
Production 

     

LT 0.411    0.633 0.370   0.645 0.410   0.746 0.091   0.421   0.182   0.510   
HP 0.327    0.689 0.357   0.784 0.415   0.878 0.110   0.549 0.194   0.668   
DIF 0.533    0.859 0.458   0.866 0.473   0.909 0.114   0.490 0.222   0.699   

OECD Industrial 
Production1 

     

LT 0.028    0.001 0.009   0.033 0.023   0.199 0.021   0.187 0.018   0.230 
HP 0.195    0.034 0.072   0.278 0.138   0.714 0.121   0.530 0.114   0.706 
DIF 0.474    0.060 0.130   0.353 0.182   0.741 0.174   0.604 0.209   0.757 

Global Real Activity 
Index2 

 
0.041    0.000 

 
0.055   0.020 

 
0.141   0.034 

 
0.004   0.004 

 
0.028   0.018 

NOTES: Boldface indicates significance at the 10% level. LT denotes linear detrending; HP denotes HP filtering with smoothing 
parameter 129600  (see Ravn and Uhlig 2002)  and DIF denotes first differencing. The CFNAI and the global real activity index are 
constructed to be stationary. RAC stands for U.S. refiners’ acquisition cost. All test results are based on bivariate VAR(p) models. In 
the baseline specification the real price of oil is expressed in log-levels. Similar results are obtained when both variables are detrended 
by the same method.   
1 Data source: OECD Main Economic Indicators.   
2 Data source: Updated version of the index developed in Kilian (2009a).
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Table 4: 1-Month Ahead Forecast Error Diagnostics for Nominal WTI Price of Oil 
 

1|
ˆ

t tS   MSPE 
(p-value) 

Success Ratio 
(p-value) 

tS  20.325 N.A. 
(1)

tF  0.988 
(0.108) 

0.465 
(0.780) 

  (1)ˆˆ1 lnt t tS F S    1.001 
(0.326) 

0.539 
(0.209) 

  (1)ˆ1 lnt t tS F S  0.995 
(0.125) 

0.531 
(0.090) 

  (1)ˆ1 lnt t tS F S   1.002 
(0.408) 

0.513 
(0.576) 

  (1)1 lnt t tS F S  0.988 
(0.108) 

0.465 
(0.780) 

 1t tS s   1.397 
(0.945) 

0.504 
(0.488) 

 ˆ1tS   1.006 
(0.513) 

0.531 
(0.428) 

 (1)1t tS s   1.397 
(0.409) 

0.504 
(0.488) 

(1 )AUS
t tS e   0.865 

(0.212) 
0.513 

(0.394) 
(1 )CAN

t tS e   0.930 
(0.163) 

0.478 
(0.739) 

(1 )RSA
t tS e   0.976 

(0.425) 
0.482 

(0.626) 
,(1 )CRB ind

t tS p   0.676 
(0.094) 

0.579 
(0.017) 

,(1 )CRB met
t tS p   0.703 

(0.159) 
0.557 

(0.049) 
, ,(1)(1 )CRB ind

t tS p   0.676 
(0.001) 

0.579 
(0.017) 

, ,(1)(1 )CRB met
t tS p   0.703 

(0.004) 
0.557 

(0.049) 
NOTES: All MSPE results are presented as ratios relative to the benchmark no-change forecast model, for which we 
report the level of the MSPE. The forecast evaluation period is 1991.1-2009.12. The initial estimation window is 
1986.1-1990.12. For regressions based on 6-month futures prices the estimation window begins in 1983.10; for the 9-

month futures price in 1986.12; for the 12-month futures price in 1989.1. ( )h
tF is the futures price that matures in h 

periods; ,t mi  is the m month interest rate; ts  is the percent change in tS in the most recent month; and ( )h
ts  

denotes the trailing geometric average of the monthly percent change for h months.  All p-values refer to pairwise 
tests of the null of equal predictive accuracy with the no-change forecast. Comparisons of nonnested models without 
estimated parameters are based on the DM-test of Diebold and Mariano (1995) with N(0,1) critical values. Nested 
model comparisons with estimated parameters are obtained by bootstrapping the DM-test statistic as in Clark and 
McCracken (2005) and Clark and West (2006, 2007). The success ratio is defined as the fraction of forecasts that 
correctly predict the sign of the change in the price of oil. The sign test in the last column is based on Pesaran and 
Timmermann (2009).  This test cannot be applied when there is no variability in the predicted sign. In such cases the 
p-value is reported as N.A.



97 
 

Table 5: 3-Month Ahead Forecast Error Diagnostics for Nominal WTI Price of Oil 
 

3|
ˆ

t tS   MSPE 
(p-value) 

Success Ratio 
(p-value) 

tS  95.451 N.A. 
(3)

tF  0.998 
(0.467) 

0.465 
(0.727) 

  (3)ˆˆ1 lnt t tS F S    1.044 
(0.490) 

0.531 
(0.493) 

  (3)ˆ1 lnt t tS F S  0.990 
(0.215) 

0.474 
(0.668) 

  (3)ˆ1 lnt t tS F S   1.026 
(0.323) 

0.518 
(0.727) 

  (3)1 lnt t tS F S  0.998 
(0.478) 

0.465 
(0.727) 

 3
1t tS s   2.325 

(0.997) 
0.535 

(0.168) 

 ˆ1tS   1.032 
(0.570) 

0.561 
(N.A.) 

 (3)1t tS s   1.678 
(0.586) 

0.539 
(0.219) 

 1/4

,31t tS i  1.000 
(0.507) 

0.575 
(N.A.) 

,3
ˆCF

tS  1.519 
(0.994) 

0.447 
(0.760) 

3(1 )AUS
t tS e   0.811 

(0.173) 
0.553 

(0.071) 
3(1 )CAN

t tS e   0.918 
(0.207) 

0.496 
(0.570) 

3(1 )RSA
t tS e   1.180 

(0.851) 
0.518 

(0.231) 
, 3(1 )CRB ind

t tS p   0.628 
(0.110) 

0.610 
(0.001) 

, 3(1 )CRB met
t tS p   0.729 

(0.231) 
0.614 

(0.002) 
, ,(3)(1 )CRB ind

t tS p   0.649 
(0.004) 

0.623 
(0.002) 

, ,(3)(1 )CRB met
t tS p   0.566 

(0.001) 
0.614 

(0.007) 
NOTES: See Table 4. 
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Table 6: 6-Month Ahead Forecast Error Diagnostics for Nominal WTI Price of Oil 
 

6|
ˆ

t tS   MSPE 
(p-value) 

Success Ratio 
(p-value) 

tS  222.28 N.A. 
(6)

tF  0.991 
(0.411) 

0.509 
(0.322) 

  (6)ˆˆ1 lnt t tS F S    1.051 
(0.422) 

0.535 
(0.431) 

  (6)ˆ1 lnt t tS F S  0.978 
(0.140) 

0.535 
(0.151) 

  (6)ˆ1 lnt t tS F S   1.024 
(0.269) 

0.544 
(0.398) 

  (6)1 lnt t tS F S  0.995 
(0.445) 

0.509 
(0.322) 

 6
1t tS s   8.580 

(0.992) 
0.539 

(0.153) 

 ˆ1tS   1.057 
(0.563) 

0.557 
(N.A.) 

 (6)1t tS s   2.225 
(0.545) 

0.504 
(0.547) 

 1/2

,61t tS i  1.002 
(0.533) 

0.575 
(N.A.) 

6(1 )AUS
t tS e   1.071 

(0.745) 
0.561 

(0.048) 
6(1 )CAN

t tS e   0.966 
(0.351) 

0.526 
(0.225) 

6(1 )RSA
t tS e   1.370 

(0.985) 
0.544 

(0.080) 
, 6(1 )CRB ind

t tS p   0.730 
(0.119) 

0.614 
(0.000) 

, 6(1 )CRB met
t tS p   1.172 

(0.656) 
0.627 

(0.000) 
, ,(6)(1 )CRB ind

t tS p   0.932 
(0.098) 

0.610 
(0.013) 

, ,(6)(1 )CRB met
t tS p   1.056 

(0.135) 
0.640 

(0.003) 
NOTES: See Table 4. 
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Table 7: 9-Month Ahead Forecast Error Diagnostics for Nominal WTI Price of Oil 
 

9|
ˆ

t tS   MSPE 
(p-value) 

Success Ratio 
(p-value) 

tS  282.32 N.A. 
(9)

tF  0.978 
(0.328) 

0.548 
(0.121) 

  (9)ˆˆ1 lnt t tS F S    1.042 
(0.355) 

0.583 
(0.120) 

  (9)ˆ1 lnt t tS F S  0.989 
(0.192) 

0.553 
(0.070) 

  (9)ˆ1 lnt t tS F S   1.019 
(0.242) 

0.561 
(0.202) 

  (9)1 lnt t tS F S  0.985 
(0.378) 

0.548 
(0.121) 

 9
1t tS s   29.179 

(0.940) 
0.509 

(0.430) 

 ˆ1tS   1.066 
(0.500) 

0.447 
(0.980) 

 (9)1t tS s   2.816 
(0.508) 

0.487 
(0.658) 

9(1 )AUS
t tS e   1.352 

(0.965) 
0.583 

(0.011) 
9(1 )CAN

t tS e   0.990 
(0.455) 

0.539 
(0.080) 

9(1 )RSA
t tS e   1.471 

(0.986) 
0.535 

(0.102) 
, 9(1 )CRB ind

t tS p   1.159 
(0.742) 

0.623 
(0.000) 

, 9(1 )CRB met
t tS p   2.734 

(0.952) 
0.618 

(0.000) 
, ,(9)(1 )CRB ind

t tS p   1.030 
(0.320) 

0.579 
(0.104) 

, ,(9)(1 )CRB met
t tS p   1.226 

(0.280) 
0.610 

(0.028) 
NOTES: See Table 4. 
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Table 8: 12-Month Ahead Forecast Error Diagnostics for Nominal WTI Price of Oil 
 

12|
ˆ

t tS   MSPE 
(p-value) 

Success Ratio 
(p-value) 

tS  302.54 N.A. 
(12)

tF  0.941 
(0.139) 

0.557 
(0.064) 

  (12)ˆˆ1 lnt t tS F S    1.240 
(0.461) 

0.537 
(0.396) 

  (12)ˆ1 lnt t tS F S  1.052 
(0.706) 

0.528 
(0.152) 

  (12)ˆ1 lnt t tS F S   1.281 
(0.391) 

0.528 
(0.442) 

  (12)1 lnt t tS F S  0.950 
(0.177) 

0.557 
(0.064) 

 12
1t tS s   179.77 

(0.886) 
0.496 

(0.584) 

 ˆ1tS   1.093 
(0.478) 

0.407 
(0.999) 

 (12)1t tS s   3.746 
(0.557) 

0.439 
(0.934) 

 ,121t tS i  0.998 
(0.482) 

0.566 
(N.A.) 

,12
ˆCF

tS  0.944 
(0.382) 

0.539 
(0.081) 

12(1 )AUS
t tS e   1.678 

(0.969) 
0.583 

(0.010) 
12(1 )CAN

t tS e   1.144 
(0.795) 

0.504 
(0.443) 

12(1 )RSA
t tS e   1.911 

(0.997) 
0.491 

(0.489) 
, 12(1 )CRB ind

t tS p   1.603 
(0.887) 

0.561 
(0.058) 

, 12(1 )CRB met
t tS p   6.117 

(0.958) 
0.579 

(0.019) 
, ,(12)(1 )CRB ind

t tS p   0.982 
(0.271) 

0.566 
(0.110) 

, ,(12)(1 )CRB met
t tS p   1.203 

(0.296) 
0.548 

(0.200) 

| ,
ˆ (1 )MSC

t h t t t hS S     1.047 
(0.764) 

0.566 
(N.A.) 

| ,
ˆ (1 )SPF

t h t t t hS S     1.016 
(0.667) 

0.579 
(N.A.) 

NOTES: See Table 4. 
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Table 9: Short-Horizon Forecasts of the Nominal WTI Price of Oil from Daily Oil Futures Prices since January 1986 
 

 Start of evaluation period: January 1986 
 1h   3h   6h   9h   12h   
 MSPE SR MSPE SR MSPE SR MSPE SR MSPE SR 

( )h
tF  0.963 

(0.009) 
0.522 

(0.040) 
0.972 

(0.053) 
0.516 

(0.072) 
0.973 

(0.077) 
0.535 

(0.002) 
0.964 

(0.063) 
0.534 

(0.001) 
0.929 

(0.001) 
0.562 

(0.000) 
 

NOTES: There are 5968, 5926, 5861, 5744, and 5028 daily observations at horizons of 1 through 12 months, respectively. Following 
Leamer’s (1978) rule for adjusting the threshold for statistical significance with changes in the sample size, p-values below about 
0.0035 are considered statistically significant and are shown in boldface. 

 
 

 
 
 
 

Table 10: Long-Horizon Forecasts of the Nominal WTI Price of Oil from 
Daily Oil Futures Prices 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
NOTES: Following Leamer’s (1978) rule for adjusting the threshold  
for statistical significance with changes in the sample size, p-values  
below 0.0044 for a horizon of two years are considered statistically  
significant and are shown in boldface. 

( )h in years  Starting 
date 

Sample 
size 

MSPE SR 

2 11/20/90 
 

3283 
 

1.159 
(1.000) 

0.515 
(0.000) 

3 05/29/91 
 

515 
 

1.168 
(0.996) 

0.518 
(0.281) 

4 11/01/95 
 

194 
 

1.212 
(1.000) 

0.294 
(N.A.) 

5 11/03/97 
 

154 
 

1.280 
(1.000) 

0.247 
(N.A.) 

6 11/03/97 
 

134 
 

1.158 
(0.999) 

0.276 
(N.A.) 

7 11/21/97 
 

22 
 

1.237 
(0.957) 

0.500 
(N.A.) 
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Table 11: Recursive Forecast Error Diagnostics for the Real Price of Oil from Selected AR and ARMA Models 
U.S. Refiners’ Acquisition Cost for Imported Crude Oil 

 

 Evaluation period: 1991.12-2009.8 
 1h   3h   6h   9h   12h   
 MSPE SR MSPE SR MSPE SR MSPE SR MSPE SR 

AR(12) 0.849 
(0.000) 

0.599 
(0.001) 

0.921 
(0.000) 

0.552 
(0.081) 

0.969 
(0.042) 

0.522 
(0.370) 

1.034 
(0.374) 

0.441 
(0.915) 

1.022 
(0.279) 

0.517 
(0.472) 

AR(24) 0.898 
(0.000) 

0.576 
(0.023) 

0.978 
(0.010) 

0.557 
(0.062) 

1.008 
(0.133) 

0.565 
(0.073) 

1.056 
(0.373) 

0.446 
(0.871) 

1.058 
(0.344) 

0.453 
(0.859) 

AR(SIC) 0.826 
(0.000) 

0.613 
(0.001) 

0.936 
(0.000) 

0.557 
(0.130) 

1.015 
(0.374) 

0.488 
(0.796) 

1.039 
(0.483) 

0.515 
(0.602) 

1.007 
(0.257) 

0.532 
(0.519) 

AR(AIC) 
 

0.842 
(0.000) 

0.613 
(0.001) 

0.940 
(0.001) 

0.562 
(0.090) 

0.983 
(0.082) 

0.483 
(0.826) 

1.013 
(0.273) 

0.500 
(0.690) 

0.989 
(0.170) 

0.527 
(0.549) 

ARMA(1,1) 0.837 
(0.001) 

0.580 
(0.009) 

0.932 
(0.000) 

0.514 
(0.560) 

0.982 
(0.094) 

0.493 
(0.767) 

1.006 
(0.266) 

0.510 
(0.644) 

0.992 
(0.201) 

0.527 
(0.572) 

ARI(11) 0.856 
(0.000) 

0.604 
(0.000) 

0.939 
(0.003) 

0.571 
(0.024) 

1.003 
(0.224) 

0.517 
(0.243) 

1.095 
(0.969) 

0.471 
(0.671) 

1.091 
(0.937) 

0.512 
(0.279) 

ARI(23) 0.898 
(0.000) 

0.561 
(0.037) 

0.978 
(0.015) 

0.538 
(0.139) 

1.009 
(0.183) 

0.546 
(0.027) 

1.068 
(0.694) 

0.500 
(0.248) 

1.068 
(0.654) 

0.508 
(0.120) 

ARI(SIC) 0.833 
(0.000) 

0.594 
(0.003) 

0.951 
(0.002) 

0.605 
(0.001) 

1.041 
(0.951) 

0.546 
(0.101) 

1.053 
(0.908) 

0.505 
(0.570) 

1.016 
(0.423) 

0.527 
(0.377) 

AR I(AIC) 
 

0.849 
(0.000) 

0.604 
(0.002) 

0.958 
(0.006) 

0.605 
(0.002) 

1.008 
(0.366) 

0.556 
(0.050) 

1.042 
(0.806) 

0.500 
(0.610) 

1.015 
(0.375) 

0.527 
(0.346) 

ARIMA(0,1) 0.841 
(0.001) 

0.599 
(0.001) 

0.945 
(0.000) 

0.581 
(0.004) 

1.009 
(0.464) 

0.546 
(0.093) 

1.032 
(0.767) 

0.515 
(0.463) 

1.017 
(0.410) 

0.512 
(0.575) 

 

NOTES: ARI and ARIMA, respectively, denote AR and ARMA models in log-differences. The SIC and AIC are implemented with an 
upper bound of 12 lags. MSPE is expressed as a fraction of the MSPE of the no-change forecast. SR stands for success ratio. The p-
values for the sign test are computed following Pesaran and Timmermann (2009); those for the test of equal MSPEs are computed by 
bootstrapping the VAR model under the null, adapting the bootstrap algorithm in Kilian (1999). 
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Table 12: Recursive Forecast Error Diagnostics for the Real Price of Oil from Selected Unrestricted VAR Models 
U.S. Refiners’ Acquisition Cost for Imported Crude Oil 

 

  Evaluation period: 1991.12-2009.8 
Model:  (1) (2) (3) (4) (5) (6) 
p  h  MSPE SR MSPE SR MSPE SR MSPE SR MSPE SR MSPE SR 

12 1 0.814 
(0.000) 

0.561 
(0.030) 

0.876 
(0.000)

0.594 
(0.004)

0.863 
(0.000)

0.613 
(0.000)

0.801 
(0.000)

0.613 
(0.000)

0.863 
(0.000)

0.580 
(0.017)

0.798 
(0.000)

0.585 
(0.006)

 3 0.834 
(0.000) 

0.567 
(0.080) 

0.960 
(0.008)

0.562 
(0.078)

0.947 
(0.003)

0.576 
(0.040)

0.833 
(0.000)

0.614 
(0.005)

0.944 
(0.003)

0.524 
(0.267)

0.833 
(0.000)

0.586 
(0.033)

 6 0.940 
(0.011) 

0.546 
(0.173) 

1.011 
(0.184)

0.507 
(0.523)

0.991 
(0.086)

0.536 
(0.294)

0.920 
(0.006)

0.551 
(0.148)

0.996 
(0.123)

0.527 
(0.329)

0.922 
(0.007)

0.511 
(0.161)

 9 1.047 
(0.314) 

0.564 
(0.125) 

1.085 
(0.596)

0.534 
(0.339)

1.060 
(0.470)

0.539 
(0.314)

0.999 
(0.148)

0.544 
(0.231)

1.063 
(0.555)

0.471 
(0.781)

1.000 
(0.130)

0.569 
(0.111)

 12 0.985 
(0.111) 

0.632 
(0.004) 

1.055 
(0.391)

0.562 
(0.154)

1.036 
(0.313)

0.567 
(0.132)

0.948 
(0.059)

0.617 
(0.012)

1.045 
(0.397)

0.503 
(0.593)

0.931 
(0.039)

0.647 
(0.002)

24 1 0.961 
(0.000) 

0.561 
(0.033) 

0.954 
(0.000)

0.552 
(0.086)

0.912 
(0.000)

0.580 
(0.010)

0.892 
(0.000)

0.571 
(0.034)

0.912 
(0.000)

0.561 
(0.052)

0.895 
(0.000)

0.561 
(0.046)

 3 1.081 
(0.073) 

0.614 
(0.006) 

1.151 
(0.708)

0.591 
(0.024)

1.048 
(0.186)

0.619 
(0.002)

0.924 
(0.000)

0.591 
(0.012)

1.005 
(0.038)

0.548 
(0.100)

0.978 
(0.004)

0.605 
(0.019)

 6 1.298 
(0.852) 

0.604 
(0.023) 

1.271 
(0.945)

0.585 
(0.081)

1.078 
(0.431)

0.594 
(0.038)

1.052 
(0.237)

0.546 
(0.163)

1.073 
(0.523)

0.522 
(0.261)

1.129 
(0.467)

0.585 
(0.081)

 9 1.476 
(0.925) 

0.583 
(0.080) 

1.441 
(0.962)

0.593 
(0.085)

1.153 
(0.656)

0.632 
(0.015)

1.150 
(0.614)

0.431 
(0.900)

1.158 
(0.765)

0.422 
(0.881)

1.255 
(0.747)

0.593 
(0.086)

 12 1.415 
(0.820) 

0.647 
(0.013) 

1.407 
(0.919)

0.612 
(0.049)

1.137 
(0.515)

0.642 
(0.010)

1.137 
(0.505)

0.468 
(0.782)

1.169 
(0.700)

0.458 
(0.718)

1.208 
(0.565)

0.617 
(0.044)

 

NOTES: MSPE is expressed as a fraction of the MSPE of the no-change forecast. SR stands for success ratio. The p-values for the 
sign test are computed following Pesaran and Timmermann (2009); those for the test of equal MSPEs are computed by bootstrapping 
the VAR model under the null, adapting the bootstrap algorithm in Kilian (1999). Model (1) includes all four variables used in the 
VAR model of Kilian and Murphy (2010); model (2) excludes oil inventories; model (3) excludes both oil inventories and oil 
production; model (4) excludes real activity and oil production; model (5) excludes real activity and oil inventories; and model (6) 
excludes oil production.
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Table 13: Recursive Forecast Error Diagnostics for the Real Price of Oil from Selected AR and ARMA Models 
WTI 

 
  

 Evaluation period: 1991.12-2009.8 
 1h   3h   6h   9h   12h   
 MSPE SR MSPE SR MSPE SR MSPE SR MSPE SR 

AR(12) 0.972 
(0.015) 

0.500 
(0.525) 

0.974 
(0.032) 

0.533 
(0.813) 

1.011 
(0.279) 

0.459 
(0.813) 

1.037 
(0.461) 

0.441 
(0.920) 

1.034 
(0.403) 

0.478 
(0.747) 

AR(24) 1.035 
(0.130) 

0.486 
(0.666) 

0.994 
(0.048) 

0.500 
(0.474) 

0.995 
(0.090) 

0.502 
(0.503) 

1.008 
(0.173) 

0.461 
(0.806) 

1.019 
(0.230) 

0.473 
(0.720) 

AR(SIC) 0.947 
(0.002) 

0.505 
(0.667) 

0.979 
(0.047) 

0.491 
(0.813) 

1.022 
(0.418) 

0.464 
(0.896) 

1.052 
(0.519) 

0.471 
(0.844) 

1.058 
(0.488) 

0.508 
(0.610) 

AR(AIC) 
 

0.949 
(0.002) 

0.505 
(0.656) 

0.980 
(0.050) 

0.491 
(0.813) 

1.022 
(0.375) 

0.464 
(0.896) 

1.046 
(0.463) 

0.471 
(0.844) 

1.047 
(0.420) 

0.508 
(0.610) 

ARMA(1,1) 0.956 
(0.008) 

0.500 
(0.774) 

0.982 
(0.058) 

0.491 
(0.815) 

1.010 
(0.302) 

0.473 
(0.857) 

1.036 
(0.420) 

0.476 
(0.420) 

1.040 
(0.402) 

0.508 
(0.610) 

ARI(11) 0.978 
(0.024) 

0.505 
(0.436) 

0.985 
(0.069) 

0.529 
(0.234) 

1.032 
(0.704) 

0.517 
(0.278) 

1.081 
(0.924) 

0.456 
(0.703) 

1.083 
(0.875) 

0.433 
(0.848) 

ARI(23) 1.034 
(0.150) 

0.524 
(0.216) 

0.988 
(0.039) 

0.538 
(0.127) 

0.988 
(0.088) 

0.594 
(0.006) 

1.016 
(0.275) 

0.534 
(0.100) 

1.026 
(0.345) 

0.522 
(0.177) 

ARI(SIC) 0.944 
(0.001) 

0.528 
(0.267) 

0.971 
(0.020) 

0.571 
(0.060) 

1.013 
(0.529) 

0.546 
(0.305) 

1.023 
(0.556) 

0.505 
(0.836) 

1.020 
(0.403) 

0.517 
(0.743) 

AR I(AIC) 
 

0.947 
(0.003) 

0.524 
(0.333) 

0.976 
(0.036) 

0.552 
(0.180) 

1.018 
(0.584) 

0.517 
(0.761) 

1.031 
(0.619) 

0.466 
(1.000) 

1.026 
(0.469) 

0.488 
(0.996) 

ARIMA(0,1) 0.952 
(0.006) 

0.524 
(0.301) 

0.975 
(0.028) 

0.600 
(0.006) 

1.009 
(0.390) 

0.527 
(0.574) 

1.021 
(0.513) 

0.500 
(0.927) 

1.019 
(0.382) 

0.517 
(0.817) 

   

NOTES: See Table 11.
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Table 14: Recursive Forecast Error Diagnostics for the Real Price of Oil from Selected Unrestricted VAR Models 
WTI 

 

  Evaluation period: 1991.12-2009.8 
Model:  (1) (2) (3) (4) (5) (6) 
p  h  MSPE SR MSPE SR MSPE SR MSPE SR MSPE SR MSPE SR 

12 1 0.896 
(0.000) 

0.519 
(0.279) 

0.981 
(0.017)

0.467 
(0.885)

0.976 
(0.014)

0.481 
(0.810)

0.893 
(0.000)

0.547 
(0.056)

0.983 
(0.024)

0.505 
(0.461)

0.882 
(0.000)

0.547 
(0.053)

 3 0.843 
(0.000) 

0.538 
(0.208) 

0.979 
(0.034)

0.524 
(0.336)

0.968 
(0.022)

0.548 
(0.181)

0.877 
(0.000)

0.552 
(0.119)

0.994 
(0.092)

0.529 
(0.266)

0.841 
(0.000)

0.548 
(0.165)

 6 0.988 
(0.063) 

0.517 
(0.331) 

1.035 
(0.353)

0.541 
(0.279)

1.011 
(0.209)

0.551 
(0.226)

0.984 
(0.070)

0.541 
(0.206)

1.037 
(0.520)

0.464 
(0.785)

0.973 
(0.043)

0.541 
(0.207)

 9 1.053 
(0.334) 

0.534 
(0.230) 

1.080 
(0.587)

0.485 
(0.688)

1.049 
(0.436)

0.510 
(0.507)

1.021 
(0.257)

0.564 
(0.132)

1.067 
(0.639)

0.441 
(0.919)

1.014 
(0.184)

0.539 
(0.216)

 12 1.007 
(0.178) 

0.562 
(0.125) 

1.062 
(0.450)

0.498 
(0.557)

1.041 
(0.363)

0.498 
(0.578)

0.988 
(0.152)

0.602 
(0.045)

1.059 
(0.518)

0.438 
(0.909)

0.968 
(0.098)

0.592 
(0.053)

24 1 1.109 
(0.006) 

0.509 
(0.419) 

1.118 
(0.127)

0.491 
(0.672)

1.053 
(0.060)

0.538 
(0.192)

1.011 
(0.003)

0.552 
(0.037)

1.063 
(0.182)

0.500 
(0.487)

1.013 
(0.002)

0.509 
(0.451)

 3 1.112 
(0.072) 

0.581 
(0.037) 

1.185 
(0.701)

0.552 
(0.191)

1.017 
(0.055)

0.562 
(0.134)

0.970 
(0.005)

0.562 
(0.060)

1.049 
(0.265)

0.481 
(0.663)

0.962 
(0.002)

0.619 
(0.003)

 6 1.369 
(0.843) 

0.570 
(0.074) 

1.312 
(0.938)

0.541 
(0.306)

1.030 
(0.147)

0.594 
(0.062)

1.107 
(0.475)

0.483 
(0.605)

1.075 
(0.515)

0.488 
(0.541)

1.127 
(0.317)

0.589 
(0.043)

 9 1.455 
(0.854) 

0.564 
(0.134) 

1.340 
(0.938)

0.520 
(0.484)

1.060 
(0.261)

0.583 
(0.115)

1.160 
(0.602)

0.446 
(0.815)

1.106 
(0.586)

0.490 
(0.484)

1.153 
(0.373)

0.583 
(0.084)

 12 1.369 
(0.691) 

0.562 
(0.190) 

1.378 
(0.870)

0.503 
(0.572)

1.054 
(0.249)

0.592 
(0.084)

1.167 
(0.570)

0.478 
(0.649)

1.119 
(0.568)

0.478 
(0.599)

1.086 
(0.214)

0.602 
(0.056)

 

NOTES: See Table 12.
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Table 15: Recursive MSPE Ratios for the Real Price of Oil from Selected Bayesian VAR Models 
 
 

  Evaluation period: 1991.12-2009.8 
Model:  (1) (2) (3) (4) (5) (6) 
p  h  RAC WTI RAC WTI RAC WTI RAC WTI RAC WTI RAC WTI 

12 1 0.800 0.892 0.825 0.938 0.828 0.945 0.798 0.896 0.827 0.951 0.795 0.883 
 3 0.876 0.886 0.929 0.954 0.930 0.957 0.855 0.890 0.921 0.972 0.867 0.870 
 6 0.967 0.990 0.988 1.008 0.987 1.006 0.943 0.985 0.971 1.011 0.962 0.984 
 9 1.052 1.036 1.053 1.036 1.054 1.037 1.033 1.037 1.031 1.029 1.050 1.036 
 12 1.004 1.005 1.024 1.024 1.028 1.028 0.994 1.008 1.015 1.022 1.004 1.003 
24 1 0.801 0.894 0.826 0.939 0.828 0.947 0.800 0.902 0.829 0.952 0.795 0.886 
 3 0.883 0.875 0.939 0.945 0.944 0.948 0.860 0.877 0.924 0.958 0.876 0.859 
 6 0.993 0.990 1.012 1.007 1.015 1.000 0.955 0.980 0.970 0.991 0.991 0.986 
 9 1.095 1.038 1.093 1.034 1.096 1.032 1.044 1.028 1.028 1.005 1.097 1.037 
 12 1.059 1.002 1.073 1.016 1.078 1.018 1.016 1.010 1.026 1.008 1.058 0.998 
 

NOTES: The Bayesian VAR forecast is based on the data-based procedure proposed in Giannone, Lenza and Primicieri (2010) for 
selecting the optimal degree of shrinkage in real time. MSPE is expressed as a fraction of the MSPE of the no-change forecast.  
Boldface indicates MSPE ratios lower than for the corresponding unrestricted VAR forecasting model in Tables 12 and 14. RAC 
refers to the U.S. refiners’ acquisition cost for imported crude oil and WTI to the price of West Texas Intermediate crude oil. Model 
(1) includes all four variables used in the VAR model of Kilian and Murphy (2010); model (2) excludes oil inventories; model (3) 
excludes both oil inventories and oil production; model (4) excludes real activity and oil production; model (5) excludes real activity 
and oil inventories; and model (6) excludes oil production. 
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Table 16: Recursive Forecast Error Diagnostics for the Real Price of Oil (by Country) 
 
 

  Evaluation period: 1991.12-2009.8 
   
  U.S. Refiners’ Acquisition Cost for Imported Crude Oil 
  1h   3h   6h   9h   12h   
  MSPE SR MSPE SR MSPE SR MSPE SR MSPE SR 

Japan AR(12) 0.811 
(0.000) 

0.604 
(0.005) 

0.917 
(0.001) 

0.548 
(0.112) 

0.986 
(0.100) 

0.483 
(0.741) 

1.035 
(0.445) 

0.520 
(0.429) 

1.026 
(0.355) 

0.493 
(0.714) 

U.K. AR(12) 0.929 
(0.000) 

0.585 
(0.010) 

0.965 
(0.009) 

0.567 
(0.042) 

0.988 
(0.097) 

0.567 
(0.042) 

1.040 
(0.394) 

0.461 
(0.856) 

1.042 
(0.370) 

0.547 
(0.233) 

Canada AR(12) 0.872 
(0.000) 

0.599 
(0.004) 

0.941 
(0.002) 

0.533 
(0.207) 

0.948 
(0.019) 

0.531 
(0.266) 

1.007 
(0.210) 

0.461 
(0.808) 

0.990 
(0.159) 

0.503 
(0.534) 

            
  WTI 
  1h   3h   6h   9h   12h   
  MSPE SR MSPE SR MSPE SR MSPE SR MSPE SR 
Japan AR(12) 0.943 

(0.003) 
0.531 

(0.197) 
0.955 

(0.011) 
0.498 

(0.567) 
1.008 

(0.276) 
0.370 

(0.998) 
1.027 

(0.417) 
0.424 

(0.957) 
1.034 

(0.431)
0.416 

(0.964) 
U.K. AR(12) 1.024 

(0.358) 
0.540 

(0.110) 
1.014 

(0.262) 
0.469 

(0.760) 
1.028 

(0.392) 
0.476 

(0.720) 
1.041 

(0.440) 
0.459 

(0.828) 
1.044 

(0.416)
0.495 

(0.626) 
Canada AR(12) 0.986 

(0.030) 
0.526 

(0.297) 
0.983 

(0.053) 
0.502 

(0.414) 
0.987 

(0.122) 
0.486 

(0.633) 
1.009 

(0.257) 
0.459 

(0.767) 
0.998 

(0.213)
0.515 

(0.444) 
 

NOTES: All MSPE results have been normalized relative to the no-change forecast of the country in question. The sample period is 
the same as in Tables 11 and 13. The foreign real price is obtained by converting the U.S. real price at the real exchange rate.



108 
 

Table 17: MSPE Ratios of Linear Autoregressive Models Relative to the AR(4) Benchmark Model 
Cumulative U.S. Real GDP Growth Rates 

 
 Real RAC Price of Imports Nominal RAC Price of Imports 

Horizon Oil Price Endogenous Oil Price Exogenous Oil Price Endogenous Oil Price Exogenous 
1 1.10 1.10 1.11 1.11 
2 1.04 1.04 1.05 1.05 
3 0.99 0.98 1.00 0.99 
4 0.97 0.96 0.98 0.97 
5 0.96 0.95 0.96 0.96 
6 0.95 0.94 0.95 0.95 
7 0.92 0.92 0.92 0.92 
8 0.92 0.92 0.92 0.92 

 

NOTES: The benchmark model is an AR(4) for U.S. real GDP growth.  The first alternative is a VAR(4) model for real GDP growth 
and the percent change in the price of oil that allows for unrestricted feedback from U.S. real GDP growth to the price of oil. The 
second alternative is a restricted VAR(4) model that treats the price of oil as exogenous. Boldface indicates gains in accuracy relative 
to the benchmark model. No tests of statistical significance have been conducted, given that these models are economically 
indistinguishable. 
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Table 18a: MSPE Ratios of Nonlinear Dynamic Models Relative to the AR(4) Benchmark Model 
Cumulative U.S. Real GDP Growth Rates  

 Real Refiners’ Acquisition Cost for Imported Crude Oil 
 Unrestricted Model (20) Exogenous Model (21) 

Horizon Mork Increase Hamilton Net Increase Mork Increase Hamilton Net Increase 
  1 Year 3 Year  1 Year 3 Year 
1 1.50 1.59 1.26 1.50 1.60 1.26 
2 1.52 1.70 1.16 1.51 1.69 1.16 
3 1.40 1.69 1.10 1.39 1.67 1.10 
4 1.41 1.78 1.11 1.40 1.76 1.10 
5 1.42 1.90 1.25 1.38 1.88 1.26 
6 1.40 1.66 1.19 1.36 1.63 1.19 
7 1.41 1.47 1.13 1.36 1.43 1.12 
8 1.43 1.33 1.07 1.36 1.30 1.05 
       
 Nominal Refiners’ Acquisition Cost for Imported Crude Oil 
 Unrestricted Model ( 20 ) Exogenous Model ( 21 ) 

Horizon Mork Increase Hamilton Net Increase Mork Increase Hamilton Net Increase 
  1 Year 3 Year  1 Year 3 Year 
1 1.38 1.46 1.32 1.37 1.46 1.31 
2 1.36 1.47 1.01 1.35 1.45 1.01 
3 1.25 1.45 0.92 1.24 1.43 0.92 
4 1.25 1.50 0.92 1.24 1.47 0.91 
5 1.26 1.67 1.10 1.23 1.65 1.10 
6 1.25 1.50 1.10 1.21 1.47 1.09 
7 1.25 1.35 1.07 1.21 1.31 1.05 
8 1.26 1.23 1.03 1.21 1.20 1.01 

 

NOTES: The benchmark model is an AR(4) for U.S. real GDP growth.  The nonlinear dynamic models are described in the text. 
Boldface indicates gains in accuracy relative to benchmark model. The exogenous model suppresses feedback from lagged real GDP 
growth to the current price of oil. No tests of statistical significance have been conducted, given the computational cost of such tests. 



110 
 

Table 18b: MSPE Ratios of Nonlinear Dynamic Models Relative to the AR(4) Benchmark Model 
Cumulative U.S. Real GDP Growth Rates  

 Real Refiners’ Acquisition Cost for Imported Crude Oil 
 Restricted Model (22) Restricted Exogenous Model (23) 

Horizon Mork Increase Hamilton Net Increase Mork Increase Hamilton Net Increase 
  1 Year 3 Year  1 Year 3 Year 
1 1.31 1.40 1.16 1.30 1.40 1.16 
2 1.28 1.36 1.04 1.27 1.36 1.03 
3 1.21 1.37 1.00 1.20 1.35 1.00 
4 1.18 1.36 0.99 1.17 1.35 0.99 
5 1.17 1.46 1.12 1.14 1.44 1.13 
6 1.15 1.32 1.09 1.12 1.30 1.08 
7 1.15 1.21 1.04 1.11 1.18 1.03 
8 1.15 1.13 1.00 1.11 1.11 0.99 
       
 Nominal Refiners’ Acquisition Cost for Imported Crude Oil 
 Restricted Model ( 22 ) Restricted Exogenous Model ( 23 ) 

Horizon Mork Increase Hamilton Net Increase Mork Increase Hamilton Net Increase 
  1 Year 3 Year  1 Year 3 Year 
1 1.26 1.31 1.25 1.26 1.32 1.26 
2 1.19 1.16 0.88 1.18 1.15 0.88 
3 1.11 1.17 0.85 1.10 1.16 0.85 
4 1.08 1.13 0.83 1.07 1.13 0.82 
5 1.06 1.23 0.96 1.04 1.22 0.96 
6 1.06 1.16 0.98 1.03 1.13 0.97 
7 1.05 1.08 0.97 1.02 1.05 0.95 
8 1.06 1.04 0.95 1.03 1.01 0.93 

 

NOTES: The benchmark model is an AR(4) for U.S. real GDP growth.  The nonlinear dynamic models are described in the text. 
Boldface indicates gains in accuracy relative to benchmark model. The restricted model suppresses feedback from lagged percent 
changes in the price of oil to current real GDP growth, as proposed by Hamilton (2003, 2010). The restricted exogenous model 
combines this restriction with that of exogenous oil prices, further increasing the parsimony of the model. No tests of statistical 
significance have been conducted, given the computational cost of such tests. 
 


