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VARIANCE COMPUTATION BY USERS OF SIPP MICRO-DATA FILES 

INTRODUCIlON 

Public use data files of the Survey of Income and Program Participation (SIPP) are expected to 
be used by many different researchers, particularly in the areas of Sociology, Economics and 
public policy. Possible uses of SIPP Micro-Data Files can be broadly classified into two major 
areas: (1) computation of summary statistics such as means, totals and ratios for states, regions, 
and subpopulations like Blacks, Hispanics, low income families, etc. (beyond what is published 
by the Bureau of the Ccnsus in SIPP reports), and computation of variances of such statistics for 
tests of hypotheses and statistical inferences, (2) analytical studies to understand various socio- 
economic phenomena such as factors affecting the dependency on welfare, or variables affecting 
the risk of experiencing an event; e.g., marriage, child birth, divorce or unemployment. These 
analytical studies will generally involve some form of rnultiwub analysis and statistical 
modeling techniques. Data analysts can usually compute summary statbtics from micro-data files 
easily. Estimation of variances and multivariate analysis of survey data are, however, not so 
easy. It is, therefore, desirable to wovide guidelines to tlsers on how to compute sampling errors 
and conduct a multivariate analysis or statistical modeling. The guidelines should also indicate 
software packages that arc appropriate for computation of variances or multivariate analyses so 
that users caa carry out these complex statistical computations relatively easily. 

Exploratory research was undertaken to review general methods of variance estimation from 
complex surveys and multivariate analysis of survey data, and all available software packages 
with regard to their suitability for analysis of data from the complex sample design of the SIPP. 
?his research mainly deals with cross - sectional analysis of data. No general purpose software 
packages are available for longitudinal analysis of data from complex surveys. This report 
provides guidelines for variance estimation. Multivarhtc analysis of SIPP data has been 
discussaa in another report by Cbakrabarty (1989). 

General methods of variance estimation from complex surveys with their advantages and 
disadvantages are discussed first. This is followed by a discussion of all available software 
packages with regard to their statistical methodology, capabilities, computational complexities, 
and most importantly, their suitability for computing variances from the complex sample design 
of the SIPP, along with some recommendations. 

1. GENERAL METHODS OF VARJANCE ESTIMATION FROM COMPLEX SURVEYS 

Three general methods arc available for computing the sample estimates of the variances of non- 
linear statistic8 likG ratio estimate, and simple, partial and multiple regression and melation 
coefficients. These are Taylor Series Linearizattion (TSL), Balanced Repeated Replications (BRR) 
and the Jackknife Repeated Replications (JRR). The essential features of these methods are 
outlined beIow. A more detailed discussion of these methods can be found in Wolter's (1985) 
book. Some recent .developments in the properties of these methods for complex surveys are 
given in Rao (19881, Rao and Wu (1988), Rao, Wu and Yue (1992) and Rao (1993). 
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1.1 Taylor Series Linearization (TSL) 

Let t=(tl, b... tk) be a set of statistics whose expected value is the set T=&,T2..Tk). If 

the function to be estimated B=F(T) is estimated by 6=~(t), then 

approximately, using the first term Taylor expansion. Tht partial derivatives are to be 
evaluated at ti = Ti but in practice usually have to be evaluated at 4. The variance of 

is then approximated by the variance of the linear function 

given by 

This is the method which produces the usual largesample formula for the variance of the 
ratio estimate given in literature (sw Kendall and Stuart 1963 and Cocbnn 1977). B 
extending this method to complex surveys and estimates, papas by Keyfitz (1957), Kish 
(1968), Tepping (1968), Woodndf (1971), and Woodndt and Causcy (1976) have shown 
that ingenuity in. the method used to compute the variance of the Linearized form can 
considerably simplify the computation. Some underestimation of v ~ c e  is to be 
expected at least for moderate-sized samples because higher order terms are neglected in 
TSL Sukhatme, et al. (1984) expressed the error in the variance in terms of the moments 
of a bivariate distribution and provided some upper bounds for the errors in the 
approximation. m e  underestimation of the variance of the ratio estimate by this method 
has been confirmed recently (See Rao 1968,1969, Mulry and Wolter 1981, Krewski and 
Rao 1981, and Efron 1982). Dippo and Wolter (1984) apply second order Taylor Series 
approximations to several estimates and show that this reduces the bias, but increases the 
variance of the variance estimate and complicates computations considerably. 
Underestimation of the variance from Taylor series may compensate for some over 
estimation that results when variance is computed assuming sampling with replacement 
for a without replacement sampling design. 



1.2 The Jackknife Repeated Replications (JRR) 

The Jackknife method was f ist  suggested by Quenouille (1956) for reducing the bias of 
an estimator like the ratio (based on a simple random sample of size n) from order lln 
to order l/n2. Suppose n=mg; the sample is divided into g groups of size m. The 
jackknife estimator of 8 is 

where bi =ds - (g-1) 6(,-n; 6(s-]) denote the estimate of 0 made by 0miDing the jth 

group and 6, is the estimate from the complete sample. 

Tukey (1958) suggested that in many nonlinear situa!ions, the variance of the jackknife 

estimator OJ can be estimated by 

treating pseudo values 6, as though they are independent estimates. He also suggested 
that 

would often be approximately distributed as student's t with (g-1) d.f, With linear 

estimates from normal data t' is identical to t. 

Some analytic support for this approach comes in asymptotic as well as exact results. 
Under broad assumptions, Brillinger (1964) showed that for maximum likelihood 
estimates, t i  tends to t distribution with (g-1) df. as m tends to infinity. Arvensen 
(1969) gave a similar result for estimates (of the form known as Hoeffding's U Statistics) 
that are symmetrical with respect to members of the sample. In a Monte Carlo study, 
Rao and Beagle (1966) found that the stability of the jackknife variance estimator of a 
ratio estimate b similar to the TSL variance estimator. For analytical results that are 
exact for any sample size n, Chakrabarty and Rao (1967) assume a linear regression 
model where auxiliary variable x has a gamma distniution and show that the clcact bias 
of the jackknife variance estimator decreases as g increases and with g=n the bias is less 
than the TSL variance estimator for moderate sample sizes. The exact stability of the 



variance estimator with g=2 (i.e., 2 replications) is shown to be less than the TSL 
variance estimator. In an evaluation study using seventeen natural populations, Rao and 
Kuzik (1974) found that the stability of the jackknife variance estimator (with g=n) to be 
comparable to that of the TSL variance estimator. Kreswki and Chakrabarty (1981) later 
show that the w c t  stability of a slightly modified jackknife variance estimator with g=n 
is comparable to that of the TSL variance estimator under conditions specially favorable 
to ratio estimation (i,e., regression approximately through the origin with a relatively 
small coefficient of variation in the x population). 

1:3 Balanced Repeated Replications (BRRJ 

The Balanced Repeated Replications (BRR) has mostly been developed for stratified 
samples with 2 PSUs per stratum. With 2 PSUs per stratum chosen with equal 
probability, a half-sample is obtained by selecting at random one PSU from each stratum. 

Let bH, 6, and 8, denote the estimates computed from the chosen half-sample, the 
complimentary half-sample, and the whole sample. For strictly Smear estimate, the 
quantities 

are all b i d  e s t e s  of v(Q, if the finite population correction is negligible. With 
only two half-samples, the reliability of the variance estimate is poor but can be increased 
by increasing the number of replications. With L strata, the possible number of 
replications is 2=. For linear estimates, McCarthy (1966) has shown that an orthogonal 
subset, using the Plackett & Burman (1946) orthogonal main effects for the fadorial, 
produces the,same variance estimate as the complete set, and requires at most (L+4) half- 
replicates. McCarthy's balanced half-sample replications (BHR) method is often called 
balanced repeated replications (BRR). If the number of balanced half-replicates is too 
large, McCarthy suggests use of a subset of the balanced set. In a later review of this 
method, McCarthy (1969) found that the half-sample variance estimators in (1) agreed 
well with one another also for some non-linear estimates - 15 combined ratio estimates, 
24 partial regression coefficients and 8 multiple regression coefficients for the Health 
Examination Survey. The National Center for Health Statistics (NCHS) uses this method 
for variance computation in the Health Interview Survey (HIS) and other health surveys. 
Prior to the development of Balanced Half Samples, the repeated replications were 
achieved by dividing the sample at random into several subsamples or replications. This 
method called Random Groups (RG) was used extensively for variance estimation in the 
CPS in the 1950's and early 60's and in various business and market research surveys by 
Derning (1956,1960). It is still being used in Business Surveys by the Bureau of the 
Census. Historically, this was one of the first techniques developed to simplify variance 
estimation. It was introduced by Mahalanobis (1939, 1944) who used "interpenetrating 
subsamples" as replications. The Random Groups method and its properties ate given in 
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Wolter (1985). In designs with few PSUs per stratum it becomes necessary to collapse 

I strata to form enough random groups to obtain a reliable estimate of variance. Collapsing 
strata, however, defeats the objective of obtaining an unbiased estimate of variance for 
a 2 PSUs per stratum design. 

I 1.4 Recent Developments: Bootstrap and Replicate Weights 

Recently, a new method of variance estimation called "Bootstrap" has been suggested by 
E&on (1982). This method is as h h :  From n observations yl y2...yn drawn 
independently from an unknown probability distribution I?, fit the nonparametric 
maximum likelihood estimate of F. It can be simply the uniform weight lln at each value 
yi (i=1,2 ... n). Draw m bootstrap samples of size nl (c n) from this estimated distribution 

independently. The variance of the estimate 6, based on the full sample, is estimated 
by 

where Ok is the estimate from the kth bootstrapped sample. Efron shows that the 
bootstrap estimator s l i t l y  underestimates the variance. This method like other 
resampling methods wiil be computer intensive. A simulation study by Kovar, Rao and 
Wu (1988) indicates that this method pcrhrms well in estimating confidence intervals for 
parameters but the variance estimator is less stable than those based on TSL or JRR. 
Rao, Wu and Yue (1992) provided an extension of the bootstrap method to stratified 
multistage designs, and compared the bootstrap variance estimator for the median with 
the BRR method by simulation. The bootstrap variance estimator had a larger relative 
bias and a larger coefficient of variation compared to the BRR variance estimator. At this 
time we do not know of any successful application of the bootstrap method to complex 
survey data. 

Fay (1984) has developed a replicate weighting representation of the replication method. 
The general method of replicate weighting is to assign to each sample case i replicate 
weight Wh, r=l, ... R (R is the number of replicates) so the estimate of the population total 
Y from the rth replicate is 

The estimate of Y from the whole sample is 



where Wi is the final weight for ith sample case. The variance estimator used with these 
replicate estimates is typically of the form: 

where replicate factors d, r=1, ... R are independent of the choice of characteristic y but 
may possibly depend on the selected sample and r. For many common replication 
methods d, will simply be a constant depending on R, such as 1/R or (R-l)/R. 

The basic replicate weight for the sample case i in the rth replication is based on the 
survey design and the inverse of probability of selection. These weights may be 
constructed according to a familiar replication method such as BRR or according to a 
more general resampling plan. Final replicate weights Wi, are formed according to the 

. estimation procedure (nonresponse adjustments, first and second stage ratio adjustments, 
etc). Thus, it reweights "each replicate to population control totals. This procedure 
generally provides a conservative estimate of variance in the sense that it overestimates 
variance. The procedure, however, is very flexi'ble and can be geared to specific survey 
designs by obtaining the correct replicate factors. Most importantly, this method like 
other resampling methods, permits the computation of design-based estimates of variance 
for a wide variety of statistics including analytically complex statistics for which TSL 
may be difficult. 

Dippo, Fay and Morganstein (1984) report their favorable experiences of using some 
variations of this method in several surveys including the 1984 SIPP. Fay (1989) 
provides the thwry and application of his method in the 1985 pauel of SIPP. . 

1.5 Comparison of The' Three Methods 

The exact analytic comparison of the three methods appears to be formidable; not much 
is known beyond what was mentioned earlier about the model-based comparison of the 
exact bias and stability of JRR and TSL variance estimators by Chakrabarty and Rao 
(1967), and Kreswki and Chakrabarty (1981). Research on comparison of these methods 
has been largely empirical: Frankel (1971), Kish and Frankel (1974), Bean (1975), 
Campbell and Meyer (1978), Lemeshow and Levy (1978), Shah et a1 (1977) and others. 
Recently, asymptotic analytic comparisons have been made by Krewski and Rao (1981), 
Dippo and Wolter (1984) and Rao and Wu (1985). A description of some of these 
studies and important results follow. 

Frankel (1971), and Kish and Frankel (1974), made a Monte Carlo comparison of the 
performance of three methods in small samples using the March 1967 CPS data as a 
population. The population contained 3240 primary units of average size 14.1 households 
and were divided into 6,12, and 30 strata. Two units were drawn from each of 6,12 and 
30 stratum providing samples of sizes 12, 24 and 60. Thus, the study involved cluster 



units of unequal sizes and proportional stratification, but not unequal probability 
selection.The types of estimate examined were: 8 means (that were ratio estimates), 12 
differences of means, 12 simple correlations, 8 partial regression coefficients, 8 partial 
correlations and 2 multiple correlations. As regards the properties of the estimators, the 

average relative biases of the estimators, [E(~)-BYB, were less than 1% for means and 
differences between means, less than 7% for simple conelation and 5% fir partial 
regression coefficients even with the smallest sample size 12. The average relative biases 
were somewhat larger for partial and multiple conelations (12% and 16% for n=12). 

- Examination of the ratio of these biases to the standard error of the estimate showed that 
in the worst cases, two sided 95% confidence interval statements might have confidence 
probability nearer 90%. 

I 
Frankel compared four variations of both the BRR and JRR with the TSL variance 
estimator, No method is consistently best in all situations. AU three methods do 
satisfactorily well for meaq and for differences between means, the average biases being 

I generally under 5%, and the bias of JRR is generally least. BRR is the only method that 
does well for simple correlations and is superior to JRR for partial correlations (TSL was 
not tried for partial and multiple correlations because of its complexity in these cases). 

I On the other hand, both TSL and JRR are superior to BRR for partial regression 
coefficients. 

B Turning to inferences about parameters, Kish and Frankel (1974) evaluated the empirical 

coverage probability of the 1 a level confidence intervals, 6 t tm(v(6)lm, where 

I tm is the upper cr/2-pint of the student's t distriiution, for means (r- 
between means, regression and conelation coefficients. The three methods seemed to be 
satisfactory for means, differences between means and regression coefficients. The BRR 

I method performed better than sthe JRR method which in turn did better than the TSL 
method in terms of coverage probability. The three methods, however, performed in the 
reverse order in terms of the stability of variance estimator; the mean square error (MSE) 

I of the TSL variance estimator was smallest, The best BRR method for variance 
estimation, 

V(6,) = average value of [1/2 (eH- 6,12 + 1/2 (6, - 6J2] (1 -,, 

where (1-0 is the finite population correction, was most satisfactory for inferences about 
means, differences between means and regression coefficients. But 

9.8,) = Average value of 

which docs not require calculation of 6 ,  docs almost as welL The inferences about 
simple, partial and multiple correlations were not very satisfactory and sometimes erratic 



as agreement between t' and t worsens as n inaeases. This might have been due to 
skewed distribution of correlations bounded between -1 and +1 or due to small sample 
sizes of 12, 24 and 60 in this Monte Carlo study. 

Bean (1975) compared BRR and TSL methods for computing variances of ratio estimates 
in a Monte Carlo study using data from the Health Interview Survey. Both methods gave 
satisfactory variance estimates and adequate two sided confidence probabilities but one 
sided confidence intervals were not reliable. Further empirical investigations of properties 
of these methods by Campbell and Meyer (1978), Lemeshow and Levy (1978), Shah, Holt 
and Folsom (1977), Rust (1985), and Anderson et al. (1987) provided similar results. 

For nonlinear statistics that can be expressed as functions of estimated totals, Krewski and 
Rao (1981) established asymptotic consistency of TSL, JRR and BRR variance estimators 
as number of strata becomes large. Their first-order asymptotic result is valid for any 
stratified multi-stage desiga in which PSUs are selected with replacement and in which 
independent subsamples are selected within those PSUs sampled more than once. 
Analytical properties of TSL, 3RR and BRR variance estimators are, however, 
indistinguishable in their expansions to first order terms only. Dippo and Wolter (1984) 
compare RG, JRR and BRR analytically by including all  second order terms in their 
Taylor series expansions. The Consumer Expenditure Survey (CES) diary data (1980-81) 
is used to evaluate variance estimators in small samples for extremely skewed 
distributions of many CES variables. The results of this study indicate that the bias of 
RG, BRR and JRR variance estimators is small; the relative bias is less than 9%. The 
variance of the variance estimators, on the other hand, is not insignificant and the normal 
theory confidence intervals do not always have the desired coverage probabilities. Users 
should note that the c o m o n  of confidence intervals and tests of hypothcscs assuming 
normality may not be appropriate in situations where the numerator of the ratio estimator 
is a function of a variable &om a very skewed population. Confidence intervals based 
on transformations may be better in these situations as shown in Mulry and Walter 
(1981). Rao and Wu (1985) have made an asymptotic second order comparison of the 
BRR, JRR and TSL methods for any stratified multi-stage design in which PSUs are 
selected with replacement. When the design consists of two sampled PSUs per stratum, 
the TSL variance estimator is shown to be identical (in second-order asymptotic 

expansions) to the BRR variance estimator (that uses both %H and 6, ) and to the JRR 
variance estimator (called VJRRmD in Kish and Frankel 1974) for nonlinear estimates such 
as ratio, correlation and regression coefficients. These results suggest that for 2 PSUs per 
stratum designs with large number of strata, there is not much to choose between TSL, 
BRR and JRR variance estimators in terms of statistical criteria and therefore, practical 
considerations such as available computing resources and computing costs should 
dominate the choice of a variance estimator. 

In practical applications of variance estimation methods, it should be noted that: 
(1) replication or resampling methods - BRR, JRR and Bootstrap require more extensive 
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computation than the TSL method and will continue to be "computer-intensive" (Diaconis 

I 
and Efron 1983); (2) some sample designs may not satisfy the restrictions required by the 
replication methods. The TSL method is, however, applicable to any sample design; (3) 
replication methods may facilitate the estimation of variance for very complex functions 

I 
for which TSL would require derivation of new variance formulas. 

2. SOFTWARE PACKAGES. 

I Computer software packages for the analysis of complex sample mwey data and variance 
estiination are being developed by many institutions. At present, there are about 14 software 

I packages available for computing variances from complex surveys (See APPENDIX). Some of 
these are not easily accessible, others are limited in scope or developed for a specific sample 
design. Our review indicates that of these fourteen, only three are versatile, well supported, 

I portable programs, and applicable to stratified multi-stage sample designs. These are SUDAAN, 
SUPER CARP, and OSIRIS IV developed by the Research Triangle Institute (RTI), Iowa State 
University and the Survey Research Center, University of Michigan respectively. Note that the 

I enhancements to these three programs as well as to several other programs are in progress. New 
developments could make other programs, particularly TREES and NASSTIM, worth considering. 
The key features of SUDDAN, SUPER CARP and ORSIS IV are outlined below. 

I 2.1 SUDDAN: Suqey Data Analysis 

I Developed and distri'buted by 
Research Triangle Institute 
Post Office Box 12194 

I ' Research TriangIe Park 
North Carolina 27709 

Soprce Languages. 

Fgrtran and Assembler 

Compatibility 

I The program will run on any IBM system on which Statistical Analysis System (SAS) 
has been implemented. 



Documentation 

Holt, M.M. (1977). SURREGR: Standard Errors of Regression Coefficients from sample survey 
data. Research Triangle Institute, N.C. 

Lavange, LM., Shah, B.V., Barnwell, B.G., and Killinger, J.F. (1989). SUDAAN: A 
Comprehensive Package for Survey Data Analysis, Technical Report. Research Triangle 
Institute N.C. 

Shah, B.V. (1976). STDERR: Standard Errors Program for sample survey data. Research 
Triangle Institute, N.C. 

Shah, B.V. (1981). RATIOEST: Standard Errors Program for Computing of the Ratio Estimates 
from sample survey data Research Triangle Institute, N.C. 

Shah, B.V. (1981). SESUDAAN: Standard Enors Program for Campuhg ofstanchrdized Rates 
from sample survey data Research Triangle Institute N.C. 

Shah, B.V. (1982). Rl'IFREQS: Program to Compute Weighted Frequencies, Percentages and 
their standard errors. Research Triangle Institute, N.C 

Description 

B.V. Shah has deve1oped software at the Research Triangle Institute (RTI) for analyzing data 
collected from surveys with stratified multi-stage sample designs. These procedures can be 
accessed only through the Statistical Analysis System (SAS). The RTI intends to provide 
continued support for the software and has long range plans to develop a survey data analysis 
(SUDAAN) language that will greatly facilitate analysis of survey data 

The SUDAAN procedures compute means, proportions, ratios and regression coefficients and 
their variances. The statistical approach used for computing the standard error is the Taylor 
series linearization ('I'SL) method. 

The SUDAAN at present has four procedures. SESUDAAN, RATIOEST, N'"'FREQS and 
SURREGR A synopsis of these procedures follows: 

SESUDAAN: Standard Errors of Means, 
Proportions, Standardized Rates and Differences 

The program provides estimates of means or proportions for many domains (subgroups of 
populations) of interest. The domains are conveniently specified by the user with the TABLES 
statement similar to the one in PROC FREQ, SAS. 



The major conveniences for comparative evaluatian are standardization and differencing. For 

I example, for comparing mortality rates of the states of Florida and New York, it would be 
appropriate to compute rates standardized to population for both states and then take the 
difference between the two. SESUDAAN permits computation of such standardized differences 

i and their standard errors for many domains, 

Other convenience features include: (a) computation of design effects and various sample sizes, 

I @) output of results as SAS data sets, and (c) flexlble format of tables. SESUDAAN is very 
efficient and runs approximately three times faster for equivalent tasks than on STDERR, an 

- - 
older program. 

I 
RATIOEST: Program to Compute Standard Errors of Ratios 

This program is similar to SESUDAAN except for the following differences: 
\ 

I (a) Standard e m  am computed from statistics of the form DW/hYX instead 

@) Standardization or differencing is not permitted. 

(c) Standard errors of the totals are not estimated. 

RTIFREQS': Program to Compute Standard Errors of 
Percentages and Estimated Population Totals . 

This program is very similar to SAS proccdure FREQ. It computes sample counts, estimated 
totals, and percentages (row, column and total) as well as their standard errors. 

SURREGR: Standard Errors of Regression 
Coemcients from Sample Survey Data 

SURREGR is a procedure which provides a means of producing appropriate tests of hypotheses 
for regression models in sample survey situations. The procedure offers many useful options and 
operates in three modes which differ only in the method by which the variance-covariance matrix 
of the regression coefficients is calculated. SURREGR was primarily developed to handle 
regression analysis for sample survey datq hence, the default mode of the procedure will 
incorporate a stratified multistage sampling design into the varianc~covariance computation. 
Another mode of the procedure relies on the ordinary least squares estimate for the variance- 
covariance matrix. Also, a weight may be used for a weighted ordinary least squares analysis. 
Some useful options for SURREGR are described below. 



- The DATAOUT option produces a SAS file which contains for each model, the 
regression coefficients, the varimce-co\wianct matrix, L?ae F test values, and their 
associated degrees of freedom. 

- The RESIDUAL option allows for output to a SAS data set of the unweighted predicted 
and residual values associated with each level of each dependent effect for each model. 

- The BETA option prints a solution to the normal equations and the variance-covariance 
- matrix for the solution. 

- The MODEL statement allows the user to list one or more multiple dependent effects 
with any number of independent effects. An effect may be a single variable or a main 
effect, or it may be composed of a group of variables. When there is more than one 
variable in an effect, each variable must be joined to the next with either a * indicating 
crossed variables or a 0 indicating a nesting structure. An effect may contain continuous 
or discrete variables, but ohly discrete variables may be nested. Variables which are 
combined into one effect must be listed with the aosscd and then the nested groupings. 
Only one level of nesting is allowed. For computational aspects and empirical studies 
related to the approximation, the reader is refened to Shah, et al. (1977); Holt (1977); and 
Fuller (1975). 

- Finally, note that significant improvements to the SUDAAN package tire provided in the 
new SUDAAN system under development (Lavange et al. 1989). 

2 3  SUPER CARP: Cluster Analysis and Regression h g r a m  

Developed and Distriiuted by 
Survey Section 
Statistical Laboratory 
Dept. of Statistics 
211 Snedecor 
Iowa State University 
Ames, Iowa 50010 

Compatible with following computer systems: 
IBM 360 and 370 
Univac 1100 

Operating Systems 
OS, Tso 
Source Languages 
Fortran G . 



Documen tation 

Hidiroglou, MA, Fuller, W.A. and Hickman, R.D. (1980). SUPER CARP, Iowa State 
University, Ames, Iowa 

Schnell, D., Kennedy, W.J., Sullivan, G., Park, H.J., and Fuller, W.A. (1988). Personal 
Computer Variance Software for Complex Surveys, Survey Methodology, 14,59-69. 

Description 

SUPER CARP (Cluster Analysis and Regression Program) was written by Hidiroglou, Fuller and 
Hickman at thc Iowa State University. This program computes estimates of population (and 
subpopulation) means, totals, proportions and ratios and their variances for stratified multi-stage 
samples. The variances of means, totals and ratios are obtained by Taylor wries approximation. 
For PPS sampling with 2 PSUs per stratum, the program computes the variance using the Yates- 
Grundy formula which under estintatts the total variance whenever sampled PSUs are subsampled 
(see Raj 1968). 

I 

SUPER CARP computes regression coefficients and theii standard errors using the methods given 
in Fuller (1975). A special feature of this software provides regression estimates in the presence 
of known (or estimated) response errors, A test of goodness of fit and test of independence in 
a two way table are provided in addition to test for regression coefficients. SUPER CARP also 
allows for automatic collapsing of strata that contain only one PSU. Each one PSU stratum is 

. combined with the next stratum in the sequence. Note that this may not be an optimal procedure. 
It provides standard errors for stratum means, totals and ratios. 

The maximum number of variables that can be inchded in the standard program in one analysis 
is 50. If finite population correction option is elected for the two-stage sampling designs, the 
maximum number of PSUs is 2000. 

A significant enhancement to SUPER CARP is the introduction of PC CARP (Schnell et a1 
1988), available on IBM ATIXT or compatible micr~mputers  with a math co-processor. This 
package, like SUPER CARP, uses the TSL method for variance estimation. 

Developed and distributed by 
The Institute for Social Research 
The Survey Research Center 
University of Michigan 
Ann Arbor, MI 48106 
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Compatible with following computer systems. 

IBM 360/370 
IBM Compatible such as 
AMDAHL 470 V/6 Operating systems: 
MTS 
OSf360 
MVS or equivalent 

Source Languages: 

Fortran IV or Assembler 

Documentation 

Computer Support Group (1982). OSIRIS VI: Statistical AnaIvsis and Data Management 
Software Svstcm. Survey Research Center. Institute of Socirl Research, University of Michigan. 

Computer Support Group (1980). Sam~line Error Analvsis in OSRIS IV. Survey Research 
Center, Institute for Sdcial Research, University of Michigan. 

Description 

The OSIRIS IV software system was written by Kish, Frankel and Van EcJL at the Institute for 
Sodal Research, University of Michigan. It has two programs for computing sampling error 
estimates derived from surveys with complex sample designs The PSALMS command produces 
sampling error estimates for ratios, ratio means, totals and differences of ratios. The REPERR 
command produces sampling error'estimates for means and regression coefficients based on 
replication method of variance estimation. Three alternative forms of replication methods are 
available: Simple replications, balanced repeated replications (BRR), and jackknife repeated 
replications (JRR). 

For computational ease and generality, both commands assume that the PSUs are selected with 
replacement. Note, however, that this method leads to an overestimation of variance if PSUs are 
selected without replacement. 

Sampling error estimation requires at least two PSUs within each stratum, When the sample 
design does not provide this, the collapsed strata technique (Cochran 1977) needs to be applied. 
Required input specifications for both commands include the definition of a stratification variable 
and a sampling error computing unit (SECU) variable. 



The definition of the SECU variable is fundamental to the estimation procedure. .With multi- 
stage sampling, each PSU could constitute a separate SECU; with tiing1estag.e sampling, eac=11 
unit can be a SECU. If PSUs are numerous and small, it may be advantageous to join several 
PSUs to form a SECU. PSUs may be combined within a stratum when a stratum contains many 
PSUs; alternatively, they may be combined across strata using the 'thickening zone' technique 
(Deming 1960). The reliability of variance estimates increases as the number of SECUs 
increases. The amount of computing in the PSALMS command is relatively independent of the 
number of SEWS and, therefore, as many SECUs as posdile should be formed (each PSU 
should be a separate SECU), The amount of computations in the REPERR command is 
dependent on number of replications formed, which in turn depends to a certain extent, on the 
number of SECUs formed, particularly with the BRR method. Therefore, it is sometimes 
desirable to employ a smaller number of SECUs for the REPERR command. 

The PSALMS command uses the Taylor series expansion method to estimate variances for ratios, 
means, totals and differences of ratios. It enables a single run to yield sampling errors for a 
range of estimates for both the to$ sample and an unlimited number of subpopulation domains. 
The statistic, its standard error and simple random sampling standard error, design effect, 
intraclass correlation, and unit and weighted counts are included in thc printout. A special 
feature of this is that the printout includes coefficients of variation of the denominator of ratios 
and a warning when it is determined to be too high, indicating inadequacy of the Taylor series 
approximation for large samples. 

The REPERR command computes variances for means, co~relations, regression coefficients, 
standardized regression coefficients and multiple correlation coefficients using replication 
techniques. Replications are formed using BRR, JRR or &om user-specified lists of SEWS. 
Only one model may be used in a run. The BRR model requires that each stratum contain 9 

exactly two SECUs, one SEW is selected from each stratum to form a replication. This 
operation is repeated to form a set of replications that have the property of orthogonality (Kish 
and Frankel 1974, Plackctt and Burman 1946). The number of strata that can be accommodated 
by this procedure is limited from 4 to 88. The compliments of replications are also included as 
replications and used in variance computations, as discussed by Frankel (1971). The JRR model 
can be applied with any number of SECUs per stratum greater than one. The standard printout 
includes the statistic, its standard error, simple random sample error, design effect and test 
statistics (corresponding to the t-statistics under assumptions of simple random sampling and 
normality). Printout options available include: the listing of SECUs and weights by replication; 
SECU and replication unvariate statistics, sums, sums of squares and products; and regression 
analysis by replication and for the total sample. A feature is also available to create dummy 
variables from categorical measures for use as independent variables in regression analysis (See 
Draper and Smith 1966, and Kish and Frankel 1974). 

2.4 Comparison of Software Packages. 

Recently, Cohen, Burt and Jones (1986) have compared four variance programs: 
SESUDAAN/RATIOEST, in the SUDAAN package, SUPER CARP, OSIRIS/PSALMS, 



and HESBRR' using data from the National Medical Care Expenditure Survey. The 
comparisons concentrate on program capabilities, computational efficiency, and user 
facility. We discussed program capabilities earlier. Results for user facility and 
computational efficiency are given in tables 1 and 2 respectively. Table 1 compares the 
ease of implementation of software packages in terms of number of programming 
statements required to implement a program for computation of variances of means, totals, 
and ratios. Table 2 compares computational efficien&cs of software packages in terms 
of CPU time needed to compute variances of means, totals and ratios for three different 
sample sizes. 

TABLE 1 
Ease of Applications - Number of Programming Statements 

Number of Programming Statements 

Variance SESUDAAN/ OSIRISI SUPER 
of RATIOEST PSALMS CARP HESBRR 

Means 9 144 50 168 
Totals 9 144 50 168 
Ratios 10 354 116 420 

The SESUDAAN procedure required only 9 program statements to yield variances for means or 
totals and the RATIOEST procedure required only 10 program statements to obtain variances for 
ratios. Clearly, the SESUDAANfRATIOEST procedure was superior in terms of ease of 
implementation. The authors also commented that no direct mechanism was provided in 
PSALMS to cross-classify categorical demographic meiares; the program was tedious to 
implement. 

- 

HESBRR (Health Examination Survey Variance and Crosstabulation program developed 
by the National Center for Health Statistics) 



TABLE 2 
Comparison of Computation Time 

CPU time in seconds 

Variance SESUI)AAN/ OSIRISI SUPER 
of R ATIOEST PSALMS CARP HESBRR 

Totals 
n= 1,193 2.04 * 6.27 19.20 8.21 
n= 8,507 7.31 39.72 117.47 37.01 
n=40,320 - 29.82 184.62 546.21 168.1 1 

Ratios 
n= 1,193 5.69 15.18 47.74 37.73 
n= 8,507 19.92 97.85 295.13 183.70 
n= 40,320 79.97 456.62 --a 850.42 

n indicates sample size Excccded 15 minutes of CPU time 

j/ HESBRR (Health Examination Survey Variance and Crosstabulation program developed by 
the National Center for Health Statistics) 

As can be obsemed, the SESWDAANfRATIOEST procedure was consistently superior in terms 
of computational efficiency over all specifications of data base and type of statistics used. 
Computational accuracy of SESUDAAN and SUPER CARP (both use TSL) was demonstrated 
earlier (Francis and Sedrank 1979). The variance estimates obtained from HESBRR were 
observed to be equal to hand calculated values by NCHS. A comparison of variance estimates 
derived by using HESBRR that uses BRR method with those obtained by TSL generally 
confirmed their computational convergence for large samples. 

3. VARIANCE ESTIMATION FOR SIPP 

First we note the key features of the SIPP design (documented fully in Nelson, McMillen 
and Kasprzyk 1984) before discussing how users can compute variances. 

The SIPP has a stratified multi-stage design. In the 1984 Panel, there are 174 strata; 45 
self representing (SR) and 129 nonself representing (NSR) strata. One PSU per NSR 
stratum is selected without replacement with probability proportionate to size. The 
ultimate sampling units are clusters of generally 2 housing units selected systematically 
from the 1970 decennial census address list. The sample is updated to reflect new 



construction with clusters of 4 housing units, Thus, the total sampling variance has three 
components; between and within PSU variances iiom NSR strata, and the within PSU 
variance from SR strata. 

The SIPP is a rotating panel survey with a new panel begun each year that is interviewed 
at 4-month intervals for 2 1/2 years. The yearly panels beginning with the 1985 panel are 
selected from the 1980 census based desiga which has generally 2 PSUs per stratum 
whereas the 1984 Panel has 1 PSU per stratum. The 1980 census based design originally 
had 91 SR PSUs and 198 NSR PSUs (2 PSUs from each of 95 NSR strata and 1 PSU 
from the remaining 8 NSR strata). Before this design was ever implemented, the sample 
had to be reduced in FY 1985 for budgetary reasons. The sample reduction was achieved 
by dropping 54 NSR PSUs and about 3000 households fiom SR PSUs. Thus, the sample 
reduction in 1985 introduced another component of variance - between strata withii 
'super stratan that were formed for dropping sample PSUs. In FY 1986, additional long- 
term cost saving measures yere instituted by further reducing the sample size by 15% for 
the 1985 and 1986 Panels. These sample reductions will, of course, increase sampling 
variances but unlike the 1985 sample cut, will not introduce another new component of 
variance. A detailed description of sample reductions for 1984,1985 and 1986 Panels is 
given by Kaspnyk and Heniot (1986). 

A "reasonably goodn variance estimator should incorporate al l  components of variance and 
have a small, if any, bias. None of the three general purpose software packages, OSIRIS 
IV, SUDAAN or SUPER CARP will estimate the component of variance introduced by 
the 1985 sample cut. The replicate weighting method developed by Fay at the Bureau of 
the Census incorporates this component of variance. 

SUPER CARP and SUDAAN arc appropriaic for stratified multi-stage sampling designs 
with simple random sampling without replacement at each stage but not for PPS sampling 
of PSUs. SUPER CARP allows computation of the Yates-Grundy Variance estimator 
(Cochran 1977, P.261) for the 2 PSUs per stratum design. This estimator is unbiased only 
for single-stage sampling. As Des Raj (1968, P.118), points out, this will result in a 
serious underestimation of the variance. A term must be added to represent fully within 
PSU variances. The SUDAANISESUDAAN'S variance formula for stratified twostage 
sampling with simple random sampling at each stage can be manipulated to yield the 
appropriate variance formula for PPS sampling. This is indicated in Folsom (1985). 
However, this is not built into the package and would require additional work by a 
knowledgeable person and also computation of joint probabilities of selection of pairs of 
PSUs in each stratum. Another problem with this manipulation is that for confidentiality 
reasons, the SIPP Public use data file does not identify each PSU. 

These complications can be avoided by using a replication method of variance 
computation. The OSIRIS IV/REPERR software uses the BRR method based on sampling 
of PSUs with replacement. This tends to overestimate the variance for a design SIPP 
where PSUs are sampled without replacement. Thus, all three software packages have 



some deficiencies in meeting the objective of providing strictly design based estimates of 
variances for the complex design of the SIPP. But they will provide reasonably good 
estimates of variances for SIPP. Moreover, they provide substantial improvement over 
the traditional method based on the assumption of simple random sampling ignoring 
complex design features. Fay's replicate weighting method is geared to the specific 
sample design of the SIPP. Reweighting of each replicate independently to population 
control totals, hopefully, provides a more efficient variance estimator than the BRR 
method. Unfortunately, users will not be able to use this method to compute variances 
because replicate weights are not provided in public use files. The original PSU codes 
as well as replicate weights are withheld from public use files to prevent identification of 
small geographic areas, where disclosure of individual identities may be possible. 
However, users can compute variances by the BRR method using special codes provided 
in public use files. Each sample person in a SIPP public use file has been assigned a 
pseudo stratum code and a pseudo PSU (half-sample) code. Each pseudo stratum has two 
pseudo PSUs. Bye and Gallicchio (1989) have cornpufed variances for characteristics of 
a subpopulation- Old-Age, Survivors and Disability Insurance (OASDI) and Supplemental 
S d t y  Income (SSI) program participants-by the BRR method from the 1984 SIPP 
public use file. 

They also compared variances obtained by this method fbr 36 estimates of population 
totals with those obtained by the Bureau of the Census using Fay's method. Most of the 
items showed small differences in coefficients of varia!ioa There are indications that 
variance estimates may have larger variances compared to Fay's variance estimates 
especially when the number of sample cases are small. This is not surprising since Fay's 
method is designed to increase the stability of variance estimata 

The overall rcsults of this comparison however, show that the variances computed by the 
BRR method using pseudo strata and half-sample codes are comparable to the design 
based variances obtained by Fay's replicate weighting method. Users can compute 
variances by the BRR method without the help of any variance software package. A 
distinct advantage of the BRR method is that it uses a single variance formula for all 
statistics and thus facilitates computation of variances for complex statistics like 
socioeconomic indices for which derivation of variaace formulas may not be easy. As 
mentioned in the section 15, empirical results suggest that the BRR method performs 
better than the TSL or JRR method in estimating confidence intervals for parameters. 
These advantages, in addition to the ease of computation, lead us to recommend that users 
compute variances directly when necessary, by the BRR method using pseudo stratum and 
half-sample codes provided in the public use file. 

The minimum number of half-sample replicates required for a fully balanced orthogonal 
set is the smallest multiple of 4 which is greater than the number of strata in the sample 
design. Thus, the number of replicates, required is at most L+4 where L is the number 



of pseudo strata in a public use file. Let. R denote the number of. replicates and 

iet b1 (i=1,2,,,&) and 6 denote the estimate of the parameters 0 as computed from the 
ith replicate and from the full sample respectively. 

Then, the variance of 6 is estimated by 

Note that when R rep1icatcs represent a fully balanced orthgonal set, b is equal 
R 

to 5. bi/R, for strictly linear statistics But for nonlinear statistics like ratio, 
i=1 % 

quantilc, correlation coefficients etc 6 and are not qual. They should be quite close, 
however, in most situations for moderate to large samples. Large differences 

among 6 a d  5 should indicate that computational e m  may have occurred. 

The 1984 SIPP public file has 71 pseudo strata and therefore rquires 72 half-sample 
replicates for full orthogonal balance as has been used by Bye and Gallicchio (1989). The 
SIPP public use files for 1985 and following years have 72 pseudo strata. Users should 
use 76 half-sample replicates to compute variances. A 76x76 orthogonal matrix (called 
Hadamard matrix) is given in Placket and Burman (1946) and Woltcr (1985). However, 
users can generate an orthogonal matrix following the pmcdure descxlkd below: 

Generating an Orthogonal Matrix 

The following describes how to generate an orthogonal matrix which is a Hadamard matrix. The 
description is for a n x n matrix where n = 4t = p .t 1, p being an odd prime. The matrix will 
be made up of +1 and -1 entries. 

The first step in generating the matrix is to create the first row and the fist column of the matrix 
by setting each entry to +1 so that for matrix m, m(1,i) = +1 and m(i,l) = +1 for i = 1 to n. 

The next step is to generate the second row. First, letting p = n - 1 and q = n - 2 find the set 
S of perfect squares (mod p). To do this, calculate the elements sh of S as follows: 

h 2  sh = the remainder of - for h = 1 to q 
P 



Set m(2,2) = -1. For j = 3 to n, let k = j - 2. The remaining columns in the second row can be 
assigned as follows: 

The last step is to generate the remaining rows For i = 3 to n and j = 2 to n, assign each 
column in each row as follows: 

The final result will be an n x n Hadamard matrix. A 12 x 12 Hadamard matrix is shown below. 

\ 

12 x 12 Hadanuud Matrix 

Note that columns of the matrix can be associated with pseudo strata and rows with replication. 
An entry of +1 in the ith row and jth column (id) cell signifies that the half-sample 1 is part of 
the ith replicate, while an entry of -1 signifies that the half-sample 2 is part of the i-th replicate. 

The sample records thus assigned to the ith replicate will have to be multiplied by a factor 2 to 

compute the estimate bl. This is equivalent to giving a replicate weight 2 to all records 
assigned to the ith replicate and a weight 0 to the remaining records. This can be done by 
generating replicate factors (20) as descriid below. 
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Generating replicate factors 

The following describes how to generate replicate factors for a file using the Hadamard matrix. I 
In order to create replicate factors for each record on the file, the file will have a pseudostratum 
code. Each pseudostratum is divided into two pseudo PSUs or half-samples. The half-sample 
code on each record is usually a 1 or 2, although other possibilities may exist. The following 

I 
details will assume that the code is represented as either a 1 or 2 on each record I 
At this time a n x n Hadamard matrix should have been generated, where n is greater than the 
number of pseudostrata but equal to the number of replicates to be formed. Associate each 
pseudostratum code with a column on the matrix. For each record, find the column associated 
with the pseudostratum code. Then create replicate factors form the column of the matrix. To 

I 
do this, let the following variables be defined as: 

R : total number of replikates where R=n 
s : half-sample code for a given record 
m : Hadamard matrix 
c : column of the matrix associated with the pseudostratum code 

I 
for a given record 

{fi) : replicate factors for a given record 
I 

To generate all replicate factors use the following procedure. I 
If s=l  then 

If s=2 then 

From this procedure R replicate factors are formed for a given record. Continue this procedure 
until all records on the file have replicate factors. 

4. VARIANCE GENERALIZATION 

The SIPP reports publish standard errors of many summary statistics. Because of costs, sampling 
errors are usually computed only for a representative subset of statistics. Generalized variances 
are obtained for many characteristics by fitting statistical models. The appendix 'Source and 



Reliability of Estimates' of a report provides standard errors related to the size of an estimate for 

I key characteristics so that users can obtain standard encn by linear interpolatioa. Gencralizcd 
parameters are also provided for direct computation of standard errors for some characteristics. 
Computations are illustrated in the appendix. The main purpose of the appendix is to enable 
readers to ascertain the reliability of estimates and make statistical inferences. Researchers can 
compute standard errors for studies involving general population characters. 

I In studies confined to small domains of the population, rg. OASDI and SSI program participants, 
Hispanics etc., generalized parameters may not be appropriate, and direct computation of 
variances by the BRR would be useful. In studies involving a very large number of statistics, u users may compute variances directly for a representative subset of statistics and fit a suitable 
linear model to generalize variances. 

The model 

v2 =a + ~ / x  b 

I where 
a and 8 are coefficients to be estimated 
x is the estimated population total u and v2 is the estimated relative variance of x, is. 

v Z = v ~ / x 2  
1 has been used by the Census Bureau for CPS, SIPP and other surveys. Users can use this model 

to obtain gener&cd variances. 

1 5. RECOMMENDATIONS FOR VARJANCE ESTIMATION 

1. In studies involving general population characteristics, users can compute variances 
by using the generalized parameters provided in SIPP reports. 

2 In studies involving small domains of the population, users should directly compute 
variances by the BRR method. 

3. Variances computed on a small number of sample cases may not be reliable and 
therefore, caution should be exercised in making statistical inferences based on 
such variance estimates. 
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APPENDIX 

A List .of Variance Estimation Programs 

Package Name Pevelo~cr Affiliated Institution 

1. OSIRIS IV 

2. SUDDAN 

3. SUPER CARP 

L. Kish, et al Survey Research Center 
University of Michigan 
Ann Arbor, MI 48106 

B.V. Shah Research Triangle 
P.O. Box 12194 
Research Triangle Park, NC 22709 

\ 

M. Hidiroglou Iowa State University 
W. FullerDepartment of Statistics 
R. HickmanAmes, Iowa 50010 

4. CLUSTERS V. Verma World l?ertili& Survey 
M. PearceInternational Statistical Institute 
Voorburg, The Netherlands 

5. HESBRR G. K. Jones Center for Health Statistics 
3700 Eastwest Highway 
Hyattsville, MD 20782 

6. NASSTIM, NASSTVAR D. Morgenstein Westat, Inc. 
1650 Research Blvd. 
Rockville, MD 20850 

7. PASS D. Thompson Social Security Administration 
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