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policies. Risk sharing requires that managers’ equity shares decrease with firm sizes. That, in 

turn, implies it is harder to prevent private benefit in larger firms, where managers have a 

lower equity stake under the optimal contract. Consequently, small firms invest more, pay less 

dividends, and grow faster than large firms. Despite the heterogeneity in firms’ decision rules 

and the failure of Gibrat’s law, we show that the size distribution of firms in our model 

resembles a power law distribution with a slope coefficient about 1.06, as in the data. 
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1 Introduction

Small �rms invest more Gala and Julio [2011], pay less dividend Fama and French [2001], and grow

faster (Evans [1987a], Evans [1987b], Hall [1987]). Our purpose is to understand the economic

mechanism for the high investment, low dividend payment and high growth rate of small �rms in

a quantative general equilibrium model.

We emphasize the importance of disciplining the model with the empirical evidence of power

law in the size distribution of �rms. Despite the dependence of �rms�investment policies and their

growth rates on size, the distribution of �rm size resembles closely a power law. For example, in

the U.S. data, the number of �rms with more than n employees is roughly proportional to 1=n�,

with � being closed to 1:06 and extremely stable over time. The benchmark model to explain

power law is Gibrat�s law, which states that �rms�growth rates are independent of their sizes.

Simultaneously accounting for the failure of Gibrat�s law and the power law distribution of �rm

size is the key challenge to a quantitative theory.

We incorporate moral hazard and optimal dynamic contracting into a general equilibriummodel

with neoclassical production technology. We calibrate our model to match standard macroeconomic

moments and the volatility of sales at the �rm level. We show that our model reproduces the

inverse relationship between �rm�s investment and size as well as the power law distribution when

unobservable shocks account for a small fraction of the volatility at the �rm level.

In our model, shareholders of �rms do not have the technology to invest in �rms they own and

have to delegate these decisions to managers. Managers�consumption and investment decisions are

not observable to shareholders. Capital accumulation in �rms is determined not only by managers�

investment decisions but also by unobservable and observable idiosyncratic shocks. Because total

output of �rms is an increasing function of their capital stock, it serves as a noised signal of

managers�past actions. We assume that both shareholders and managers have constant relative

risk aversion (CRRA) utility and derive the optimal dynamic contract. We close the model in

general equilibrium and characterize the cross-section distribution of �rms�characteristics.

Our focus is to understand how the presence of moral hazard a¤ects �rms� investment and

dividend payout policies at the micro level and their implications on �rm dynamics and aggregate



quantities at the macro level. We �nd both unobservable and observable shocks important in

understanding the size-investment and size-dividend payout relationships in the data. In our

model, the ratio between a manager�s continuation utility and the size of the �rm he operates

can be interpreted as the manager�s equity share in the �rm. Qualitatively, the presence of the

unobservable shocks gives rise to moral hazard problems and implies that managers have stronger

incentive to invest if they have higher equity stakes in the �rms they manage. As a result, �rms�

investment-to-capital ratio increases in managers�equity shares.

Quantitatively, the predictions of our model are consistent with the empirical pattern on size-

investment and size-dividend payout relationships only when observable shocks account for most

of the cross-section dispersion at the �rm level. Under the optimal contract, risk sharing with

respect to the observable idiosyncratic shocks implies that the managers�equity share in the �rm

decreases with the amount of favorable observable shocks. When observable shocks account for

most of the heterogeneity in the cross section of �rms, the managers�equity share is typically high

in small �rms and low in large �rms. As a result, in our model small �rms invest more, pay less

dividend and grow faster due to high managers�equity shares.

In addition, we show that despite the failure of Gibrat�s law, the size distribution of �rms

in our model closely resembles a power law distribution with a slope coe¢ cient close to 1:06,

as in the data. Firms in our model can get large for one of two reasons: Some �rms are large

because they have experienced a sequence of observable positive productivity shocks. Under the

optimal contract, the manager�s shares in these �rms decrease as they grow larger and so do their

investment rates. Other �rms become large because of their high historical investment rates rather

than favorable observable shocks. The latter kind of large �rms continue to invest a high fraction

of output and therefore grow fast. As a result, although large �rms invest less than small ones do

on average, a substantial fraction of them continue to grow fast and contribute to the fat tail of

the power law distribution.

We cast our model in continuous time. Like previous literature, for example, Sannikov [2008],

Williams [2011] and DeMarzo and Sannikov [2006], we �nd that continuous time methods o¤er a

convenient way to characterize the optimal contract.1 We show that the optimal contract can be

1In Ai and Li [2011], we show our methodology can be extended to allow for stochastic di¤erential utility.
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characterized as the solution to an ordinary di¤erential equation with known boundary conditions.

An additional advantage of our continuous time framework is that it allows a simple characteri-

zation of the cross-sectional distribution of �rms�characteristics. By exploring the homogeneity

property of �rms�decision rules, we show that the two-dimensional distribution of �rm character-

istics can be summarized by a one-dimensional measure de�ned on the space of scaled continuation

utilities of the agent. This measure obeys a version of the Kolmogorov forward equation whose

solution can be easily calculated numerically.2

The microeconomic foundation of our model is related to a large literature on �rm dynam-

ics and economic growth with principal-agent problems. Earlier work includes Albuquerque and

Hopenhayn [2004], Clementi and Hopenhayn [2006], Quadrini [2004]. Their main focus is to inves-

tigate investment behavior inside the �rm under optimal long-term contracts in various contracting

environments. The above papers typically abstract from capital accumulation on the �rm side.

Recently, DeMarzo et al. [2009], Biais et al. [2010], Philippon and Sannikov [2007], Clementi et al.

[2008], Williams [2006] and He [2009] incorporate �rm growth and �rm size dynamics in dynamic

agency models. In DeMarzo et al. [2009], Biais et al. [2010], Philippon and Sannikov [2007],

Clementi et al. [2008] and Williams [2006] , the investment decision is made by the principal and

is publicly observable. The agent�s action does not directly a¤ect �rm growth. He [2009] presents

a model in which the manager�s hidden action a¤ects the expected growth rate of the �rm. As

in DeMarzo et al. [2009], Biais et al. [2010], Philippon and Sannikov [2007], He [2009]�s model

also focuses on the case of risk neutral agent. None of the above papers studies the moral hazard

problem in investment as we do in this paper.

This paper di¤ers from the above literature in that it is in a quantitative, general equilibrium

setup. The general equilibrium framework allows us to tie some of the important assumptions in

the above literature to the structural parameters of preferences and technologies. For example,

partial equilibriummodels typically specify an exogenous liquidation value of �rms, and a di¤erence

between the discount rates of the principal and the agent. The di¤erence between the discount

rate of the principal and the agent is motivated by precautionary saving motives of the latter. In

2Ai (ADD) shows that this approach can be applied to a large class of general equilibrium models with hetero-
geneous agents/�rms.
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our framework, the liquidation value of �rms is determined endogenously by the non-negativity

constraint of dividend payment. We do not assume the di¤erence between the discount rates of the

principal and the agent. The production technology in our model is governed by a few parameters,

capital share, depreciation rate, volatility of �rm level output, and total factor productivity at

the macro level. This allows us to draw on the research in a large body of the macroeconomics

literature to discipline our choices of these parameters in calibration. It also allows us to confront

the implications of the model with both empirical evidence at the macro level, as well as at the

�rm level. For example, our model relates the equilibrium distribution of �rms�characteristics to

the dynamics of individual �rms�performance. Because the distribution of �rms characteristics

depends on the parameters of �rms�technology, this provides additional discipline in choosing the

structural parameters of model from micro-evidence in quantitative exercises.

Our paper builds on the empirical and theoretical literature on �rm dynamics and the size

distribution of �rms. Gabaix [2009] surveys power laws in economics and �nance in general.

Luttmer [2011] reviews the recent literature on power laws and �rm dynamics. Equilibrium models

of �rm dynamics includes Jovanovic [1982], Hopenhayn [1992], Klette and Kortum [2004], Luttmer

[2007], and Arkolakis [2011], among others. None of the above papers study dynamic agency and

delegated investment problems as we do. The relationship between �rm size and �rms�investment

and payout policies has been documented by many researchers. Mans�eld [1962] is among the

earliest to show that small �rms grow faster. Evans [1987a] and Evans [1987b] argue that the size-

growth relationship is robust to possible sample selection bias. Fama and French [2001] document

that large �rms are much more likely to pay dividend than small �rms do.

The rest of the paper is planned as follows. We introduce the setup of the model in Section

2. Section 3 characterizes the optimal dynamic contract for individual �rms. Section 4 aggregates

�rms decisions, studies the cross-section distribution of �rms�characteristics, and closes the model

in general equilibrium. We present our calibration results in Section 5. Section 6 concludes the

paper.
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2 Setup of the Model

2.1 Preference and Technology

2.1.1 Preferences of Shareholders and Managers

There are a unit measure of shareholders in the economy who can plant trees. The knowledge

to grow trees is known only to managers, a special type of agents who arrive at the economy in

overlapping generations.3 The shareholders, therefore have to delegate the investment decisions

to managers. To keep our language consistent with the principal-agent literature, we will use the

terminology shareholders and principals, managers and agents interchangeably.

Time is continuous and in�nite. Shareholders and managers have identical preferences repre-

sented by expected utility of the form:

Z 1

0

e��t
1

1� 
C
1�

t dt;

where 
 > 0 is the relative risk aversion coe¢ cient and � > 0 is the discount rate. Shareholders

are also endowed with one unit of labor which is supplied inelastically.

2.1.2 Production and Investment Technology

A tree is a technology to combine labor and tree-speci�c capital to produce consumption goods,

and to accumulate tree-speci�c capital over time. At any point of time, shareholders can plant

trees. Trees are indexed by j and each tree is associated with a certain amount of tree-speci�c

capital. We use Kj;t to denote the amount of capital of tree j at time t. A tree combines capital

and labor to produce consumption goods via the standard Cobb-Douglas technology:

Yj;t = zKj;t
�Nj;t

1��;

3The overlapping generation aspect of our model follows the continuous time �perpetual youth" model of Blan-
chard [1985].
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where z is an economy-wide common productivity parameter, and Yj;t and Nj;t denote the total

output produced and labor employed by tree j at time t. We focus on the case in which z is a

constant.

Let Wt denote the real wage at time t, the total operating pro�t of tree j at time t is

�(Kj;t) = max
Nj;t

�
zKj;t

�Nj;t
1�� �WtNj;t

	
: (1)

Tree-speci�c capital can be accumulated according to the following investment technology:

dKj;t = Kj;t

�
��dt+ �TdBj;t

�
+ Ij;tdt; (2)

where Ij;t is the total investment chosen by the manager of the tree. � is the depreciation rate of

capital common among all trees. The term Bj;t is a 2 � 1 vector of standard Brownian motions

independent across �rms, and

�TdBj = �udBu;j + �odBo;j:

In the above expression, �u; �o > 0 are constants. The Brownian motion Bu;j is unobservable to

all except the manager who operates the tree, and the Brownian motion Bo;j is common knowledge

in the economy.

2.1.3 Information and Managerial Compensation

At any point of time t, given the total amount of capital stock Kj;t, which is observable to all,

the manager makes observable decisions on labor hiring Nj;t. After the wage bill WtNj;t is paid,

managers hand in the total operating pro�t, �(Kj;t), to shareholders. Total operating pro�t

is divided among dividend payment to shareholders, Dj;t, compensation to the manager, Cj;t,

investment in the �rm, and a cost of capital adjustment of the form H (Ij;t; Kj;t):

Dj;t + Cj;t + Ij;t +H (Ij;t; Kj;t) = � (Kj;t) : (3)
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We assume dividend has to be non-negative and cannot exceed total operating pro�t:

0 � Dj;t � �(Kj;t) : (4)

The consumption and investment decisions of the manager are observable only to themselves.

Given operating pro�t �(Kj;t) and dividend policy Dj;t, equation (3) imposes a constraint on

manager�s consumption and investment choices:

Cj;t + Ij;t +H (Ij;t; Kj;t) = � (Kj;t)�Dj;t:

We allow for a constant return to scale adjustment cost:

H (I;K) = h

�
I

K

�
K: (5)

We use quadratic adjustment cost: h (i) = 1
2
�h
�
I
K
� i�

�2
with 1

2i� >
�h � 0. The special case

with �h = 0 corresponds to zero adjustment cost. The assumption �h < 1
2i� guarantees that the

agent can always obtain a positive amount of consumption by setting Ij (t) negative regardless of

shareholder�s policy. We assume that there is a minimum level of investment-to-capital ratio, that

is,
Ij;t
Kj;t

� �B;

for some large real number B > 0. This is merely a technical assumption that ensures that

managers�optimization problems have compact choice sets and therefore well-de�ned solutions.

We will chose B to be large enough so that the above constraint never binds in equilibrium.

2.1.4 Entry and Exit of Firms

A unit measure of managers arrive at the economy at each point of time. Upon arrival, a manager

is endowed with the technology to operate a tree, and an outside option that delivers a reservation

utility U04. A unit measure of managers arrive at the economy at each point in time. The

4The reservation utility can be endogenized by assuming that managers have access to an alternative technology
that delivers exactly the life time utility U0. We do not spell out the details here as in equilibrium, this option is
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reservation utility of newly arrived managers is distributed according to a probability measure �

with support [UL; UH ].

At each point of time, the principal o¤ers a contract to every newly arrived manager that

speci�es the initial size of the tree to be delegated to the manager and future payment to the

manager as a function of the history of all past realizations of observables and actions. If the o¤er

is accepted, the principal will plant the tree and delegate the tree to the manager until he exits

the economy. Planting a tree with initial size K0 costs exactly K0 amount of consumption good.

Optimality requires that shareholders o¤er contracts to managers that deliver exactly their

reservation utility upon arrival. We assume full commitment on both sides. In this case all

managers will accept their contracts and work for the tree until they exit the economy. Given

U0 2 [UL; UH ], shareholders will choose the initial size of the tree optimally. Let K0 (U0) denote

the optimal initial size of the tree delegated to a manager with reservation utility U0. The total

amount of resources used to plan new trees is therefore

Z
[UL;UH ]

K0 (U) � (dU) :

We assume that market is complete, so that shareholders can fully diversify any idiosyncratic

shocks. However, because of the moral hazard problem, the only way that managers can credibly

participate in the credit market is though the compensation contracts that tie their consumption

to the performance of the tree that he operates.

Each tree receives a blight disease shock with an exogenous Poisson rate � > 0 per unit of time.

Once the shock hits, the tree stops producing fruits that can be consumed by shareholders and

then exits the economy. Let � denote the stopping time at which the tree is hit by the shock. The

manager of the tree also exits the economy at time � with a terminal utility T (K� ). We assume

T (K) =
(uTK)

1�


1� 
 ; uT > 0

to be homogeneous of degree of 1� 
 to keep the homogeneity of manager�s preference. uT > 0 is

never chosen.
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a scaling parameter. Because a unit measure of trees are planted per unit of time, and trees exit

the economy at rate �, the total measure of trees in the economy in steady state is 1
�
.

We think of each tree as a �rm and use the terminology trees and �rms interchangeably from

now on. In our setup, each �rm is identi�ed by the �rm-speci�c technology and the contractual

relationship between the shareholders and the manager of the �rm.

2.2 Shareholders�and Managers�Optimization Problem

2.2.1 Feasibility of Plans

Tree-manager pairs are indexed by j. We use � j;0 to denote the calendar time at which manager j

arrives at the economy, and we use � j to denote the time at which tree j is hit by the blight disease

and exits the economy. For each tree j, shareholders choose a dividend policy Dj;t, investment

policy Ij;t and consumption of the manager, Cj;t for all � j;0 � t < � j. We use superscript to

denote the history of the realizations of a stochastic process up to time t. For example, Kt
j

refers to the realizations of the �rm-j speci�c capital from time � j;0 to time t, fKj;sgs2[�j;0;t]. The

consumption, investment, and dividend payment policies are functions of observables, that is, the

history,
�
Kt
j ; B

t
j;o

	
, denoted by H t

j . For s � t, we use the notation Hs
j � H t

j to denote a history

that follows H t
j . To simplify notation, we suppress the �rm subscript j. Formally, a plan is a triple,

fCt (H t) ; It (H
t) ; Dt (H

t)gt2[�0;� ] that speci�es managerial consumption, investment, and dividend

payout as a function of the history, H t = fKt; Btog.

Given a plan, the manager chooses his consumption and investment policies
n
~Ct; ~It

o
t2[�0;� ]

conditioning on his own information, which contains the history of the Brownian motions, Btu and

Bto, as well as that of the manager�s own past actions. We de�ne a strategy of the manager to

be a consumption and investment policy,
n
~Ct; ~It

o
t2[�0;� ]

adapted to the �ltration generated by

the Brownian motions, Bu and Bo. Because dividend payment is observable to the principal, a

strategy is feasible given a plan, fCt (H t) ; It (H
t) ; Dt (H

t)gt2[�0;� ], if it is adapted to the manager�s

9



information �ltration and satis�es

~Ct + ~It +H
�
~It; Kt

�
= �(Kt)�Dt

�
H t
�
= Ct

�
H t
�
+ It

�
H t
�
+H

�
It
�
H t
�
; Kt

�
; for all t and H t:

(6)

That is, given a plan, feasibility of manager�s strategy requires it to be consistent with the dividend

policy prescribed by the plan. Since consumption and investment policy are unobservable to the

principal, managers can choose alternative strategies other than that prescribed by the plan in

order to maximize his utility without being detected.

Given a policy
n
~Cs; ~Is

o
s2[�0;� ]

, a manager�s continuation utility at time t � � 0 is computed as

Ut

�n
~Cs

o
s2[t;� ]

�
� Et

24� �Z
t

e��(s�t)
~C1�
s

1� 
 ds+ e
���T (K� )

35 ;
where the conditional expectation is taken with respect to manager�s information set at time t.

Formally, it is conditioned on the �ltration generated by the two dimensional Brownian motion

fBu;s; Bo;sgs2[�0;t].

Given a plan fCt (H t) ; It (H
t) ; Dt (H

t)gt2[�0;� ], at time t � � 0, the manager chooses a contin-

uation strategy
n
~Cs; ~Is

o
s2[t;� ]

from the set of all feasible strategies, to maximize Ut

�n
~Cs

o
s2[t;� ]

�
.

A plan, fCt (H t) ; It (H
t) ; Dt (H

t)gt2[�0;� ], is incentive compatible if and only if, for any H
t, Ct(H t)

and It(H t) are the optimal choice of the manager. Equivalently, a plan is incentive compatible if

and only if for any t and any history Hs � H t that follows H t,

Ut

�
fCs (Hs) ; Is (H

s)gs2[t;� ]
�
� Ut

�n
~Cs; ~Is

o
s2[t;� ]

�
; (7)

for any feasible continuation strategy,
n
~Cs; ~Is

o
s2[t;� ]

that satis�es condition (6). Following Myerson

[1997]�s language, we will call (7) the obedience constraint.

A plan fCt (H t) ; It (H
t) ; Dt (H

t)gt2[�0;� ] is said to be feasible with promised utility U if it sat-

is�es constraints (3), (4), the incentive compatibility condition in (7) and participation constraint

U�0

�
fCt; Itgt2[�0;� ]

�
= U:

10



The objective of the shareholders is to chose among the set of feasible plans to maximize her

pro�t, which we turn now to.

2.2.2 Shareholder Value Maximization

We focus on the steady-state of the economy where the aggregate consumption of shareholders is

constant. This implies that the risk-free interest rate, r, equals the discount rate of the sharehold-

ers:

r = �:

Shareholders choose a plan, fCt (H t) ; It (H
t) ; Dt (H

t)gt2[�0;� ], to maximize the present value of

�rms:

E

�Z �

�0

e�r(t��0)Dtdt

�
(8)

subject to the feasibility constraint.

2.2.3 Recursive Formulation

In this subsection, we provide a recursive formulation to describe allocations. The history of

realizations of observables and past actions can be summarized by two state variables (K;U). Let

K denote the space of possible realizations of capital, and U denote the space of promised utilities.

Using the language of Atkeson and Lucas [1992], we de�ne an allocation rule to be a collection of

functions,

C (K;U) ; I (K;U) ; D (K;U) ; N (K;U) ; Gu (K;U) and Go (K;U)

that maps the state space K � U into the real line. Given an allocation rule, we can recover

allocation recursively. First, for a given t 2 [� 0; �), determine manager consumption, investment,

dividend payout, and amount of labor hired given state variables (K t; Ut) by

Ct = C (Kt; Ut) ; It = I (Kt; Ut) ; Dt = D (Kt; Ut) ; Nt = N (Kt; Ut) .

11



Second, use the law of motion of state variables, along with the allocation rule to construct future

state variable for all possible realizations of shocks:

dUt =

�
�

�
Ut �

1

1� 
C (Kt; Ut)
1�

�
� � (T (Kt)� Ut)

�
dt

+Gu (Kt; Ut)�udBu;t +Go (Kt; Ut)�odBo;t (9)

and

dKt = Kt

��
I (Kt; Ut)

Kt

� �
�
dt+ �udBu;t + �odBo;t

�
: (10)

Given the initial condition (K0 (U�0) ; U�0), the above procedure fully describes a plan. Without

loss of generality, optimal plans can be constructed by using allocations rules.5

We provide a formal derivation of the law of motion of continuation utility in (9) in Appendix

A.2. Intuitively, the policy functions Gu (K;U) and Go (K;U) describe rules of assigning continu-

ation utilities based on realizations of the Brownian shocks. At each point of time t, for a given

level of promised utility Ut, the principal allocates the manager�s continuation utility over time and

states by choosing an instantaneous consumption �ow, C (Kt; Ut), a rate of change of continuation

utility with respect to unobservable shocks, dBu;t, Gu (Kt; Ut), and a rate of change of continuation

utility with respect to observable shocks, dBo;t, Go (Kt; Ut). A continuation contract from time t

on delivers the utility level Ut as long as (9) is satis�ed for all t < � and

U� = T (K� ) : (11)

In this formulation, the constraints (3) and (4) are written as:

C (K;U) + I (K;U) +H (I;K) +D (K;U) = � (K) : (12)

and

0 � D (K;U) � �(K) ; (13)

5Without loss of generality, all optimal payo¤s can be achieved by allocations generated by recursive allocation
rules described here. For formal justi�cation of this result, see Abreu et al. [1990], Spear and Srivastava [1987].
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respectively.

Given an allocation rule, incentive compatibility can be reduced to the optimality condition of

the manager as summarized by the following lemma:.

Lemma 1 (Incentive Compatibility) A plan constructed from the allocation rule, C (K;U), I (K;U),

D (K;U), N (K;U), Gu (K;U), Go (K;U) satis�es the obedience constraint (7) if and only if for

all (K;U),

(C (K;U) ; I (K;U)) 2 argmax
C;I

�
1

1� 
C
1�
 +

Gu (K;U)

K
I (14)

subject to C + I +H (I;K) = C (K;U) + I (K;U) +H (I (K;U) ; K)

In particular, whenever (C (K;U) ; I (K;U)) is interior,6 the above is equivalent to

Gu (K;U)

K
= �C (K;U)�
 � [1 +HI (I (K;U) ; K)] : (15)

Proof. See Appendix A.3.

Condition (15) highlights the intertemporal choice problem of the manager. The term �C (K;U)�


is the marginal utility of consumption of the manager. 1 +HI (I (K;U) ; K) is the cost of invest-

ment goods in terms of current period consumption numeraire. Therefore the left-hand side of

equation (15) is the marginal cost of investment in utility terms. Because shareholders do not

observe the Brownian motion dBu, they assign continuation utilities according to the realizated-

capital stock Kt. Therefore, from the manager�s perspective, Gu(K;U)
K

measures the increase in

continuation utility for one additional unit of capital. Obedience requires that the allocation rule

for manager�s consumption-investment decisions must be optimal from the manager�s perspective.

Equation (15) can be interpreted as the Q-theory relation from the perspective of the manager:

optimality requires that the marginal bene�t of an additional unit of investment equals its mar-

ginal cost. In this formulation, an allocation rule is said to be feasible if it satis�es conditions (12),

(13), and is incentive compatible.

6The de�nition of interior solution of concumption-investment plan is given in Appendix A.3.
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2.3 De�nition of Equilibrium

We consider the competitive equilibrium of the economy where the claims to equity of all �rms

are traded. We focus on the steady-state in which all aggregate quantities are constant. Thanks

to the recursive formulation discussed above, �rms can be identi�ed by the state variables (K;U)

which capture the heterogeneity of the trees. Let � (U;K) denote the density of the distribution of

�rms�type in steady-state. The equilibrium allocation consists of the choice of dividend payment,

managerial compensation, investment, continuation utility assignment rules, and amount of labor

hired for �rms of all types:

fD (U;K) ; C (U;K) ; I (U;K) ; Gu (U;K) ; Go (U;K) ; N (U;K)g(K;U)2K�U ,

the initial capital of newly built �rms, K0, and the total amount of consumption of sharehold-

ers, CP . Equilibrium prices include wage rate W , the price of equity for �rms of each type,

fV (U;K)gU;K , and equilibrium interest rate r. A competitive equilibrium is a list of equilibrium

allocations and prices such that

1. Maximization of operating pro�t on the product market: given the equilibrium wage, �rms

of all types choose N (U;K) to maximize operating pro�t as in (1).

2. Shareholder value maximization: given the equilibrium interest rate, for �rms of all types,

the allocation fD (U;K) ; C (U;K) ; I (U;K) ; Gu (U;K) ; Go (U;K)g maximizes the value of

equity de�ned in (8) among all feasible allocations.

3. Intertemporal maximization of shareholders: equilibrium interest rate is constant with share-

holders�intertemporal optimization, that is, r = � in steady-state.

4. Labor market clearing: the total amount of labor hired by all �rms sum up to the total labor

endowment, 1: Z Z
N (U;K) � (U;K) dUdK = 1 (16)

5. Product market clearing: total consumption of the shareholders and managers, and total
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investment in existing �rms and in creating new �rms sum up to total output:

CP +

Z
[UL;UH ]

K0 (U) � (U) dU+

Z Z
[C (K;U) + I (K;U) +H (I (K;U) ; K)] � (U;K) dUdK

=

Z Z
zK�N (K;U)1��� (K;U) dUdK: (17)

where CP denote the aggregate consumption of all shareholders.

We solve for the optimal contract for a single �rm in the next section, and close the model in

general equilibrium and characterize the distribution � (U;K) in Section 4.

3 The Optimal Contract

3.1 Homogeneity of Value Function and Decision Rules

In general, the optimal contract depends on two state variables, (K;U). The constant return to

scale technology together with the homogeneity of preferences allow us to obtain a key simpli�cation

of the contracting problem: all decision rules are homogeneous of degree 1 with respect to K. We

�rst show that given equilibrium prices, �rms�operating pro�t is linear in K. This result is due to

Hayashi [1982]�and is summarized by the following lemma. Intuitively, because the labor market

is perfectly competitive, the optimal allocation of labor equalizes the marginal product of capital

across all �rms.

Lemma 2 (Linearity of the Operating Pro�t Function) The operating pro�t function �(K) is

linear. In steady-state, the operating pro�t function is given by;

�(K) = AK;

where the constant A is the marginal product of capital:

A = �zK��1; (18)
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and the bold faced letter K stands for the total capital stock in the economy in steady state.

Proof. See Appendix A.1.1.

Because the operating pro�t function is linear in K and the manager�s utility function is

homogenous of degree 1 � 
, the value function of the principal, V (K;U) satis�es the following

homogeneity property:

V (K;U) � v
 
((1� 
)U)

1
1�


K

!
K � v (u)K (19)

for some v : R! R. We de�ne

u =
((1� 
)U)

1
1�


K
(20)

to be the normalized utility, and call v (u) the normalized value function. Note also, v (u) is the

"average Q" of the �rm, i.e. the ratio of the total value of the �rm divided by its total capital

stock. We also normalize the policies and write:

c (u) =
C (K;U)

K
; i (u) =

I (K;U)

K
; d (u) =

D (K;U)

K
; n (u) =

N (K;U)

K

gu (u) =
Gu (K;U)

(1� 
)U ; go (u) =
Go (K;U)

(1� 
)U :

Using the above notation, condition (14) can be written as

[c (u) ; i (u)] 2 argmax
�

1� 
 c
1�
 + iguu

1�
 (21)

subject to : c+ i+ h (i) = c (u) + i (u) + h (i) ; (22)

and whenever [c (u) ; i (u)] is interior, the above condition can be reduced to:

gu = �c
�
u
�1 [1 + h0 (i)] :

Shareholder value maximization implies that the normalized value function v (u) must satisfy

an optimality condition represented by the Hamilton-Jacobi-Bellman (HJB) equation. This is

16



summarized in the following proposition.

Proposition 1 Suppose v (�) is the normalized value function de�ned by (19), then v (�) is the

solution of the following HJB equation

0 = max
c;i;d;g;h

8>>>><>>>>:
d+ [i� r � �� �] v (u)

+uv0 (u)
h

�
1�


�
1�

�
c
u

�1�
�� �
1�


��
uT
u

�1�
 � 1�� (i� �) + 
 (g2�2u + h2�2o)i
+1
2
u2v00 (u)

�
(g � 1)2 �2u + (h� 1)

2 �2o
�

9>>>>=>>>>;
(23)

subject to (21) and

0 � c+ i+ h (i) + d � A (24)

Proof. See Appendix A.5.
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Figure 1: Normalized Value Function and Lower Bound.

The normalized value function is fully determined by specifying appropriate boundary con-

ditions. We provide the details of the boundary conditions in Appendix A.4. Figure 1 depicts
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the normalized value function of the �rm, where all parameters are the same as those used in

the calibration in Section 5. The right boundary point of normalized utility, uH corresponds to

the allocation where all operating pro�t is used for manager�s consumption, or equivalently, the

manager owns the entire �rm by himself. Here v (uL) = 0 because the �rm never pays dividend

to shareholders. The left boundary uL corresponds to the allocation where all operating pro�t

is distributed as dividend to shareholders. In this case, the manager chooses his consumption

optimally by setting investment negative. uH is the highest and uL is the lowest possible utility

that the shareholder can deliver to the manager. The normalized utility can also be interpreted

as a measure of manager�s equity share in the �rm. The boundary point uH can be interpreted as

manager owning 100% of the equity of the �rm, and uL is the lowest equity share of the manager

under the contract.

3.2 Investment Rate and Managers�Equity Share

We �rst show the marginal bene�t of investment (marginal Q) increases with normalized utility,

u. As a result, investment is typically high in �rms with high manger equity share.

The intuition for the above result can be explained by the managers�incentive compatibility

condition. As we show in Lemma 2, obedience implies that investment speci�ed under the optimal

contract must be optimal for the manager. Investment tends to be higher in �rms where managers

have larger equity shares because shareholders�and managers�incentives are better aligned with

each other.

The monotonicity of marginal Q with respect to u is also consistent with shareholder�s op-

timality condition. Firm value maximization requires investment policy to be optimal from the

shareholder�s perspective as well. Due to risk-sharing motives, shareholders prefer higher invest-

ment rates in �rms with larger manager equity share. Intuitively, the marginal cost of utility

provision increases with manger�s equity share. At uH , the manager own the entire �rm, therefore

the only way to deliver utility is to use all operating pro�t as the manager�s consumption. This

is a very costly way to provide utility, as there is no risk sharing and the manager�s consumption

stream is very volatile. At low levels of u, shareholders can achieve a maximum amount of risk
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sharing by conditioning future assignment of utility on realizations of unexpected shocks. Conse-

quently, it is optimal for the shareholder to invest more at high levels of u as it lowers future levels

u by increasing total capital stock K.

We formalize the above result in the following proposition.

Lemma 3 Suppose V (K;U) is strictly concave in K. VK (K;U) is strictly increasing in u over

(uL; uH).

Proof. By equation (42) in Appendix A.5, d
du
VK (K;U) = �v00 (u). By (43) and concavity of

V (K;U) in K, we have the result.

In the absence of adjustment cost, the marginal cost of investment is always one. Investment

will be positive whenever the marginal bene�t of investment, VK (K;U) is exceeds one, and negative

if VK (K;U) is lower than one. This is a direct consequence of the above proposition, which we

summarize in the following corollary.

Corollary 1 Suppose V (K;U) is strictly concave in K. Then there exist uSWTICH 2 (uL; uH)

such that the marginal bene�t of investment at uSWITCH ,

v (uSWITCH)� uSWITCHv
0 (uSWITCH) = 1.

Furthermore, 8u > uSWITCH , c (u)+ i (u) = A and i (u) > 0. 8u < uSWITCH , c (u)+ i (u) = 0 and

i (u) < 0.

Proof. See Appendix A.2.

Corollary 1 characterizes the optimal investment and dividend payout policy in the case of

no adjustment cost, which are illustrated in Figure 2 and 3. Figure 2 shows marginal Q (right

scale) and optimal investment (left scale) as functions of normalized utility u. Figure 3 depicts

manager consumption (squared line), investment (circled line), and dividend payout (dotted line)

normalized by total capital stock K. As shown in Figure 3, marginal Q increases with u. The

marginal bene�t of investment is exactly one at uSWITCH . To the right of uSWITCH , managers�

equity share is high, and the marginal Q is higher than marginal cost. In this case, it is optimal
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Figure 2: Marginal Q and Investment without Adjustment Cost.

for the shareholder to minimize dividend payment and invest as much as possible. As a result,

d (u) = 0 and c (u)+ i (u) = A as shown in Figure 3. Because of the Inada condition, consumption

cannot be negative; therefore 0 < i (u) < A, as shown in Figure 2. In Figure 3, we see that

to the right of uSWITCH , investment rate decreases and manager consumption increases slowly.

Although marginal Q increases with u, maximum investment level is bounded by the constraint

c (u) + i (u) � A. In fact because increase in normalized utility must be achieved by increase in

consumption, investment in fact decreases.

To the left of uSWITCH , the marginal bene�t of investment is strictly less than its marginal cost.

As a result, the shareholder prefers to disinvest as much as possible and distribute all operating

pro�t as dividend. In this case, d (u) = A and c (u) + i (u) = 0 as show in Figure 3. Since

consumption must be positive, i (u) < 0 in this region. Here investment is increasing manager�s

equity share and increase in promised utility is achieved by increase in investment in the �rm.

Our calibrated model allows for quadratic adjustment cost. In this case, the marginal cost of

investment increases gradually and optimal investment becomes a smooth function of u as shown
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Figure 3: Managerial Consumption, Investment and Dividend Payout without Adjustment Cost.

in Figure 4. Figure 5 illustrates manager consumption (squared line), investment (circled line), and

dividend payout (dotted line) normalized by total capital stock K for the model with adjustment

cost. We use the parameter values we calibrated in Section 5 of the paper to plot Figure 4 and

5. Overall, investment rate increases with normalized utility u and dividend decreases with u.

Manager�s consumption normalized by capital stock is decreasing in u in the left region of the

promised utility space. In this case, higher promised utility is realized by reducing the manager�s

current consumption but increasing his future consumption by increasing investment. Due to

the constraint c + i + h (i) + d � A, investment rate cannot increase inde�nitely. Eventually,

higher promised utility has to be realized by providing more current consumption and manager�s

consumption becomes increasing in u.

Variation in marginal Q induced by concavity of the �rm�s value function is the main determi-

nant of �rm�s investment decision. This aspect of our model is similar to the neoclassical model.

The di¤erence is that concavity of �rms�value function arises in neoclassical model because of

the concavity of the production function. Here the operating pro�t function is linear, and the
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Figure 4: Marginal Q and Investment.

concavity of the value function is induced by risk aversion of the manager.

The general pattern of investment and dividend policies is clear from Figure 5. Firms with high

manager equity share invest more and pay less dividend. Due to higher investment rate, they must

also grow faster on average. The next subsection discusses the dynamics of continuation utility, or

manager�s equity share under the optimal contract.

3.3 Dynamics of Continuation Utility

The evolution of continuation utility is the key to understand �rm dynamics in the model. We

�rst focus on the response of continuation utility with respect to observable shocks. We denote

� (K; u) = �VU (K;U) :

Note that VU (K;U) is the partial derivative of �rm�s value with respect to the promised util-

ity, U ; therefore � (u;K) is the marginal cost of utility provision. Using the homogeneity prop-
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erty of the value function (19), we have � (K; u) = �v0 (u)u
K
. We also use the notation

Covt [d� (Kt; ut) ; dBo;t] to denote

lim
�!0

1

�
Covt [�(Kt+�; ut+�)� � (Kt; ut) ; Bo;t+� �Bo;t] :

The following proposition states that under the optimal contract, the marginal cost of utility

provision cannot respond to observable shocks.

Proposition 2 (Constancy of � (u;K))

Under the optimal contract, the marginal cost of utility provision must not respond to observable

shocks.7 Consequently,

Covt [d� (ut; Kt) ; dBo;t] = 0 (25)

Proof. See Appendix A.6.
7A similar condition is provided in Piskorski and Tchistyi [2011] in the case of risk-neutral agent, and in Li [2011]

in the case of risk averse agent. Both papers consider the case of jump risk.
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To understand the above proposition, note that the design of the continuation contract can be

viewed as a process of assigning continuation utilities across time and states of nature. Optimality

requires that the marginal cost of utility provision across states is equalized if continuation utility

can be assigned in an unconstrained way. Although the principal must respect the incentive

compatibility constraint when allocating continuation utilities across unobservable states, there is

no constraint on doing so across observable states. In the absence of aggregate uncertainty, the

relative price of consumption goods is constant across states. If utility is additively separable, as

is true in the case of expected utility, the marginal cost of utility across observable states must

be constant. In continuous time, this is equivalent to the di¤usion coe¢ cient of d� (ut; Kt) on Bo

being zero, as in (25).

Optimal compensation in our dynamic model di¤ers from that in static models. Standard

results from the static setting imply the use of relative performance evaluation in incentive com-

patible contracts (for example, Holmström [1982]), that is, the agents should not be rewarded for

higher output due to observable exogenous shocks. This is no longer true in our dynamic setting.

Optimality requires marginal cost of utility provision to be equalized across states, not continu-

ation utility itself. In general, continuation utility U should not be equalized across observable

states unless the value function V (K;U) does not on K. In our case, the e¤ect of observable

shocks is persistent and a¤ects the state variable K. As a result, it is optimal to adjust future

continuation utility in response to these shocks even though they do not carry any information

about the unobservable action.8

Proposition 2 is also related to the "inverse Euler equation" of Rogerson [1985], Spear and

Srivastava [1987] and Golosov et al. [2003]. In fact, under the optimal contract, the marginal cost

of utility provision must be constant across time as well. Formally, one can prove that the process

fe(�+��r)tVU (Kt; Ut)gt2[�0;� ] must be a martingale. In setting where consumption and e¤ort are

separable, VU (Kt; Ut) equals the inverse of the instantaneous marginal utility of consumption, and

fe(�+��r)tVU (Kt; Ut)gt2[�0;� ] being a martingale is nothing but a continuous time version of the

"inverse Euler equation". In fact, Proposition 2 can be viewed as a generalization of the "inverse

Euler equation". One can show that under the same separability conditions in Golosov et al.

8Similar observations are also made by Li [2011] and Ho¤mann and Pfeil [2010].
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[2003], consumption of the agents must not respond to contemporaneous observable shocks.

Proposition 2 implies a simple characterization of the optimal policy go, which is summarized

as follows.

Corollary 2 (Optimal Response to Observable Shocks) The optimal choice of sensitivity of con-

tinuation utility with respect to observable shocks, go; is given by:

go (u) = 1�

v0 (u)


v0 (u) + uv00 (u)
: (26)

If the (un-normalized) value function V (K;U) is strictly concave in K and U , then go > 0 for

all u 2 [uL; uH ].

In addition, go (u) < 1 if � (K; u) > 0 and go (u) > 1 if � (K; u) < 0.

Proof. See Appendix A.6.

Corollary 2 has several important implications. First, continuation utility responds positively

to observable shocks. The reason for this result is that for a �xed U , the marginal cost of utility

provision, �
�
K; U

K

�
, is decreasing in K. Keeping U constant, an increase in K lowers manager�s

equity share u. Consequently, the marginal cost of utility provision is lower because it is easier to

implement risk sharing plans. A positive observable shock increases K . To equalize the marginal

cost of utility provision across states, it is optimal for the shareholder to assign a higher continuation

utility in response to the positive observable shock. This means go (u) > 0. The feature of our

model can be interpreted as optimal "pay for luck". Note this is in contrast with the standard

results obtained in the static setting, for example, Holmström [1982].

The second implication of the above proposition is that managers� equity share in the �rm

decreases with observable shocks whenever the marginal cost of utility provision is positive. Note

that go is the sensitivity of U with respect to the observable shock dBo;t. In our formulation, the

normalized utility u responding negatively to dBo;t is equivalent to go (u) < 1. This feature of our

model inherits the properties of optimal risk sharing plans in the case without moral hazard. With-

out moral hazard, the optimal allocation is to provide the manager with a constant consumption

stream. This arrangement means the manager�s consumption stream as a fraction of the �rm�s
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total cash �ow must decrease after a positive shock. Corollary 2 implies that the above feature of

the optimal risk sharing plan remains in the case with moral hazard.

To be more speci�c, normalized utility, u responding negatively to observable shocks is an

implication of the risk aversion of the agent. Risk aversion means for a �xed u, the marginal

cost of utility provision, � (K; u) increases in K. Without risk aversion, both manager�s utility

function and the operating pro�t function of the �rm are linear. As a result, the value function

V (K;U) is constant return to scale. This means that the marginal cost of provision does not

depend on K as long as normalized utility u is kept constant. On the other hand, keeping u

constant, risk aversion implies that the marginal utility of the manager diminishes when the �rm

size and therefore manager�s consumption increases. Or equivalently, the marginal cost of utility

provision increases with K if u is kept constant. A positive observable shock increases K, � (K; u)

will increase if one raises U in a way to keep u constant. This experiment implies that after an

observable shock raises K, U needs to increase, but not as much as K does. As a result, the

normalized utility, u drops. In other words, if a �rm�s size increases due to an observable shock,

optimal contract implies the manager�s equity share should drop. If this mechanism is important,

then we should observe manager�s equity share be higher in smaller �rms. The calibrated version

of our model does generate an inverse relation between �rm size and managers�equity share for

exactly this reason.

Thirdly, for exactly the same reason, managers�equity share increases with observable shocks

if the marginal cost of utility provision is negative. As typical in dynamic contracting problems,

the marginal cost of utility provision may be negative. This means that punishing the manager

for bad performance may be so costly that it results in a lower value of the �rm. In this case, after

a positive observable shock raises K, the marginal bene�t of utility provision, �� (K;u) increases

if u is kept constant. To equalize � (K; u) across states, u needs to go up. That is, in this case,

manager�s share in the �rm rises after a positive observable shock, go (u) > 1.

Figure 6 depicts the optimal sensitivity of continuation utility with respect to the observable

shocks, go (circled line) and the normalized value function v (u) (starred line) as functions of the

normalized promised utility, u. All quantities are calculated under the parameter values we discuss
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Figure 6: Optimal Sensitivity w.r.t Observable Shocks.

in the calibration section of the paper. uMAX denote the maximizer of the value function. To the

left of uMAX , v0 (u) > 0 and therefore � (K; u) = �v0 (u)u
K
 < 0. This is the region where

to punish the agent, the principal has to su¤er; therefore it bene�ts both parties to increase the

promised utility of the agent. Keeping u constant, an increase in K is accompanied by a drop in

the value of � (K; u) as �v0 (u)u
 < 0. To equalize � (K;u) across states, u must increase by the

concavity of v (u). Here, go (u) > 1 and the normalized continuation utility rises after a positive

observable shock.

In the case u > uMAX , � (K; u) = �v0 (u)u
K
 > 0. Here manager�s equity share decreases

with observable shocks. An increase in K increases � (K; u) since �v0 (u)u
 > 0. To equalize

� (K; u) across states, u must drop because v (u) is concave due to risk aversion.

The sensitivity of continuation utility with respect to unobservable shocks, gu (u) is shown in

Figure 7, where gu is marked with triangles. Note that gu (u) � go (u), that is, continuation utility

is more sensitive to unobservable shocks, dBu;t than to observable shocks, dBo;t. The intuition is

clear, to provide incentives for the managers to invest, continuation utility must respond strongly
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to unobservable shocks. Just as in a standard principal-agent problems, there is a trade-o¤between

risk sharing and incentive provision in our model. To provide incentive for the agent to invest,

continuation utility needs to increase after a good unobservable shock, dBu;t. More sensitivity

implies higher incentives for the agent to invest; however, at the same time, it is also associated

with higher welfare loss due to risk aversion and variations in the continuation utility. The optimal

choice of gu must trade o¤ incentive provision against risk sharing.
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Figure 7: Optimal Sensitivity w.r.t Unobservable Shocks.

Finally, we note that over the interval (uMAX;uH), an positive observable shock dBo;t moves

�rms to the left and a positive unobservable shock dBu;t moves �rms to the right in the space of

normalized utilities. If observable shocks are more important in accounting for the total volatility

in capital accumulation, then we expect �rm size as measured by K to be negatively correlated

with promised utility, u. In this case risk sharing is quantitatively more important than incentive

provision, and good shocks are typically (when they are observable) associated a lower equity share

of the manager in the �rm. We show in Section 5 that this is indeed the case: In our model, small

�rms tend to invest more, pay less dividend, and grow faster than large �rms.
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4 Aggregation and the Distribution of Firms

4.1 Aggregation and Numerical Procedure

In this section, we close the model by imposing the market clearing condition and verify our

earlier conjecture on the existence of steady state where aggregate consumption of shareholders

is constant. In our economy, �rms�characteristics can be summarized by state variables (K;U),

or equivalently, (K; u), where u is the normalized continuation utility of managers as de�ned in

Equation (20). We use � (K; u) to denote the stationary density of the joint distribution of �rms

at time t and use � (u) to denote the density of the marginal distribution of u at time t. That is,

� (K; u) is the measure of �rms with characteristic (K; u) in the steady-state distribution and � (u)

is the total measure of �rms with normalized promised utility u in the steady-state distribution.

Law of large numbers implies that these densities should integrate to 1
�
as �rms enter into the

economy at rate 1 and dies at Poisson rate � per unit of time.

The �rst result is on the initial condition of the size of new entrant �rms.

Proposition 3 The normalized initial promised utility to any manager is uSWITCH and the total

capital stock of all initial entrant at any time t is given by

Z
[UL;UH ]

�
U

uSWITCH

� 1
1�


� (U) dU: (27)

Note for each manager with reservation utility U , the manager choose the initial size of the tree.

Optimality requires that the marginal bene�t of investing in the tree to equal its marginal cost,

which is 1 measured in current period consumption numeraire. That is, it is optimal to increase

the size of a newly planted tree until @
@K
V (K;U) = 1. This implies that the normalized promised

utility of any manager upon entrance is uSWTICH . Consequently, the initial capital stock given to

a manager with reservation utility U is

K0 (U) =

�
U

uSWITV CH

� 1
1�


:

The total initial capital stock of all new entrant �rms is therefore given by Equation (27) above.

29



We show in the appendix that the steady-state distribution exists. The stationary density

� (u) satis�es a version of the Kolmogorov forward equation, which we summarize in the following

proposition.

Proposition 4 (Marginal Distribution of u) On (uL; uSWITCH) [ (uSWITCH ; uH), � (u) satis�es

0 = ��� (u)� (1� 
) @
@u
[� (u)u�u (u) dt]

+
1

2
(1� 
)2 @

2

@u2
�
� (u)u2

�
(g (u)� 1)2 �2u + (h (u)� 1)

2 �2o
��

on (uL; uSWITCH) [ (uSWITCH ; uH).

The forward equation that describe the two-dimensional distribution � (K; u) can be derived in

a similar fashion. However, as noted by Ai [2011], in economies with homogeneous decision rules,

the two dimensional distribution � (K; u) can be summarized by a one dimensional measure m (u)

de�ned as follows:

m (u) =

Z
� (u;K)KdK: (28)

The following proposition shows that m (u) also satis�es a version of the Kolmogorov forward

equation.

Proposition 5 (The Measure m) Assume �+ �� i (u) > 0 for all u 2 [uL; uH ], then m (u) exists

and satis�es

0 = � (�+ � � i (u))m (u)

� (1� 
) @
@u

�
m (u)u

�
�u (u) + (g (u)� 1)�2u + (h (u)� 1)�2o

�
dt
	

+
1

2
(1� 
)2 @

2

@u2
�
m (u)u2

�
(g (u)� 1)2 �2u + (h (u)� 1)

2 �2o
��
:

on (uL; uSWITCH) [ (uSWITCH ; uH).

Proofs of Proposition 4 and 5 can be found in Ai [2011]. Using the de�nition of m, the total
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capital stock in the economy in steady-state is simply the integral of m:

K =

Z uH

uL

m (u) du: (29)

Because allocation rules are homogeneous in our economy, aggregate output, aggregate consump-

tion of managers, and aggregate investment in existing �rms can all be written as integrals against

the measure m:

Z
zK�N (K;U)1��� (K;U) dKdU =

Z uH

uL

zN (u)1��m (u) du;

Z
C (K;U) � (K;U) dKdU =

Z uH

uL

c (u)m (u) du;

and Z
I (K;U) � (K;U) dKdU =

Z uH

uL

i (u)m (u) du;

respectively. Using the above, the market clearing conditions (16) and (17) can be written as:

Z uH

uL

n (u)m (u) du = 1;

and

CP+

Z
[UL;UH ]

�
U

u

� 1
1�


� (U) dU+

Z uH

uL

[c (u) + i (u) + h (i (u))]m (u) du =

Z uH

uL

zN (u)1��m (u) du:

Note the construction of measure m reduces the dimensionality of the cross-section distribution of

�rms and greatly simpli�es the computation of equilibrium.

Using the above result, the competitive equilibrium can be calculated as follows.

1. Step 1: Starting from an initial guess of the marginal production of capital A, we solve

the optimal contract and allocation rules by solving the ODE (24). Numerically, we use the

Markov chain approximation method (Kushner and Dupuis [2001]) described in the appendix

to solve the optimal control problem.
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2. Step 2: After obtaining the policy function c (u) ; i (u) ; g (u) ; h (u), we use Proposition 6 and

7 to construct the density � (u) and the measure m (u).

3. Step 3: We use measure m and Equation (29) to calculate the total capital stock in the

steady state for the given A.

4. Step 4: We verify that A is the marginal product of capital using Equation (18). If A > (<

)�zK��1, we choose a smaller (larger) A and resolve the contracts by repeating the above

steps. We iterate this procedure until convergence, that is, until A = �zK��1.

4.2 Distribution of Firms
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Figure 8: Density of Normalized Utility and the m-Measure.

Note both of these measures have a mode at uSWITCH (the label on the u�axis). As we

remarked before, this is the point where the marginal product and the marginal cost of capital

equalizes, and therefore �rms have a tendency to converge to this point over time. In addition,

Optimality of entrance implies that new �rms enter into this economy at uSWITCH as well. Note
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Figure 9: Average Size of Firms and the Investment Policy.

also, the majority of �rms in this economy concentrated on the left of uMAX . As explained earlier,

points to the left of uMAX is a �bad region" of the contract: an increase in u will simultaneously

increase the the utility of the manager, and the value of the �rm. So �rms tend to leave this region

as soon as possible by choosing negative levels of investment.

By de�nition of m (u) in Equation (27), the ratio m(u)
�(u)

is the average �rm size at location u in

steady state. In Figure 9, we plot the average size of �rms (solid line, left scale) against normalized

utility. We also plot the investment policy (circled line, right scale) on the same graph.

To the right of uMAX , where most of the �rms in the economy reside, average �rm size decreases

with investment. This pattern shows clearly our earlier claim that small �rms invest more, grow

faster, and pay less dividend.
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5 Quantitative Implications of the Model

In this section, we calibrate our model to evaluate the quantitative implications of the model on the

size distribution of the �rm, and dependence of �rm investment and payout policies on �rm size.

We choose the discount rate of the principal so that the interest rate in the economy is r = 4% in

steady state. We calibrate the death rate of �rms to be � = 10% per year, corresponding to the exit

rate of �rms reported in the Business Dynamics Statistics of US census. We choose the depreciate

rate of �rm speci�c capital � = 1%, which amounts to assuming a 11% per depreciation rate of

physical capital as in standard real business cycle models. We choose capital share � = 0:33, which

roughly matches the income share of capital and labor in US post war data. The productivity

parameters z is calibrated to be 14:07. allowing our model to match a steady-state investment-

output ratio in US postwar data of about 24%. We choose the risk aversion parameter of the

manager to be 
 = 0:8. Model implications are generally robust to the choice of the risk aversion

parameter.

We choose the total volatility of �rm-speci�c capital to be 36:0% per year, so that the volatility

of output at the �rm level roughly matches its empirical counterpart in the COMPUSTAT data.

This number is lower than the volatility of sales reported in the US census data. Given that the tail

of the size distribution is determined by large �rms and large �rms are substantially less volatile,

it seems appropriate to be conservative and use COMPUSTAT data as a guidance here, because

COMPUSTAT �rms are publicly traded and are more representative of large �rms in the US. We

choose �u = 0:8% and �o = 36%. As discussed above, it is important that �u is small relative

to �o, so the risk sharing is quantitatively important, and a favorable shock moves �rms to the

right in the normalized utility space. We simulate two millions �rms from our model, and plot the

statistics from the steady-state distribution of �rms.

Figure 10 plots, in log scale, the fraction of �rms larger than a given size, K against logK

in the data and in the model.9 Linearity of this curve is the de�ning characteristic of Pareto

distributions. The size of �rms is measured by number of employee as reported by Small Business

Administration. We plot the distribution for all �rms in 1992, 2000 and 2006, respectively. It is

9In the model, the size of a �rm is determined up to a normalizing constant. We choose the normalization of K
so that all lines have the same intercept.
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Figure 10: Size Distribution of Firms in the Data and Model.

clear that the curve is very close to linear, and the slope is remarkably stable over time. The data

set used to plot the �gure contains the whole universe of �rms reported in the Business Dynamics

Statistics of US census. In the year 2006, for example, there are approximately 6 million �rms.

This remarkable pattern in the data has been documented by many previous researchers. The

solid line in the �gure is the same curve plotted from the steady-state of our calibrated model.

Our model does a remarkable job in �tting the size distribution of �rms in the data: it is almost

indistinguishable from those plotted from data.

We plot investment-to-capital ratio from the data and model in Figure 11. The top panel of

Figure 11 is the plot of average investment rate against log �rms size during the 1980-2006 period

in COMPUSTAT data. We measure the total capital stock of the �rm as total value of assets.

In order to compare �rm size across years, we adjust �rm size by aggregate GDP from national

product and income account published by U.S. Bureau of Economic Analysis. For each �rm-year

observations, we compute the investment rate (investment-to-capital ratio) and size of the �rm as

measured by total capital stock. We have a total of 300; 000 observations. We divide �rms into 50
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Figure 11: Investment to Capital Ratio Conditioning on Size.

size bins and plot the average investment rate of �rms within each bin. Investment rate is clearly

decreasing in �rm size as shown in the �gure. The middle panel of Figure 11 shows the investment

rate-size relationship with size measured by total number of employees. Since comparing size of

�rms across years requires assumptions on the growth rate of the economy, we also experimented

with the same �gures using a single year data. The decreasing pattern of investment rate with size

is robust across all speci�cations.

We plot in the bottom panel of Figure 11 the same graph using data generated by our model.

The pattern of investment rate with respect to �rm size resembles closely that in the data. The

intuition for the decreasing pattern of investment rate with respect to size is as explained in the

main text. Because go (u) < 1 in most of the region in the normalized utility, u-space, small �rms

are �rms with high u. Marginal Q is higher in �rms with high u, as the cost of utility provision is

higher in these �rms, and it is optimal to build up the capital stock so that the �rm could move

to the low u regions.

Why our model generates the fat tail of the size distribution of �rms despite the low average
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investment rate of large �rms? As shown by Luttmer [2011], in a model with constant expected

growth rate, the tail index of the Pareto distribution is given by

r� �
�2

�2
+
2�

�2
� �

�2
;

where � is the expected growth rate and � is the volatility of growth. The average investment

rate of large �rms is about 10% per year as show in �gure 11. If all large �rms have an identical

investment rate of 10% per year, � = i � � = 1% per year. A back-of-envelope calculation shows

that the tail index will be about 1:34, much higher than the 1:06 in the data. Although the average

investment rate of large �rms is low in our model, there are a substantial fraction of large �rm

invest at a high rate, close to 14% per year. In Figure 9, the average capital stock around the �rm

entrance point uSWITCH is fairly large despite the new entrance �rms are small. This implies that

there are a lot of large �rms in this region as well. Firms are large in our economy for two reasons.

Some of them have high investment rate, which are roughly in the region around uSWITCH , others

grow large because they experienced a sequence of good shocks, which sends them to the left region

in the utility space. Large �rms with high investment rate are responsible for the fat tail of the

size distribution of �rms, and those with low investment rate are responsible for the observed low

average investment conditioning on size. As a result, our model replicates the tail index of the

empirical size distribution of �rms despite that the investment behavior of �rms is far complex

than Gibrat�s law.

Finally, in Figure 12, we plot the faction of �rms that pays dividend in each of the 50 size bins

for COMPUSTAT �rms 1980-2006, and the same from our model. It is clear that the fraction of

�rms that pays dividend is increasing in size, as measured by total capital stock (top panel), or

by total number of employees (middle panel). Our model is largely consistent with the increasing

pattern of probability of dividend payment in size as in the data.
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Figure 12: Fraction of Dividend Paying Firms Conditioning on Size.

6 Conclusion

We present a general equilibrium model with heterogeneous �rms and moral hazard. Using con-

tinuous time methods, we solve for the optimal incentive contracts. Our model has predictions

on the time series dynamics and the cross-sectional distribution of �rms� investment, executive

compensation and dividend payout policies. Theoretically, we provide a characterization of the

optimal response of continuation utility with respect to observable shocks: the marginal cost of

utility provision must not respond to observable shocks. Quantitatively, when calibrated to match

standard macroeconomic moments, we show small �rms invest more, pay less dividend and grow

faster. More importantly, despite the heterogeneity in �rms�decision rules, we show that the size

distribution of �rms in our model closely resembles a power law distribution with a slope coe¢ cient

close to 1:06, as in the data.

Small �rms invest more, pay less dividend and grow faster. This phenomenon arises because

the optimal contract optimally trades o¤ incentive provision and risk sharing. Risk sharing implies
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manager�s equity share must decrease with observable productivity shocks. As a result, manager�s

equity share is higher in small �rms under the optimal contract. The presence of moral hazard

problem implies that it is harder to provide incentives for managers to invest when they hold only

a small equity share in the �rm. Consequently, small �rms invest more, pay less dividend and

grow faster than large �rms.

Power law requires large �rms to grow fast enough to produce the fat tail of the size distribution.

In our economy, �rms become large for two reasons. Some of them grow large because of luck,

i.e. because of a sequence of high productivity shocks. The mangers�equity share in these �rms

decrease under the optimal contract. These �rms contribute to the lower average investment of

large �rms. In steady state, a signi�cant number of �rms get large because of high historical

investment, not productivity shocks. These �rms continue to make high investment and grow fast.

They contribute to the fat tail of the power law distribution.
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A Appendix

A.1 Appendix 1

A.1.1 Proof of Proposition 2

Solving the pro�t maximization problem in (3), the optimal choice of labor is

Nj;t =

�
(1� �) z
Wt

� 1
�

Kj;t;

and the total operating pro�t is given by:

P (Kj;t) =
�

1� � [(1� �) z]
1
� W

1� 1
�

t Kj;t: (30)

Using the market clearing condition (16), we have

Z
Nj;tdj =

�
(1� �) z
Wt

� 1
�
Z
Kj;tdj = 1: (31)

In steady-state,
R
Kj;tdj = K; therefore Wt is constant over time. Combing equation (30) and

(31), the operating pro�t function can be written as:

P (Kj;t) = �z

�
1

K

�1��
Kj;t = AKj;t;

where we denote

A = �zK��1 (32)

as the marginal product of capital.

A.2 The Law of Motion of the Worker�s Promised Utility

We prove the following proposition which characterizes the law of motion of the manager�s contin-

uation utility.
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Proposition 6 Suppose the manager adopts consumption and investment policy
n
~Ct; ~It

o
t2[0;� ]

un-

der a plan. Then there exist two fH tg�adapted and square integrable processes fGutgt2[0;� ] and

fGotgt2[0;� ], such that

dUt =

 
�

 
Ut �

~C1�
t

1� 


!
� � (T (Kt)� Ut)

!
dt+Gut�udBu;t +Got�odBo;t for t 2 [� 0; �): (33)

To characterize the random event of the arrival of the health shock of the manager, we de�ne

process f%tgt2[�0;� ] as

%t =

8><>: 0 if t < �

1 if t = �

and then f%tgt2[�0;� ] is a simple jump process jumping from 0 to 1 with jump rate �. It jumps

when the health shock arrives. The associated compensated jump, f�tgt2[�0;� ], martingale is

�t = ��t+ %t

and

d�t = ��dt+�%t (34)

with �%t being the jump indicator. Therefore, all information is summarized by fBu;tgt2[�0;� ],

fBo;tgt2[�0;� ] and f�tgt2[�0;� ].

Now, for t � � , we de�ne

�t

�
fCs; Isgs2[�0;� ]

�
= Et[�

Z �

�0

e��(s��0)
C1�
s

1� 
 ds+ e
���T (K� )jH t]

= �

Z t

�0

e��(s��0)
C1�
s

1� 
 ds+ e
��tUt:

In words, f�tgt2[�0;� ] is the conditional expected total utility of the worker based on the information

unfolded up to time t. Therefore, it is a H t�adapted martingale. By martingale representation

theorem, there exist three H t�adapted square integrable processes, fGutgt2[�0;� ], fGotgt2[�0;� ] and
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fJtgt2[�0;� ], such that

d�t = e
��tGut�udBu;t + e

��tGuot�odBo;t + e
��tJtd�t for all t 2 [� 0; � ]:

On the other hand, according to the de�nition

d�t = �e
��t C

1�

t

1� 
 dt+ e
��tdUt � �e��tUtdt for all t 2 [� 0; � ]:

Then we have

dUt = �

�
Ut �

C1�
t

1� 


�
dt+Gut�udBu;t +Guot�odBo;t + Jtd�t for all t 2 [� 0; � ]:

According to (34),

dUt =

�
�

�
Ut �

C1�
t

1� 


�
� �Jt

�
dt+Gut�udBu;t +Guot�odBo;t + Jt�%t for all t 2 [� 0; � ]:

If the health shock hits at t, the jump distance of the promised utility of the manager is T (Kt)�Ut.

Therefore Jt = T (Kt)� Ut Then we have (33).

A.3 Proof of Lemma 1

For convenience, given capital K̂, we de�ne

M
�
D̂; K̂

�
=
n�
Ĉ; Î

�
2 R+ � [IL; � ] : Ĉ + Î +H

�
Î ; K̂

�
= D̂

o
:

Note that, according to the de�nition, an allocation rule (C; I;D;Gu; Go) is feasible if and only if

(Ct; It) 2M (Dt) for all t 2 [� 0; � ]. According to (5),M
�
D̂
�
can be rewritten as

M
�
D̂; K̂

�
=
n�
Ĉ; Î

�
2 R2 : Î 2 [I1

�
D̂; K̂

�
; I2

�
D̂; K̂

�
] and Ĉ = D̂ � Î �H(Î ; K̂)

o
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with

I1

�
D̂; K̂

�
= max

8<:IL; !i
� � 1�

q
1� 2!i� + 4! D̂

K̂

2!

9=;
I2

�
D̂; K̂

�
=
!i� � 1 +

q
1� 2!i� + 4! D̂

K̂

2!
:

The investment and compensation plan is interior if It 2 (I1 (Dt; Kt) ; I2 (Dt; Kt)) for all t 2 [� 0; � ].

We utilize the method applied in Sannikov [2008] to prove (14).

Suppose not, such that (C; I) does not satisfy condition (14) over time horizon [� 0; t] with

t 2 [� 0; �) and strictly positive probability. Let fUtgt2[�0;�) be the continuation utility process

generated by (C; I) under the allocation rule. We de�ne

�̂t (C
0; I 0) = �

Z t

�0

e��(s��0)
C 01�
s

1� 
 ds+ e
��tUt for t 2 [� 0; �)

where (C 0; I 0) is some alternative investment-consumption plan. So, �̂t (C
0; I 0) is the conditional

expected utility of the manager based on history H t if he adopts (C 0; I 0) from � 0 to t and then

switches to (C; I). Obviously, �̂�0 (C
0; I 0) = U0, the expected utility of the manager if he chooses

(C; I) from the beginning. According to equation (9), the motion of the continuation utility, we

have

d�̂t (C
0; I 0) = �e��t

C 01�
t

1� 
 dt� �e
��tUtdt+ e

��tdUt

= e��t�

�
C 01�
t

1� 
 �
C1�
t

1� 


�
dt+ e��t

Gut
Kt

Kt�udBu;t + e
��tGot

Kt

Kt�odBo;t + e
��tJtd�t:

Recall that fBu;tgt2[�0;� ] is a standard Brownian motion under the measure G generated by

(C; I). Similarly, let
�
B0u;t

	
t2[�0;� ]

be a standard Brownian motion under the measure G 0, which is

generated by the alternative plan (C 0; I 0). The transfer between the two measure is according to

Girsanov theorem. Now we have

dBu;t = dB
0
u;t +

1

Kt�u
(I 0t � It) dt
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and then

d�̂t (C
0; I 0) = e��t

��
�
C 01�
t

1� 
 � �
C1�
t

1� 
 +
Gut
Kt

(I 0t � It)
�
dt+

Gut
Kt

Kt�udB
0
u;t +

Got
Kt

Kt�odBo;t + e
��tJtd�t

�
:

Now, we select (C 0; I 0) such that

(C 0t; I
0
t) 2 arg max

( ~C;~I)2M(Dt;Kt)

�
~C1�


1� 
 �
Gut
Kt

It for t 2 [� 0; �):

Then the drift of
n
�̂t (C

0; I 0)
o
t2[�0;� ]

is strictly positive and it is a sub-martingale under measure

G 0. Therefore

E 0
h
�̂t̂ (C

0; I 0)
i
> �̂�0 (C

0; I 0) = U0:

Here, E 0 [�] is the expectation based on G 0. So, (C; I) is dominated by the plan that adopting

(C 0; I 0) from the begging and switching to (C; I) at t̂. We have a contradiction to the fact that

(C; I) is optimal.

On the other hand, suppose (C; I) satis�es (14), then
n
�̂t (C

0; I 0)
o
t2[�0;�)

is a super-martingale

under G 0 for any alternative plan (C 0; I 0). Denote the overall utility generated by plan (C 0; I 0)

�̂� (C
0; I 0) = �

Z �

�0

e��(t��0)�
C 01�
t

1� 
 dt:

Note that, given any feasible plan, the expected continuation utility of the manager is bounded by

[UL; UH ]. Therefore

U0 = �̂0 (C
0; I 0) � E 0

h
�̂� (C

0; I 0)
i

and (C; I) weakly dominates (C 0; I 0).

Now, we suppose that (C; I)is interior. Since Ct = Dt � It �H (It; Kt), and then according to

(14), It solves the problem

max
~I
�

�
Dt � ~I �H

�
~I;Kt

��1�

1� 
 � Gut

Kt

~I
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and it is easy to check that the objective function is concave. So by taking the �rst order condition

we have the desired result.

A.4 The Lower Bound of the Normalized Value Function

In this section, we compute a lower bound of the normalized value function for three purposes:

First, this helps us understand the basic trade o¤ between incentive provision and risk sharing we

focus on in this paper; second, it helps us to compute the left and right boundary points of the

normalized value function; third, it will also help us to motivate our assumptions on the parameters

values of the model.

The lower bound on the principal�s value function can be constructed by identifying a simple

form of incentive compatible plan. Consider the following class of compensation contracts. The

total payment from the principal to the agent is �AKt, where 0 � � � 1, and the rest of output

is paid out to shareholders as dividend. Given �, the agent chooses optimally the division of

�AKt between his own consumption and investment in the �rm. We call a plan of this form a

constant-share plan. As we vary � from 0 to 1, this procedure traces out the market value of a �rm

as a function of the utility delivered to the manager. We denote this value function as vLB (u),

where u is the normalized utility as discussed in the above section. Note vLB (u) provides a lower

bound to the value function of the principal, as a constant-share plans are incentive compatible by

construction, but not necessarily optimal.

It is coinvent for us to impose a restriction on terminal utility parameter uB. We assume

uB 2 [�uB; uB] with �uB being the normalized expected utility of the manager if he owns the full

share of the tree and the tree is never hit by the disease, namely, � = 0; uB being that if the

manager owns zero share of the tree and the tree is never hit by the disease.

It is convenient to introduce the following notation.

�̂ = � + (1� 
) � + 1
2

 (1� 
)

�
�2u + �

2
o

�
: (35)

We �rst make the following assumption on �̂. If the adjustment cost is 0 the following assumption

guarantees that the lower and upper bound, uB and �uB, of uB exists.
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Assumption 1

�̂ = � + (1� 
) � + 1
2

 (1� 
)

�
�2u + �

2
o

�
> 0 (36)

In Appendix A.4.1, we provide a condition under which the uB and �uB exists if the adjustment

cost is not zero. We also show that if the lower and upper bound of uB exists, the lower bound of

the principal�s value function, vLB (u), exists and uniquely characterized by a HJB equation. First

we discuss the existence of the �uB and uB.

A.4.1 The Upper and Lower Bounds �uB and uB

Let pd 2 f0; 1g and � = 0 . Let UB(K; 1) and UB(K; 0) be the un-normalized expected utility

associated with the contracts that generate �uB and uB according to their de�nition. Here, 1 and

0 stand for the manager�s share. So we de�ne pd 2 f0; 1g. Then UB(K; pd) satis�es the following

HJB equation:

0 = max
i
�

 
((pdA� ' (i))K)1�


1� 
 � UB(K; pd)
!
+K(i� �)UBK (K; pd)

+
1

2
K2
�
�2u + �

2
o

�
UBKK(K; pd).

We guess UB(K; pd) has the functional form

UB(K; pd) =

�
uB (pd)K

�1�

1� 
 (37)

with some function of pd, uB (�). In fact, �uB = uB (1) and uB = uB (0) according to the rule of

normalization. We plug (37) into the HJB equation, we have

0 = max
i

1

1� 


"
�
(pdA� ' (i))1�


(uB (pd))
1�
 + (1� 
) i� �̂

#
(38)

Since we always choose the lower bound �B of investment to capital ratio is small enough, we

focus on the interior solution10. The �rst order condition of the maximization problem in (38)

10Note that, if i! �1, the objective value converges to �1 which is not optimal.
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implies that
� (pdA� ' (i))1�


(uB)1�

=
pdA� ' (i)
'0 (i)

.

Then (39) can be rewritten as

0 =
pd � ' (i)
'0 (i)

+ (1� 
) i� �̂ (39)

When there is no adjustment cost If there is no adjustment cost, (39) can be rewritten as

pdA� 
i� �̂ = 0

so we have i (pd) = 1



�
pd � �̂

�
and c (pd) =

�
1� 1




�
pdA +

1


�̂. According to Assumption 1,

c (pd) > 0 for pd 2 f0; 1g. Then we have

u (pd) =

0@ ��
1� 1




�
pdA+

1


�̂

1A 1
1�


,

and we have

�uB =

0@ �h�
1� 1




�
A+ 1



�̂
i

1A 1

1�


and uB =

0@ �h
1


�̂
i

1A 1

1�


.

Furthermore, �uB > uB > 0.

When there is adjustment cost In this case, (39) implies

pd � ' (i) + (1� 
) i'0 (i)� �̂'0 (i) = 0
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and we have11

i (pd) = i
� +

2
h
1



�
pdA� �̂

�
� i�

i
264 1� !

��
1


� 1
�
i� � 1



�̂
�

+

rh
1� !

��
1


� 1
�
i� � 1



�̂
�i2

� 4!
�
1
2

� 1
� h

1



�
pdA� �̂

�
� i�

i
375
:

and

�uB =

�
�

[A� ' (i (1))]

� 1

1�


and uB =
�

�

[�' (i (0))]

� 1

1�


.

To guarantee the existence of �uB and uB, we make the following assumption.

Assumption 2

A� ' (i (1)) > 0 and � ' (i (0)) > 0 .

A.4.2 The manager�s value function on the lower bound

Now, we let pd 2 [0; 1] and � > 0. Let ULB (K; pd) be the un-normalized expected utility associated

with the contract in which the manager�s share is pd and the initial capital K. Then ULB(K; pd)

satis�es the following HJB equation:

0 = max
i
�

 
((pdA� ' (i))K)1�


1� 
 � ULB(K; pd)
!
+K(i� �)ULBK (K; pd)

+
1

2
K2
�
�2u + �

2
o

�
ULBKK(K; pd) + �

 
(uTK)

1�


1� 
 � ULB(K; pd)
!
.

Similar with what we did, we guess

ULB(K; pd) =

�
uLB (pd)K

�1�

1� 
 :

And then we have for pd 2 [0; 1], uLB (pd) satis�es the following HJB equation.

0 = max
i

1

1� 


"
�
(pdA� ' (i))1�


(uLB (pd))
1�
 + (1� 
) i� �̂ + �

"�
uT

uLB (pd)

�1�

� 1
##

(40)

11Here, we used the condition that: as ! ! 0, i! 1



�
pdA� �̂

�
.
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First, we show that for pd = 0 and 1 the equation has a unique solution in [uB; �uB].

If pd = 0, (40) is rewritten as

0 = max
i

1

1� 


"
�
(�' (i))1�


(uLB (pd))
1�
 + (1� 
) i� �̂ + �

"�
uT

uLB (pd)

�1�

� 1
##

Note that the right hand side of the equation, which is denoted as �0
�
uLB (pd)

�
, is continuous in

uLB (pd) over [uB; �uB]. Since we know

�0 (uB) = max
i

1

1� 


"
�
(�' (i))1�


(uB)
1�
 + (1� 
) i� �̂ + �

"�
uT
uB

�1�

� 1
##

� max
i

1

1� 


"
�
(�' (i))1�


(uB)
1�
 + (1� 
) i� �̂

#
= 0:

The inequality above is due to the assumption that uT 2 [uB; �uB] and the last equation is due to

the HJB equation that uB satis�es. On the other hand

�0 (�uB) = max
i

1

1� 


"
�
(�' (i))1�


(�uB)
1�
 + (1� 
) i� �̂ + �

"�
uT
�uB

�1�

� 1
##

� max
i

1

1� 


"
�
(A� ' (i))1�


(�uB)
1�
 + (1� 
) i� �̂

#
= 0:

The inequality above is due to the fact that A > 0 and uT 2 [uB; �uB] and the last equation is due

to the HJB equation that �uB satis�es. Since �0 (�) is continuous on [uB; �uB]. Then, we choose the

largest solution uLB (0) 2 [uB; �uB] such that �0
�
uLB (0)

�
= 0. Similarly, we can prove there is a

unique maximal solution uLB (1) 2 [uB; �uB].

Now, for any pd 2 (0; 1), we denote the right hand side of (40) as �pd
�
uLB (pd)

�
. Note that

�pd
�
uLB (0)

�
= max

i

1

1� 


"
�
(pdA� ' (i))1�


(uLB (0))1�

+ (1� 
) i� �̂ + �

"�
uT

uLB (0)

�1�

� 1
##

� max
i

1

1� 


"
�
(�' (i))1�


(uLB (0))1�

+ (1� 
) i� �̂ + �

"�
uT

uLB (0)

�1�

� 1
##
= 0:

The inequality above is due to the fact that pd > 0 and the equality is due to the HJB equation
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that uLB (0) satis�es. On the other hand

�pd
�
uLB (1)

�
= max

i

1

1� 


"
�
(pdA� ' (i))1�


(uLB (1))1�

+ (1� 
) i� �̂ + �

"�
uT

uLB (1)

�1�

� 1
##

� max
i

1

1� 


"
�
(A� ' (i))1�


(uLB (1))1�

+ (1� 
) i� �̂ + �

"�
uT

uLB (1)

�1�

� 1
##
= 0

The inequality above is due to the fact that pd < 1 and the equality is due to the HJB equation

that uLB (1) satis�es. Since �pd (�) is continuous over [uLB (0) ; uLB (1)]. Then we have an unique

maximal solution uLB (pd) which satis�es (40):

A.5 Proof of Proposition 1

We only need to derive the HJB equation.

First, we derive the HJB equation that the value function V (K;U) satis�es. For t 2 [0; �),

according to the law of motion of the state variables, (33) and (10), by Ito�s lemma we have

V (K;U) satis�es the following di¤erential equation

max
C;I;D;Gu;Go

D � (� + �)V (K;U) + VK (K;U) (I � �K) + VU (K;U)
�
�

�
U � C1�


1� 


�
� � (T (K)� U)

�

+
1

2

264 VKK (K;U)K2 (�2u + �
2
o) + VUU (K;U) (G

2
u�

2
u +G

2
o�
2
o)

+2VKU (Gu�
2
u +Go�

2
o)

375 . (41)

subject to

0 � C (K;U) + I (K;U) +H (I;K) +D (K;U) � AK
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and (14). According to the normalization de�ned by (19) and (20), we have

VK (K;U) = v(u)� uv0 (u) ; (42)

VU (K;U) =
1

1� 

K

U
uv0(u);

VKK (K;U) =
1

K
u2v00(u); (43)

VUU (K;U) =
1

(1� 
)2
K

U2
�

uv0 (u) + u2v00 (u)

�
; (44)

VKU (K;U) = �u2v00(u) 1

1� 

1

U
: (45)

By plugging in the expressions above into (41), we have (24).

A.6 Proof of Proposition 2

The expression of h, equation (26) is directly derived from the HJB equation (23), according to

which h solves the following problem

max
ĥ

1

2
uv0 (u)

�

ĥ2�2o

�
+
1

2
u2v00 (u)

��
ĥ� 1

�2
�2o

�
.

the �rst order condition implies

h (u) =
uv00 (u)


v0 (u) + uv00 (u)
.

Then we have the expression of h (u). By (43), we have that v00 (u) has the same sign as VKK (K;U)

which is strictly negative. By (44), 
v0 (u)+uv00 (u) has the same sign as VUU (K;U). Then we have

the result. On the other hand, the sensitivity of the normalized continuation utility to observable

shocks is

h (u)� 1 = 
v0 (u)


v0 (u) + uv00 (u)
:

Since v0 (u) is increasing in u. And h (u) � 1 = 0 if and only if v0 (u) = 0, say v (�) reaches its

maximum. Then we have the desired result.

Now we prove Proposition, By Ito�s formula we have the law of motion of VU (U;K) as follows
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12,

dVU(U;K) = VUU (U;K)

�
�

�
U � C1�


1� 


�
� � (T (K)� U) dt+Gut�udBu;t +Got�odBo;t

�
+VUK (U;K) [(�� + i)Kdt+K�udBu;t +K�odBo;t]

+
1

2

�
VUUU

�
G2ut�

2
u +G

2
ot�

2
o

�
dt+ VUKKK

2
�
�2u + �

2
o

�
+ 2VUKU

�
Gut�

2
u +Got�

2
o

��
dt:(46)

The coe¢ cient of dBo;t on the right hand side is VUU (U;K)Got�o + VUK (U;K)K�o. By (44),

(44), the expression of h (u) and the way we normalize the sensitivity, we have

VUU (U;K)Got�o + VUK (U;K)K�o =
K

(1� 
)U
�
u2v00 (u)�

�

uv0 (u) + u2v00 (u)

�
h (u)

�
= 0.

Therefore, we have the �rst result.

From the right hand side of (46), we can see that the drift of VU(U;K) is

VUU (U;K) �

�
U � C1�


1� 


�
� � (T (K)� U) + VUK (U;K) (�� + i)K

+
1

2

�
VUUU

�
G2ut�

2
u +G

2
ot�

2
o

�
dt+ VUKKK

2
�
�2u + �

2
o

�
+ 2VUKU

�
Gut�

2
u +Got�

2
o

��
.

By envelope theorem, we take the �rst order derivative with respect to U on both hand sides of

HJB equation (41) and denote the optimal polices by C�, I�, D�, G�u and G
�
o we have

0 = D� � (� + �)VU (K;U) + VUK (K;U) (I� � �K) + VUU (K;U)
�
�

�
U � C

�1�


1� 


�
� � (T (K)� U)

�
+(� + �)VU (K;U)

+
1

2

�
VUUU

�
G�2ut�

2
u +G

�2
ot�

2
o

�
dt+ VUKKK

2
�
�2u + �

2
o

�
+ 2VUKU

�
G�ut�

2
u +G

�
ot�

2
o

��
= VUU (U;K) �

�
U � C

�1�


1� 


�
� � (T (K)� U) + VUK (U;K) (I� � �K)

+
1

2

�
VUUU

�
G�2ut�

2
u +G

�2
ot�

2
o

�
dt+ VUKKK

2
�
�2u + �

2
o

�
+ 2VUKU

�
G�ut�

2
u +G

�
ot�

2
o

��
:

12For convience, we omitte the arguments K, U in the policy functions.
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Then we have the drift of VU(U;K) is 0.

A.7 Proof of Proposition 1

According to the HJB di¤erential equation (23), if there is no adjustment cost, c and i jointly solve

the following problem

max
c;i
(v (u)� uv0 (u)� 1) i� uv0 (u)

�
�
c
u

�1�

1� 
 .

By Lemma 3, if u 2 (uSWITCH ; uH), v (u) � uv0 (u) � 1 > 0. Then c + i � A must be binding.

Then the dividend paid to the shareholders is 0; if u 2 (uL;SWITCH), v (u)� uv0 (u)� 1 < 0. Then

c+ i � 0 must be binding. Then the dividend paid to the shareholders is A:

Suppose, in addition, we assume that v (u) � 1 for all u. We have v0 (uSWITCH) < 0. Note that

v0 (uMAX) = 0. Due to the concavity of v (�), which is implied by the concavity of V (�; �), we have

uSWITCH > uMAX .

In the other direction, if uSWITCH > uMAX holds, then Lemma 3 implies that v (uMAX) �

uMAXv
0 (uMAX) < 1 and then we have the result.
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