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Abstract

In this paper we examine how model uncertainty due to the preference for robustness (RB)
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taxes or through debt under RB. Furthermore, we show that introducing RB improves the
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1 Introduction

Figure 1 presents the post-war behavior of US government spending, average tax rates, and

government debt. In this paper we ask how to rationalize the joint behavior of these fiscal

variables; specifically, we ask whether they are jointly consistent with the idea that governments

seek to use debt to smooth the taxes needed to finance an exogenous stream of government

spending.

Barro (1979) proposed a simple full-information rational expectations (RE) tax-smoothing

model with only uncontingent debt in which the government spreads the burden of raising distor-

tionary income taxes over time in order to minimize their welfare losses to address these questions.

Specifically, the model predicts that the government should issue debts in order to spread the in-

creases in tax rates over longer periods and minimize the welfare losses when facing a positive

government spending shock.1 Furthermore, the model also predicts that changes in the tax rate

are unpredictable, i.e., the tax rate should follow a random walk.2 It is worth noting that the

tax-smoothing hypothesis (TSH) model is an analogy with the permanent income hypothesis

(PIH) model in which consumers smooth consumption over time; tax rates respond to permanent

changes in the public budgetary burden rather than transitory ones.3

Huang and Lin (1993) and Ghosh (1995) went beyond the random-walk tests and use the

analysis of saving in Campbell (1987) to test the restrictions on the joint behavior of budget

deficits and government spending implied by the tax-smoothing hypothesis.4 They found mixed

empirical evidence for the TSH. For example, Huang and Lin (1993) applied a log-linearized TSH

model to the U.S. data from 1929− 1988, and found that the TSH is rejected for the full sample

period, but it is not rejected for the sub-sample period from 1947 − 1988. Ghosh (1995) used

the US data from 1961 − 1988 and Canadian data from 1962 − 1988 and found that the TSH

model cannot be rejected for either country. Adler (2006) tested the TSH using the Swedish

central government data and found that it is not possible to statistically reject the TSH for the

full period 1952 − 1999, but the TSH is rejected using the sub-sample period from 1970 − 1996.

1The tax-smoothing model is widely used in the literature to address various fiscal policy issues; see Sahasakul

(1986), Trehan and Walsh (1988), Bohn (1990), Ghosh (1995), Angeletos (2002), and Lloyd-Ellis, Zhan, and Zhu

(2002). For the tax-smoothing setting with state-contingent debt, see Lucas and Stokey (1983), Aiyagari et al.

(2002), and Karantounias, Hansen, and Sargent (2009).
2Although Barro (1979, 1981) report that in the US data the prediction that the tax rate is a random walk is

difficult to reject statistically, Sahasakul (1986) is able to reject it.
3For a statement of this equivalence, see Sargent (2001).
4It is well-known that it is often difficult to reject the null hypothesis of a random walk for many macroeconomic

time series given the length of the data. Moreover, as argued in Ghosh (1995), the TSH might be only one of many

potential explanations for unpredictable tax rate changes.
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However, as shown in Table 3 in the next section, the standard full-information TS model

cannot generate two key stochastic properties of the joint behavior of government deficits, tax

rates, and spending, (i) the relative volatility of changes in tax rates and spending and (ii) the

contemporaneous correlation between government deficits and spending, in the U.S. economy.

Specifically, the model generates too low relative volatility and too high contemporaneous corre-

lation.5 As a result, we also find that the TSH is rejected using the US data from both 1951−2010

and 1960 − 2010.

In this paper, we show that model uncertainty due to the preference for robustness (RB)

significantly improves the model’s ability to fit the data discussed above. Hansen, Sargent, and

Tallarini (1999) and Hansen and Sargent (2007) introduced the preference for robustness (a con-

cern for model misspecification) into economic models. In robust control problems, agents are

concerned about the possibility that their model is misspecified in a manner that is difficult to

detect statistically; consequently, they choose their decisions as if the subjective distribution over

shocks was chosen by an evil agent in order to minimize their utility (that is, the solution to a ro-

bust decision-maker’s problem is the equilibrium of a max-min game between the decision-maker

and the evil agent).6 In the TSH setting, specifically, the preference for RB interacts with the

fundamental uncertainty (the government spending and output shocks in the TSH model) and

gives rise to a type of induced uncertainty : model uncertainty. This type of induced uncertainty

can affect the model’s dynamics even within the linear-quadratic (LQ) framework.7 We adopt

the LQ-TSH setting in this paper because the main purpose of this paper is to inspect the mech-

anisms through which the induced uncertainty affects the joint dynamics of government deficits,

tax rates, and spending, and it is much more difficult to study this informational friction in non-

LQ frameworks.8 After solving the model explicitly, we then examine how model uncertainty due

5Aguiar and Gopinath (2007) showed that the otherwise standard small-open economy RBC model cannot

generate realistic joint behavior of the current account, consumption, and output. In particular, they found that

the model failed to generate the following two observations on the unconditional moments: (1) the correlation

between the current account and output is more negative in emerging economies (i.e., the current account is more

countercyclical in emerging countries) and (2) the relative volatility of consumption to income is larger in emerging

countries than in developed countries. Luo, Nie, and Young (2012) showed that a simple intertemporal current

account model with informational frictions can generate realistic unconditional moments of the joint dynamics of

the current account, consumption, and income.
6As shown in Luo and Young (2010), consumption models can still produce precautionary savings but remain

within the class of LQ-Gaussian models, which leads to analytical simplicity.
7Note that in the traditional linear-quadratic, linearized, or log-linearized models, uncertainty measured by the

variance of the fundamental shock does not affect the model dynamics.
8As argued in Hansen and Sargent (2007), if the objective function is not quadratic or the state transition

equation is not linear, worst possible distributions due to RB are generally non-Gaussian, which significantly
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to RB can improve the model’s predictions on these important dimensions of the joint dynamics

of government deficits, tax rates, and spending we discussed above.

We show that the RB model has the potential to lead to the observed different joint behavior of

government deficits, tax rates, and spending in the US, depending on the parameter governing the

concern for model misspecification. Specifically, we find that incorporating RB can improve the

model along the two key dimensions: generating higher relative volatility of changes in tax rates

to government spending and lower contemporaneous correlation between government deficits and

government spending.9 In addition, after calibrating the RB parameter using the detection error

probability, we find that RB can quantitatively help generate the empirical stochastic properties

of the joint dynamics of government deficits, tax rates, and spending.

In addition to improving the basic model’s ability to match the unconditional moments of

fiscal policy, we are also able to show that the RB model improves the match of conditional

moments; specifically, the RB model can pass the bivariate VAR test used in Huang and Lin

(1993), Ghosh (1995), Adler (2006), and others, provided the desire for robustness is strong

enough. We discipline this desire using detection error probabilities, as advocated by Hansen and

Sargent (2007) and used in Luo, Nie, and Young (2012); the result is that the model passes the

VAR test for reasonable error probabilities, particularly if we exclude the Korean War from our

data.

The remainder of the paper is organized as follows. Section 2 reviews the standard full-

information rational expectations taxation smoothing model proposed by Barro (1979). Section

3 introduces robustness into the standard TSH model and examines the implications of model

uncertainty due to RB for the joint dynamics of optimal taxation and government debt. Section

4 discusses how to use detection error probabilities to calibrate the robustness parameter and

presents the calibration results. Section 5 concludes.

2 The Model

In this section, we propose a robustness (RB) version of Barro (1979)’s tax-smoothing model and

explore how RB affects optimal taxation and government debt. We assume that the only asset

that is traded internationally is a riskfree bond. In choosing the optimal tax rate, the government

complicates the computational task. See Hansen and Sargent (2007) for detailed discussions on the difficulties in

solving the non-LQ RB models, and Bidder and Smith (2011) and Young (2012) for nonlinear approaches that

characterize the worst-case distributions.
9In an extension, we show that the impacts of RB on these two key moments still hold even if we allow for

multiple shocks in the government spending process.
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is concerned about model misspecification.

2.1 Taxation Smoothing Hypothesis Problem

In this subsection we present optimal paths of the tax rate and the budget surplus when the

government chooses to minimize the present value of excess burden from taxation given the

stochastic processes of government spending and real GDP. In the absence of a first-best system

of lump-sum taxes, the government must seek to minimize the welfare losses arising from its choice

of tax rates. These losses are assumed to be an increasing, convex and time invariant function of

the average tax rate. Specifically, following Barro (1979), Roubini (1988), Bohn (1990), Ghosh

(1995), and Lloyd-Ellis, Zhan, and Zhu (2005), we assume that the excess burden of taxation is

summarized by a quadratic loss function c (τt) = 1
2 (τt + ϕ)2, which measures the value of real

income “wasted” when taxes are τt.
10 The optimization problem of the government can thus be

written as

max
{τt,bt+1}

E0

[
−1

2

∞∑

t=0

βt (τt + ϕ)2

]
, (1)

subject to its flow budget constraint

Bt+1 = RBt +Gt − τtYt, (2)

where E0 [·] is the government’s expectation conditional on its information set at time 0, β is the

government’s subjective discount factor, τt is the tax rate, Bt is the amount of government debt,

Gt is government spending, Yt is real GDP, and R ≥ 1 is the gross interest rate.

Suppose that real GDP is growing at a constant rate, n. Then (2) can be rewritten as

(1 + n) bt+1 = Rbt + gt − τt, (3)

where lowercase letters denote corresponding variables expressed as a fraction of real GDP, Yt.

Solving the government’s optimization problem (1) subject to (3) and a no-Ponzi condition yields

the following optimal path for the tax rate:

τt =

(
R− (1 + n)2

βR

)
Et


bt +

1

R

∞∑

j=0

(
1 + n

R

)j

gt+j


 , (4)

10Following Barro (1979), Sargent (1987), Bohn (1989), and Huang and Lin (1993), we impose the restrictions

c′ (τ ) > 0 and c′′ (τ ) > 0, on the loss function, c (τ ), by choice of ϕ.
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which is just a permanent government expenditures theory proposed by Barro (1979).11 Denoting

by R̃ = R/ (1 + n) the effective interest rate faced by the government, (4) can be written as

τt = (1 + n)

(
R̃− 1

βR̃

)
ht, (5)

where

ht = Et


bt +

1

(1 + n) R̃

∞∑

j=0

(
1

R̃

)j

gt+j


 (6)

is permanent government spending, equal to the sum of government debt and the present dis-

counted value of expected government expenditure. This expression is analogous to permanent

income in a standard consumption-savings problem.

Define γ ≡ 1−1/(βR̃2)
1−1/R̃

. It is clear that γ ≶ 1 iff βR̃ ≶ 1. In the literature, the case in which

βR̃ < 1 (i.e., γ < 1) is called tax tilting.12 In the case in which n = 0 and βR = 1, γ = 1.

Tax smoothing and tax tilting are two main motivations for a government to run budget deficits.

Note that even if government spending (as a fraction of real GDP) is constant over business cycles

such that there is no need for tax-smoothing, budget deficits may still arise due to the tax-tilting

motivation to shift (tilt) taxes across time. Specifically, if βR̃ < 1, i.e., the subjective discount

rate of the government is high, the government will choose to have low tax rates early and increase

tax rates over time to finance its accumulated debts. By contrast, if βR̃ > 1, the government

will choose to have relatively high tax rates early and then use accumulated assets (i.e., negative

debts) to reduce tax rates over time. Finally, if βR̃ = 1, then there is no tax-tilting motive

for budget deficits but there would be a strong tax-smoothing motive. Following the literature,

we will focus only on the tax-smoothing motive (i.e., the βR̃ = 1 case) when we examine the

stochastic properties of the joint behavior of government taxes, deficits, and spending. In this

case, the tax function can be written as

τt = (1 + n)
(
R̃− 1

)
ht. (7)

Note that if n = 0, τt = (R− 1) ht and ht = Et

[
bt +

∑∞
j=0

(
1
R

)j
gt+j

]
.

As shown in Luo and Young (2010) and Luo, Nie, and Young (2012), in order to facilitate

the introduction of robustness we reduce the above multivariate model with a general exogenous

process to a univariate model with iid innovations that can be solved in closed-form. Specifically,

in the above TSH model, if ht is defined as a new state variable, combining (6) with the original

11See Appendix 6.1 for the derivation.
12See Ghosh (1995) for a discussion on this topic.
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government budget constraint, we obtain the following new budget constraint:

ht+1 = R̃ht −
1

1 + n
τt +

1

1 + n
ζt+1 (8)

where

ζt+1 =
∞∑

j=0

(
1

R̃

)j+1

(Et+1 − Et) [gt+1+j ] (9)

is the time (t+ 1) innovation to permanent spending. We can thus reformulate the above model

as

v(h0) = max
{τt}∞t=0

{
E0

[
∞∑

t=0

βtc(τt)

]}
(10)

subject to (8) and v(h0) is the government’s value function under RE.13

To close the model, we assume that government expenditures evolve according to the following

AR(1) process:

gt+1 = (1− ρg) g + ρggt + ǫt, (11)

where ρg ∈ [0, 1] and ǫt is an iid shock with mean zero and variance ω2. Substituting (11) into

(6) and (9) yields:

ht = bt +
1

(1 + n)
(
R̃− ρg

)gt +
(1− ρg) g

(1 + n)
(
R̃− ρg

)(
R̃− 1

) (12)

ζt =
1

R̃− ρg
ǫt. (13)

Therefore, under the full-information RE hypothesis, the change in optimal taxation can be

written as

∆τt =
R̃− 1

R̃
(Et − Et−1)




∞∑

j=0

(
1

R̃

)j

gt+j


 (14)

=
R̃− 1

R̃− ρg
ǫt,

which relates the innovation to taxation to government spending shocks. In other words, the

optimal tax rate follows a random walk in the standard rational expectations model. Although

the optimal plan here is to smooth tax rates so that τt = Et [τt+1], it does not mean that τt is

13In the next section, we will introduce robustness directly into this ‘reduced’ TSH model; in the Appendix we

show that the general robust multivariate version delivers the same decision rules because debt evolves determinis-

tically, so that the evil nature cannot distort its law of motion.
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unaffected by the government spending shock; rather, the optimal tax behavior is to make any

changes in taxes unpredictable.

The government budget deficit can be written as

deft = bt+1 − bt

=
(
R̃− 1

)
bt +

1

1 + n
gt −

1

1 + n
τt

= −
∞∑

j=1

R̃−jEt [∆gt+j ] , (15)

which means that the government sets the budget deficit to be equal to expected changes in gov-

ernment spending. Using (11), we obtain that deft =
1

1+n
1−ρg

R̃−ρg
(gt − g). That is, the government

deficit is positively correlated with government spending. We now consider two special cases: (i)

when the government spending shock is permanent, i.e., ρg = 1 (e.g., expenditures on education

and health care), and (ii) when the shock is purely transitory, i.e., ρg = 0 (e.g., expenditures on

unemployment benefit and natural disaster). From (14) and (15), it is clear that for the first case,

it is optimal to absorb a permanent expenditure shock entirely by taxes because

∆τt = ǫt,

deft = 0.

In contrast, for the second case,

∆τt =
R̃− 1

R̃
ǫt

deft =
1

1 + n

1

R̃
ǫt,

which means that for a positive government spending shock, τt must increase by R̃−1
R̃

ǫt and the

debt must be raised by 1
1+n

1

R̃
ǫt to guarantee that the GBC is satisfied. In other words, a proportion

of the positive shock, R̃−1
R̃

, is absorbed by taxation and the rest 1
R̃

is absorbed by debt. Since R̃

is close to 1, most of the shock is absorbed by debt.

2.2 Model’s Predictions

Using (14), it is straightforward to compute the relative volatility of the change in tax rates to

government spending, which we denote by µ:

µ =
sd (∆τt)

sd (∆gt)
=

R̃− 1

R̃− ρg

√
1 + ρg

2
, (16)
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where sd denotes standard deviation and we use the fact that ∆gt =
(ρg−1)ǫt−1

1−ρgL
+ ǫt. Using

the estimated ρg reported in Table 2 and assuming that R̃ = 1.01, the RE model predicts that

µ = 0.05. However, in the data as reported in Table 1, µ = 1.21, so the model is not even in

the ballpark.14 Given the estimated processes of government spending, the model predicts that

changes in tax rates (relative to changes in spending) should be much smaller than they are in

the data.

Using (15), the model predicts that the contemporaneous correlation between the government

debt and government spending, corr (def t, gt), is 1. This model prediction contradicts the empir-

ical evidence: in the data the empirical correlation between them is well below 1. As reported in

Table 1, corr (def t, gt) = 0.72 (for HP filter) and 0.57 (for linear filter).

In the literature, there are two other common tests on the time series properties of average tax

rates and deficits. The first is to test whether tax rates follow a random walk. For example, Barro

(1981) found that the average tax rate in the U.S. between 1884 and 1979 follows a random walk.15

However, as is well known, this test is not conclusive for the tax-smoothing hypothesis (TSH)

because tax rates could also follow a random walk if the rates are determined by a random political

process. The second is to test whether the budget balance is informative about future changes in

government spending using the VAR techniques. For example, Huang and Lin (1993) and Ghosh

(1995) applied Campbell’s (1987) VAR approach and found that increases in the budget surplus

signal future increases in government expenditure, which supports the tax-smoothing hypothesis.16

This VAR approach is to formulate the TSH as an expression for the budget surplus (or deficits)

because it takes into account the entire structure of the TSH model and then use a bivariate

VAR for government spending and the budget surplus to evaluate the restrictions imposed by

the TSH model. The basic idea of this approach is that using the bivariate VAR, it is possible

to compute the predicted time path of the budget deficits that is optimal for the government

under the TSH and then compare this optimal path to the actual time path of the budget deficits.

Specifically, we compare the optimal path of deficits, deft = −
∑∞

j=1 R̃
−jEt [∆gt+j ], to the actual

14Given the estimated ρg using the linear filter reported in Table 3, the RE model predicts that µ = 0.016, which

is even smaller relative to the data.
15Other studies include Trechan and Walsh (1988) for the U.S., Ghosh (1995) for the U.S. and Canada, and

Strazicich (1997) for the sub-national governments of Canada and the U.S..
16Adler (2006) tested the TSH using Swedish data from the period 1952−1999, and found that the tax smoothing

behavior of the government can explain a significant fraction of the variability in the Swedish government budget

deficits.
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one, deft = (R− 1) bt + gt − τt, using the following bivariate VAR:17

[
∆gt+1

deft+1

]
=

[
a11 a12

a21 a22

][
∆gt

deft

]
+

[
e1,t+1

e2,t+1

]
, (17)

or zt+1 = Azt+et+1, where e1,t+1 and e2,t+1 are the VAR innovations. Denote et+1 =
[
e1,t+1 e2,t+1

]

and assume that Σe = E
[
et+1e

′
t+1

]
is the 2 × 2 variance-covariance matrix of the reduced-form

VAR innovations. The k-step ahead forecast from the VAR is

Et [zt+k] = Akzt

and (15), deft = −
∑∞

j=1 R̃
−jEt [∆gt+j ], can be rewritten as

[
0 1

]
zt =

∞∑

j=1

R̃−jAj
[
1 0

]
zt.

Given that both ∆gt and deft are stationary, the infinite sum in the above equation converges to

def∗
t = −

[
1 0

]
AR̃−1

(
I −AR̃−1

)−1
zt ≡ Λzt = λ1∆gt + λ2deft. (18)

Therefore, if the null hypothesis that the government smooths taxes over time is correct, the

recovered coefficients from the estimated VAR, λ1 and λ2, should be 0 and 1, respectively. We

will use this test in Section 4; to satisfy the reader’s curiosity for the moment, we note here that

a joint test of these restrictions under rational expectations has a Wald statistic of 20.04 on data

from 1951-2010, which is about as strong a rejection as one is likely to see (see Table 8).18.

3 Incorporating Robustness

3.1 The RB Version of the Tax Smoothing Hypothesis Model

Robust control emerged in the engineering literature in the 1970s and was introduced into eco-

nomics and further developed by Hansen, Sargent, and others. A simple version of robust optimal

17As argued in Campbell (1987), Huang and Lin (1993), Ghosh (1995), and others, although the information set

of an econometrician is only a subset of the government’s information set, the econometrician can still compute the

predicted path of the budget deficit because the deficit itself contains all of the information about future changes

in government spending. That is, the budget deficit should Granger-cause changes in government spending.
18As shown in Table 9, a sample from 1960-2010 does better (Wald statistic of only 8.04), but that is still a very

strong rejection
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control considers the question of how to make decisions when the agent does not know the prob-

ability model that generates the data. Specifically, an agent with a preference for robustness

considers a range of models surrounding the given approximating model, (8):

ht+1 = R̃ht −
1

1 + n
τt + ζ̃t+1 + ω

ζ̃
νt, (19)

where ζ̃t+1 = 1
1+nζt+1 and ω

ζ̃
= 1

1+nωζ , and makes decisions that maximize lifetime expected

utility given this worst possible model (i.e., the distorted model). To make that model (8) is a

good approximation when (19) generates the data, we constrain the approximation errors by an

upper bound η0:

E0

[
∞∑

t=0

βt+1ν2t

]
≤ η0, (20)

where E0 [·] denotes conditional expectations evaluated with model, and the left side of this

inequality is a statistical measure of the discrepancy between the distorted and approximating

models. Note that the standard full-information RE case corresponds to η0 = 0. In the general

case in which η0 > 0, the evil agent is given an intertemporal entropy budget η0 > 0 which defines

the set of models that the agent is considering. Following Hansen and Sargent (2007), we compute

robust decision rules by solving the following two-player zero-sum game: a minimizing decision

maker chooses optimal taxation {τt} and a maximizing evil agent chooses model distortions {νt}.
Specifically, the robustness version of the Barro model proposed in Section 2 can be written as

v (ht) = max
τt

min
νt

{
−1

2
(τt + ϕ)2 + β

[
ϑν2t + Et [v (ht+1)]

]}
(21)

subject to the distorted transition equation (i.e., the worst-case model), (19), where νt distorts

the mean of the innovation, and ϑ > 0 is the Lagrange multiplier on the constraint specified in

(20) and controls how bad the error can be.19

When the ratio of government spending to real GDP follows the AR(1) process, (11), solving

this robust control problem yields the following proposition:

Proposition 1 Under RB, the optimal tax function is

τt =
(1 + n)

(
R̃− 1

)

1−Σ
ht +

Σϕ

1− Σ
, (22)

19Formally, this setup is a game between the decision-maker and a malevolent nature that chooses the distortion

process νt. ϑ ≥ 0 is a penalty parameter that restricts attention to a limited class of distortion processes; it can be

mapped into an entropy condition that implies agents choose rules that are robust against processes which are close

to the trusted one. In a later section we will apply an error detection approach to calibrate ϑ in the U.S. economy.
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the mean of the worst-case shock is

νtωζ̃
=

(
R̃− 1

)
Σ

1− Σ
ht +

1

1 + n

Σ

1− Σ
ϕ, (23)

the government deficit can be written as

deft = bt+1 − bt =
1

1 + n

1− ρg

R̃− ρg
(gt − g)− (1− ρh)ht −

1

1 + n

Σϕ

1− Σ
, (24)

and ht

(
= bt +

1
(1+n)(R̃−ρg)

gt +
(1−ρg)g

(1+n)(R̃−ρg)(R̃−1)

)
is governed by

ht+1 = ρhht −
1

1 + n

Σϕ

1− Σ
+ ζ̃t+1, (25)

where ζt+1 =
1

R̃−ρg
ǫt+1, ζ̃t+1 =

1
1+nζt+1,

Σ = (1 + n)2 R̃ω2
ζ̃
/ (2ϑ) = R̃ω2

ζ/ (2ϑ) > 0 (26)

measures the degree of the preference of robustness, and ρh = 1−R̃Σ
1−Σ ∈ (0, 1).

Proof. See Appendix 6.2.

The univariate RB model with unique state variable h leads to the same taxation function

as the corresponding multivariate RB model in which the state variables are bt and gt. The key

difference between these two models is that in the univariate RB model the evil agent distorts the

transition equation of permanent spending ht, whereas in the multivariate RB model the evil agent

distorts the spending-output ratio process gt. Theoretically, introducing RB into the multivariate

model affects both the coefficients attached to bt and gt in the taxation function. That is, in

the multivariate model RB may affect the relative importance of the two state variables in the

taxation function, whereas in the univariate model the relative importance of the two effects are

fixed by reducing the (b, g) state space to the univariate state h. However, after solving the two-

state model numerically using the standard procedure proposed in Hansen and Sargent (2007),

we can see that the two models lead to the same decision rule (see Appendix 6.3); the intuition is

that the debt evolves deterministically from t to t+ 1, so that the evil agent cannot influence it.

The main reason that we adopt the univariate RB model here is to obtain the explicit expressions

for optimal taxation and government debts which can be easily used to compute the model’s

stochastic properties (e.g., the relative volatility of taxation and debts to government spending

and the correlation between government debts and spending).

The effect of the preference for robustness, Σ, is jointly determined by the RB parameter,

ϑ, and the volatility of the permanent spending shock, ω
ζ̃
. This interaction provides a novel
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channel that the government spending shock affects optimal taxation and debts. Specifically,

optimal taxation under RB, (22), shows that the preference for robustness, ϑ, affects the optimal

response of optimal taxation to the change in permanent government expenditures, (1 + n) R̃−1
1−Σ .

The smaller the value of ϑ the larger the response of optimal taxation; that is, under RB optimal

taxation is more sensitive to unanticipated government spending shocks. This response is referred

to as “making hay while the sun shines” in van der Ploeg (1993) to explain the overreaction

of consumption to unanticipated income shocks, and reflects the precautionary aspect of these

preferences.

Proposition 2 Σ < 1.

Proof. The second-order condition for a minimization by nature is

A =
1

2

(1 + n)2 R̃
(
R̃− 1

)

1− (1 + n)2 R̃ω2
ζ̃
/ (2ϑ)

> 0,

which can be rearranged into

ϑ > (1 + n)2 R̃ω2
ζ̃
. (27)

Using the definition of Σ we obtain

1 > Σ.

It is straightforward to show that the robust policy rule, (22), can also be obtained by solving

the following risk-sensitive TSH model:

v (ht) = max
τt

{
−1

2
(τt + ϕ)2 + βRt [v (ht+1)]

}
(28)

subject to (8), and the distorted expectation operator Rt is defined by

Rt [v (ht+1)] = − 1

α
logEt [exp (−αv (ht+1))] , (29)

where α > 0 measures higher risk aversion of the government vis a vis the von Neumann-

Morgenstern specification.20 Risk-sensitivity (RS) was first introduced into the LQG framework

by Jacobson (1973) and extended by Whittle (1981). van der Ploeg (1993) applied this preference

20The detailed proof is available from the authors by request. The observational equivalence between the risk-

sensitive and robust LQG models has been well established in the literature. See Hansen, Sargent, and Tallarni

(1999), Backus, Routledge, and Zin (2004), and Luo and Young (2010).
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to examine its implication for precautionary savings; Hansen and Sargent (1995) introduced dis-

counting into the RS specification and showed that the resulting decision rules are time-invariant;

Hansen, Sargent, and Tallarini (1999) also explored its implications for precautionary savings

and asset prices; and Luo and Young (2010) examined its implications for consumption and pre-

cautionary savings when consumers are inattentive. In the risk-sensitive TSH specified in (28),

the government is prudent in the sense that they minimizes the expected value of an exponen-

tial transformation of a quadratic welfare loss function and adjust optimal taxation policy more

aggressively to changes in government expenditures.

3.2 Implications of RB for Tax Smoothing and Government Debt

Given the expression for optimal taxation (22), the dynamics of tax can be written as

τt+1 = ρhτt+
(1 + n)

(
R̃− 1

)

1− Σ
ζ̃t+1 −

(
R̃− 1

) Σϕ

1− Σ
, or τt+1 = ρhτt+

R̃− 1

1− Σ
ζt+1−

(
R̃− 1

) Σϕ

1− Σ
(30)

and the government deficit can be rewritten as the following AR(1) process:

deft+1 = ρhdeft +
1

1 + n

(1− ρg) (ρg − ρh)

R̃− ρg
(gt − g) + (ρh − ρg) ζ̃t+1 (31)

It is worth noting that even if the government’s subjective discount factor is assumed to equal

the inverse of the effective interest rate, i.e., βR̃ = 1, the tax-tilting aspect of government budget

deficits still exists under RB. The intuition is very simple: The effect of RB on optimal taxation

and deficits are the same as that of the discount factor within the LQ setting.21 We also note

that the tax rate is a stationary process even if g is a random walk, in contrast to the RE model.

3.2.1 The Relative Volatility of Taxes and Government Debts to Government Spend-

ing

The relative volatility of the change in tax rates to government spending, µ1, can be written as

µ1 =
sd (∆τt)

sd (∆gt)
=

R̃− 1

(1− Σ)
(
R̃− ρg

)
√

1 + ρg
1 + ρh

, (32)

21See Hansen, Sargent, and Tallarini (1999) and Luo and Young (2010) for discussions on the observational

equivalence between RB and the discount factor in the LQ permanent income models.
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where we use the fact that ∆gt =
(ρg−1)ǫt−1

1−ρgL
+ ǫt.

22 (See Appendix 6.3.) It is clear from (32) that

RB increases the relative volatility via two channels: first, it strengthens the marginal propensity

to taxation out of permanent government spending
(
R̃−1
1−Σ

)
; and second, it increases the volatility

of the change in the tax rate by reducing the persistence of permanent government spending

measured by ρh:
∂ρh
∂Σ < 0. Figure 2 illustrates how this relative volatility varies with the degree

of model uncertainty, Σ. It clearly shows that this ratio is increasing with the degree of RB, Σ.

3.2.2 The Correlation between the Government Debt and Government Spending

A description of the comovement of the government debt and government spending is the con-

temporaneous correlation between them, corr (def t, gt). Under RB, the correlation can be written

as:

corr (deft, gt) =

[(
R̃− ρg

)( 1

1 + ρg
− 1− ρh

1− ρgρh

)]
/




√√√√√
(
R̃− ρg

)2

1− ρ2g

√
1− ρg
1 + ρg

+
1− ρh
1 + ρh

− 2
(1− ρh) (1− ρg)

1− ρgρh


 ,

(33)

which converges to 1 as Σ converges to 0. (See Appendix 6.3.) Figure 3 illustrates that how RB

affects the correlation between the government debt and government spending for different values

of ρ. It is clear that corr (deft, gt) is decreasing with Σ. RB thus aligns the model and the data

more closely along this dimension.

3.3 Two Special Cases

3.3.1 A Permanent Increase in Government Spending

Under RB, when ρg = 1, we have

∆τt =
ρh − 1

1− Σ

1

1− ρhL
ǫt−1 +

1

1− Σ
ǫt, (34)

deft = − 1

1 + n

Σ

1−Σ

1

1− ρhL
ǫt = − 1

1 + n

Σ

1− Σ

1

1− ρhL
ǫt−1 −

1

1 + n

Σ

1−Σ
ǫt. (35)

It is clear that in this permanent income case, a proportion 1
1−Σ of a newly-arrived shock (ǫt) is

absorbed by τt and − 1
1+n

Σ
1−Σ of the shock is absorbed by debt. In other words, taxation is more

sensitive to the permanent shock under RB and thus the government debt can be reduced even if

22We use the relative volatility of the change in the tax rate to the change in government spending instead of

that of the tax rate to government spending to compare the implications of RE and RB models, as the tax rate

follows a random walk under RE and the volatility of the tax rate is not well defined in this model.
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the spending shock is positive. In addition, both taxes and debts react to the lagged innovations

to government spending. This prediction is clearly different from that we obtained in the RE

model: the permanent expenditure shock is absorbed entirely by taxes.

3.3.2 A Temporary Increase in Government Spending

Under RB, when ρg = 0, we have

∆τt =
(ρh − 1)

(
R̃− 1

)

(1− Σ) R̃

ǫt−1

1− ρhL
+

R̃− 1

(1− Σ) R̃
ǫt, (36)

deft =
1

1 + n


 1

R̃
ǫt −

Σ
(
R̃− 1

)

(1− Σ) R̃

ǫt
1− ρhL


 =

1

1 + n


−

Σ
(
R̃− 1

)

(1− Σ) R̃

ρh
1− ρhL

ǫt−1 +
1− ΣR̃

(1− Σ) R̃
ǫt


 ,

(37)

which means that for a positive government spending shock (ǫt), τt must increase by R̃−1
(1−Σ)R̃

ǫt and

the debt must be reduced by 1−ΣR̃
(1−Σ)R̃

ǫt. In other words, a proportion of the positive shock, R̃−1
(1−Σ)R̃

,

is absorbed by taxation and the rest, 1−ΣR̃
(1−Σ)R̃

, is absorbed by debt. Note that in the RE model a

proportion of the shock, R̃−1
R̃

, is absorbed by taxation and the rest, 1
R̃
, is absorbed by debt. Since

Σ > 0, it is clear that RB strengthens the relative importance of taxation to government debts in

absorbing the government spending shock.

3.4 Extension: Multiple Government Spending Shocks

In the benchmark model presented above, we assume that there is only a single shock to govern-

ment spending. Since government spending in the model, g, is a ratio of the amount of government

expenditures to real GDP, G/Y , there might exist muliple shocks to g as real GDP can also be

modelled with multiple shocks. In this section, we consider both permanent and transitory shocks

to government spending simultanenously and show that the incorporating multiple shocks does

not affect our results on how RB affects the two key unconditional moments we discussed in the

previous subsection.

Specifically, we now assume that the governement spending-real GDP ratio gt can be expressed

as the sum of permanent and transitory components:

gt+1 = gpt+1 + gtt+1, (38)

where the superscripts p and t denote permanent and transitory, respectively. Each of these
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components follows its own stochastic process; gpt follows a random walk:

gpt+1 = gpt + εt+1, (39)

and the transitory component follows an stationary AR process:

gtt+1 = y + ρg
(
gtt − y

)
+ ǫt+1, (40)

where ρg ∈ [0, 1), and all innovations are assumed to have zero mean, be uncorrelated over time

and with each other, and the variance of εt and ǫt are ω
2
ε and ω2

ǫ , respectively. We assume that the

decomposition of net income (ω2
ε , ω

2
ǫ , ρg) does not affect the volatility of the change in observed g

(sd [∆yt]). For simplicity, we consider the case in which ρg = 0 and ω2
ε = mω2

ǫ (m > 0). (Allowing

ρg > 0 does not affect our conclusions that RB has the similar impacts on the joint dynamics of

government taxes, deficits, and spending.)

Given the specifications, it is straightforward to show that the relative volatility of the change

in tax rates to government spending, µ1, can be written as

µ1 =
sd (∆τt)

sd (∆gt)
=

√√√√√√
2
(
R̃− 1

)2

(1− Σ)
[
2− Σ

(
1 + R̃

)]/




2 +m

m/
(
R̃− 1

)2
+ 1/R̃2


, (41)

where we use the facts that ∆gt+1 = εt+1+ǫt+1−ǫt, ∆τt+1 = (ρh − 1) τt+
R̃−1
1−Σ ζt+1−

(
R̃− 1

)
Σϕ
1−Σ ,

and ζt+1 = εt+1

R−1 + ǫt+1

R . Given that R̃ = 1.01, the full-information RE model predicts that

µ1 = 0.05, which contradicts the empirical counterpart reported in Table 1, µ = 1.21. Figure 4

illustrates how this relative volatility varies with the degree of model uncertainty, Σ, for different

values of m that measure the relative importanace of the permanent shock (ε) to the transitory

shock (ǫ). It clearly shows that this ratio is consistently increasing with Σ, which means that

incorporating RB into the multiple-shock case has the potential to help improve the model’s

predictions. For example, when m = 1 and Σ = 0.52, µ1 = 1.21, which is just its empirical

counterpart.

The correlation between the deficits and the change in government spending can be written

as:23

corr (deft,∆gt) =
−m (1− ρh) /

[
(1 + n)

(
R̃− 1

)]
+ ρh (2− ρh) /R

√
2 +m

√
(
1
R

)2
+

[
2

(R̃−1)
2 + 1

R̃2

](
1−ρh
1+ρh

)
/ (1 + n)2 − 2(1−ρh)

R2

, (42)

23Note that here we use corr (deft,∆gt) instead of corr (deft, gt) because in this case the government spending

process is non-stationary and thus corr (deft, gt) is not well-defined.
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which converges to 1 as Σ converges to 0. Figure 5 illustrates that how RB affects the correlation

between the government debt and government spending for different values of m. It is clear that

corr (deft,∆gt) is consistently decreasing with Σ in the multiple-shock case, which means that

RB can also have the potential to help explain this dimension. For example, when m = 1 and

Σ = 0.1, corr (deft,∆gt) = 0.2, which is much closer to its empirical counterpart. (Note that in

the full-information RE case corr (deft,∆gt) = 0.6.)

4 Calibration and Main Findings

In the previous section we have seen that the model uncertainty due to the preference for robust-

ness can help better explain the observed relative volatility of the tax rate and the correlation

between government budget deficit and government spending. Specifically, we have shown that

an increase of Σ (which measures the RB effect) increases the relative volatility of the tax rate

and reduces the correlation between government budget deficit and government spending. But

careful readers may still have questions on how to further interpret this parameter. For example,

two very reasonable questions are: What does Σ really measure? How should we link the value

of Σ to the degree of model uncertainty? Thus, in this section, we will provide one useful method

to quantify the RB effect Σ which intuitively links it to the degree of model uncertainty.

4.1 Calibrating the RB Parameter

We follow Hansen, Sargent, and Wang (2002) and Hansen and Sargent (2007) to calibrate the

RB parameter (ϑ and Σ). Specifically, we calibrate the model by using the model detection error

probability that is based on a statistical theory of model selection (the approach will be precisely

defined below). We can then infer what values of the RB parameter ϑ imply reasonable fears

of model misspecification for empirically-plausible approximating models. In other words, the

model detection error probability is a measure of how far the distorted model can deviate from

the approximating model without being discarded; standard significance levels for testing are then

used to determine what reasonable fears entail.

4.1.1 The Definition of the Model Detection Error Probability

Let model A denote the approximating model and model B be the distorted model. Define pA as

pA = Prob

(
log

(
LA

LB

)
< 0

∣∣∣∣A
)
, (43)

17



where log
(
LA

LB

)
is the log-likelihood ratio. When model A generates the data, pA measures the

probability that a likelihood ratio test selects model B. In this case, we call pA the probability of

the model detection error. Similarly, when model B generates the data, we can define pB as

pB = Prob

(
log

(
LA

LB

)
> 0

∣∣∣∣B
)
. (44)

Following Hansen, Sargent, and Wang (2002) and Hansen and Sargent (2007), the detection

error probability, p, is defined as the average of pA and pB:

p (ϑ) =
1

2
(pA + pB) , (45)

where ϑ is the robustness parameter used to generate model B. Given this definition, we can see

that 1−p measures the probability that econometricians can distinguish the approximating model

from the distorted model. Now we show how to compute the model detection error probability in

the RB model.

4.1.2 Calibrating the RB Parameter in the Tax-smoothing Model

Let’s first consider the model with the robustness preference. Under RB, assuming that the

approximating model generates the data, the state, ht, evolves according to the transition law

ht+1 = R̃ht −
1

1 + n
τt + ζ̃t+1,

=
1− R̃Σ

1− Σ
ht −

1

1 + n

Σϕ

1− Σ
+ ζ̃t+1. (46)

In contrast, assuming that the distorted model generates the data, ht evolves according to

ht+1 = R̃ht −
1

1 + n
τt + ζ̃t+1 + ω

ζ̃
νt,

= ht + ζ̃t+1. (47)

In order to compute pA and pB , we use the following procedure:

1. Simulate {ht}Tt=0 using (46) and (47) a large number of times. The number of periods used

in the simulation, T , is set to be the actual length of the data for each individual country.

2. Count the number of times that log
(
LA

LB

)
< 0
∣∣∣A and log

(
LA

LB

)
> 0
∣∣∣B are each satisfied.

3. Determine pA and pB as the fractions of realizations for which log
(
LA

LB

)
< 0
∣∣∣A and log

(
LA

LB

)
> 0
∣∣∣B,

respectively.
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In practice, given Σ, to simulate the {ht}Tt=0 we need to know the volatility of ζt in (46) and

(47). For a), we can compute it from sd (ζ) =

√
1−ρ2g

R−ρg
sd (g), where sd (g) is the standard deviation

of government spending. The gross interest rate R is set to be 1.04 in all calibrations.

4.2 Data

To implement the calibration described in the previous section, we need to have the measure of

GDP, government spending (Gt), government debt (Bt), government budge deficit (deft), tax rate

(τt), and risk-free interest rate. We follow Huang and Lin (1993) and Lloyd-Ellis et al. (2005) to

construct these variables and use the same data sources as described in their papers. Specifically,

government expenditures are constructed by using federal expenditures minus net federal interest

payments. The data on both variables are taken from National Income and Product Accounts

(NIPA). Government budget deficit is defined as total outlays minus total receipts.24 Government

debt is defined as the federal debt (end of period) held by the public. Tax rate is defined as tax

revenues divided by GDP. The data on these variables are taken from The Economic Report of

President, 2011. The data covers the period 1950 − 2010. Finally, we need to know the annual

growth rate of real GDP, n, and the risk-free interest rate, R. Using the real GDP data from

NIPA, the former is calculated as the average annual growth rate of real GDP in the period of

1950 − 2010, which is 3.3%. We use the risk-free rate reported in Mehra and Prescott (1985) so

R = 1.008.

For variables as a ratio of GDP, we use either a linear filter or the Hodrick-Prescott (HP) filter

(with a smoothing parameter of 100) to detrend the data.25 For variables expressed in the form

of differences (with a symbol ∆) the unfiltered series are used.

4.3 Main Results

The calibration results are reported in Table 2. We set p = 0.1 which means that there exists

a 10-percent chance a likelihood ratio test fails to separate the approximating model and the

distorted model. The resulted value of the RB parameter Σ (which measures the effect of RB) is

0.95. In the same table, we also report the persistence of the government spending (as a ratio of

GDP), g, and the measured coefficient of variation for the processes of g and ζ (the innovation to

24In Lloyd-Ellis, Zhan, and Zhu (2005), the authors use the government budget surplus, which is defined as total

receipts minus total outlays.
25We report the values of the key moments using both filters in Table 1. Since our permanent income model is

stationary, we need to remove the low frequency component from the data. Thus in this paper we focus primarily

on the linear filter when we calibrate the parameters and compare models with data.
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the ht process defined in budget constraint equation (8)).

As shown in the previous section, introducing model uncertainty (concern for robustness)

qualitatively improves the model performance in explaining the two unconditional moments: (1)

the relative standard deviation of the tax rate, sd(∆τ)
sd(∆g) ; and (2) the correlation between government

budget deficit and government spending, corr(def, g). Specifically, we have shown that an increase

of Σ can increase the relative standard deviation of the tax rate while reduces the correlation of

the government budget deficit and government spending. Since we have a calibrated value of

Σ now, we can quantitatively show these improvements more clearly by comparing the model

predicted values from the RE model and the RB model. The results are reported in Table 3.

The first column of Table 3 lists the values of the two moments in the data. The second

column reports predicted in the model with no model uncertainty (RE model). As it shows,

the relative volatility of the tax rate predicted in the RE model is only 0.04 while it is 1.21 in

the data. On the other hand, the RE model overpredicts the correlation between government

budget deficit and government spending. As a comparison, the RB (at p = 0.1) can predict values

that are much closer to the data, as shown in the third column. These results just confirm our

theoretic findings in Section 3. In that section, we have shown that as the RB effect (measured

by Σ) increases, the model can predict more reasonable relative volatility of the tax rate and the

correlation between deficit and spending. The results in Table 3 present one numerical example

how much these improvements can be. Of course, the improvements depend on the used detection

error probability.

As we have explained before, using the model detection error probability (p) is one intuitive

way to measure the model uncertainty. In this example, we set p = 0.1 so that agents are

considering a range of models which cannot be distinguished by a likelihood ratio test up to a

probability of 0.1. Alternatively speaking, this means that agents have doubts that the model

is misspecified to a certain degree that a likelihood ratio test cannot separate the (unknown)

true model with other similar models by a 10-percent chance. To see how the degree of model

uncertainty affects the model prediction and provide more robust check, we vary the detection

error probability p (or the degree of model uncertainty) and report the corresponding results in

Table 5. The corresponding calibrated values of Σ are reported in Table 4. Remember that as

the detection error probability (p) increases, it’s more difficult (using a likelihood-ratio test) to

distinguish the set of considered models. Thus the range of models considered have to be smaller.

In other words, there is less model uncertainty or agents have less concern about the model

misspecifcations. As Table 5 shows, as the degree of the model uncertainty decreases, the relative

volatility of the tax rate declines and the correlation between deficit and government spending
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increases. These findings again confirm the theoretic results in the previous sections.

We note here that our results are sensitive to the sample period. We recalculated our Σ values

using data covering 1960-2010, which excludes the very high volatility period surrounding the

Korean War, and find two things (reported in Tables 6 and 7). First, the relative volatility of

taxes to spending is significantly lower, while the correlation between the deficit and spending is

roughly unchanged; given that spending volatility drops quite a bit as a result, the relative drop

is driven by a large decline in the volatility of tax changes. Second, the ability of the RB model to

match the relative volatility is impaired substantially; the RB model explains roughly two-thirds

of the volatility in the long sample and only one-half in the short one. Exactly why this occurs is

unclear.

4.4 Implications of RB for the Bivariate VAR Test on the TSH

In this subsection, we examine the implications of RB for the bivariate VAR test on the TSH.

Using the optimal taxation function under RB, τt =
(1+n)(R̃−1)

1−Σ ht +
Σϕ
1−Σ , we obtained in Section

3.1., the resulting deficit equation can be written as

deft = −
∞∑

j=0

R̃−jEt [∆gt+j ]− Στt or d̃ef t = −
∞∑

j=0

R̃−jEt [∆gt+j ]

where d̃ef t = deft+Στt. Following the same procedure we discussed in Section 2.2, the VAR can

be formulated

as [
∆gt+1

d̃ef t+1

]
=

[
a11 a12

a21 a22

][
∆gt

d̃ef t

]
+

[
e1,t+1

e2,t+1

]
. (48)

Table 8 reports the recovered λ1 and λ2 from the full-information RE and RB models using the

data for the period from 1951−2010. To investigate how model uncertainty affects the test results,

we report nine different RB models in which Σ varies from 0.1 to 0.9. Remember that a larger Σ

means more model uncertainty.26 The full-information RE model can be considered a model with

zero model uncertainty. Thus, in total, Table 8 reports the recovered values for λ1 and λ2 for

ten models differing only in the degree of model uncertainty, which increases from zero (the RE

model) to a significantly large degree (measured by Σ). The second and third columns show that

both λ1 and λ2 increase with the degree of model uncertainty. More importantly, the increase

26As explained in the previous section, a larger Σ corresponds to a smaller the detection error probability which

means that the difference between the distorted model and the approximating model is larger. In other words, the

range of the models (around the approximating model) is larger, or, there is more model uncertainty faced by the

decision maker.
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of model uncertainty leads λ1 to increase from a negative level to a level closer to 0 (although it

remains negative) and λ2 to rise significantly toward 1. In other words, RB can help make the

model better fit the data because the recovered coefficients from the estimated VAR, λ1 and λ2,

should be 0 and 1, respectively, if the TSH holds. More formally, the last two columns report the

Wald statistics and the associated p-values for the joint hypothesis of λ1 = 0 and λ2 = 1. As they

show, the Wald statistic decreases and the associated p-value increases as the degree of model

uncertainty increases. Of particular interest is that the values of Σ consistent with reasonable

detection error probabilities – namely, those above 0.9 – are ones which potentially could pass the

VAR tests. Thus, these findings suggest that a model which incorporates some positive degree of

model uncertainty is more likely to pass the VAR test regarding the tax smoothing motivation.

Table 9 shows that the shorter sample from 1960 − 2010 results in smaller coefficients for λ1

when Σ is small and larger ones when Σ is large, along with larger values for λ2. Combined with

the results from the previous section, it appears that excluding the Korean War period helps the

model generate more positive results on λ1 and λ2.

5 Conclusions

This paper has reconsidered the tax-smoothing hypothesis model of Barro (1979) under the as-

sumption that the government faces model uncertainty regarding the stochastic process for re-

quired government spending. Our key finding is that many of the aspects of the tax-smoothing

model that are inconsistent with the data under rational expectations – that is, under the as-

sumption of no model uncertainty – are potentially consistent with the data when decisions by

the government are made with an eye on robustness. In particular, we can increase the volatility

of tax changes relative to changes in spending, decrease the correlation between spending and

deficits, and pass VAR tests regarding the joint dynamics of changes in spending and deficits.

6 Appendix

6.1 Solving the Tax-Smoothing Model

For the following optimization problem:

max
{τt,bt+1}

E0

[
−

∞∑

t=0

βt

(
1

2
(τt + ϕ)2

)]
,
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subject to (1 + n) bt+1 = Rbt + gt − τt, the Lagrangian function can be written as

L = E0

{
∞∑

t=0

βt

[
−1

2
(τt + ϕ)2 + λt (Rbt + gt − τt − (1 + n) bt+1)

]}

The FOC w.r.t. τt gives

τt + ϕ = λt

− (1 + n)λt + βREt [λt+1] = 0

which means that

τt =
βR

1 + n
Et [τt+1] + ϕ

(
βR

1 + n
− 1

)
. (49)

When we impose the condition that βR
1+n = 1, (49) leads to the well-known random walk result of

tax rates, τt = Et [τt+1].

The intertemporal budget constraint can be written as

∞∑

j=0

(
1 + n

R

)j

gt+j +Rbt =

∞∑

j=0

(
1 + n

R

)j

τt+j

Taking conditional expectations on both sides gives

Et


Rbt +

∞∑

j=0

(
1 + n

R

)j

gt+j


 =

∞∑

j=0

(
1 + n

R

)j

Et [τt+j]

=




∞∑

j=0

(
1 + n

R

)j (1 + n

βR

)j

 τt

=




∞∑

j=0

(
(1 + n)2

βR2

)j

 τt

=
1

1− (1 + n)2 / (βR2)
τt

and the optimal tax rate can be written as

τt =

(
1− (1 + n)2

βR2

)
Et


Rbt +

∞∑

j=0

(
1 + n

R

)j

gt+j


 . (50)

In the case in which n = 1 and βR = 1,

τt = (R− 1)Et


bt +

1

R

∞∑

j=0

(
1

R

)j

gt+j



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After defining

ht = Et


bt +

1

R

∞∑

j=0

(
1 + n

R

)j

gt+j


 ,

and combining this expression with the original budget constraint, we obtain the following budget

constraint:

(1 + n)ht+1 = Rht − τt + ζt+1 or ht+1 =
R

1 + n
ht −

1

1 + n
τt +

1

1 + n
ζt+1

where ζt+1 =
∑∞

j=0

(
1+n
R

)j+1
(Et+1 − Et) [gt+1+j ].

6.2 Solving the Robust Model

To solve the Bellman equation (21), we conjecture that

v (ht) = −Ah2t −Bht − C,

where A, B, and C are undetermined coefficients. Substituting this guessed value function into

the Bellman equation gives

−Ah2t −Bht − C = max
τt

min
νt

{
−1

2
(τt + ϕ)2 + βEt

[
ϑν2t −Ah2t+1 −Bht+1 − C

]}
, (51)

where ht+1 = R̃ht − 1
1+nτt+ ζ̃t+1 +ω

ζ̃
νt. We can do the min and max operations in any order, so

we choose to do the minimization first. The first-order condition for νt is

2ϑνt − 2AEt

(
R̃ht −

1

1 + n
τt + ω

ζ̃
νt

)
ω
ζ̃
−Bω

ζ̃
= 0,

which means that

νt =
B + 2A

(
R̃ht − 1

1+nτt

)

2
(
ϑ−Aω2

ζ̃

) ω
ζ̃
. (52)

Substituting (52) back into (51) gives

−Ah2t−Bht−C = max
τt




−1

2
(τt + ϕ)2 + βEt


ϑ



B + 2A

(
R̃ht − 1

1+nτt

)

2
(
ϑ−Aω2

ζ̃

) ω
ζ̃



2

−Ah2t+1 −Bht+1 − C








,

The first-order condition for τt is

− (τt + ϕ)− 2βϑ
1

1 + n

Aω
ζ̃

ϑ−Aω2
ζ̃

νt + 2βA
1

1 + n

(
1 +

Aω2
ζ̃

ϑ−Aω2
ζ̃

)(
R̃ht −

1

1 + n
τt + ω

ζ̃
νt

)

+βB
1

1 + n

(
1 +

Aω2
ζ̃

ϑ−Aω2
ζ̃

)
= 0.
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Using the solution for νt the solution for taxation is

τt =
2βR̃A

(1 + n)− (1 + n)Aω2
ζ̃
/ϑ + 2βA/ (1 + n)

ht+
− (1 + n)

(
1−Aω2

ζ̃
/ϑ
)
ϕ+ βB

(1 + n)− (1 + n)Aω2
ζ̃
/ϑ + 2βA/ (1 + n)

. (53)

Substituting the above expressions into the Bellman equation gives

−Ah2t −Bht − C

= −1

2

[
2βR̃A

(1 + n)− (1 + n)Aω2
ζ̃
/ϑ + 2βA/ (1 + n)

ht +
βB + 2βϕA/ (1 + n)

(1 + n)− (1 + n)Aω2
ζ̃
/ϑ + 2βA/ (1 + n)

]2

+
βϑω2

ζ̃[
2
(
ϑ−Aω2

ζ̃

)]2





2AR̃

[
(1+n)2−(1+n)2Aω2

ζ̃
/ϑ

(1+n)2−(1+n)2Aω2

ζ̃
/ϑ+2βA

]
ht

+
((1+n)2B+2A(1+n)ϕ)

(
1−Aω2

ζ̃
/ϑ

)

(1+n)2−(1+n)2Aω2

ζ̃
/ϑ+2βA





2

− βA





[
(1+n)2R̃

(1+n)2−(1+n)2Aω2

ζ̃
/ϑ+2βA

]2
h2t −

(1+n)2R̃
[
−2(1+n)ϕ+2βB−Bω2

ζ̃
/ϑ(1+n)2

]

[
(1+n)2−(1+n)2Aω2

ζ̃
/ϑ+2βA

]2 ht

+
−2(1+n)ϕ+2βB−Bω2

ζ̃
/ϑ(1+n)2

2
[
(1+n)2−(1+n)2Aω2

ζ̃
/ϑ+2βA

] + ω2
ζ̃





− βB


 (1 + n)2 R̃

(1 + n)2 − (1 + n)2 Aω2
ζ̃
/ϑ + 2βA

ht −
−2 (1 + n)ϕ+ 2βB −Bω2

ζ̃
/ϑ (1 + n)2

2
(
(1 + n)2 − (1 + n)2Aω2

ζ̃
/ϑ+ 2βA

)


− βC.

Given βR̃ = 1, collecting and matching terms, the constant coefficients turn out to be

A =
(1 + n)2 R̃

(
R̃− 1

)

2− (1 + n)2 R̃ω2
ζ̃
/ϑ

, (54)

B =
(1 + n)ϕR̃

1− (1 + n)2 R̃ω2
ζ̃
/ (2ϑ)

. (55)

Substituting (54) and (55) into (53) yields the taxation function (22) in the text.

We impose parameter restrictions so that A > 0, implying the value function is concave; these

restrictions amount to requiring that ϑ not be too small and are shown in the text to imply Σ < 1.

6.3 Deriving the Stochastic Properties of Optimal Taxation and Government

Debts under RB

6.3.1 Deriving the Volatility of the Change in Taxes

Given (30), τt+1 = ρhτt +
R̃−1
1−Σ ζt+1 −

(
R̃− 1

)
Σϕ
1−Σ , the variance of ∆τt+1 can be written as:
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var (∆τt+1) = var

(
(ρh − 1) τt +

R̃− 1

1− Σ
ζt+1

)

= (1− ρh)
2

(
R̃− 1

1−Σ

)2
ω2
ζ

1− ρ2h
+

(
R̃− 1

1− Σ

)2

ω2
ζ

=

[
1 +

(1− ρh)
2

1− ρ2h

](
R̃− 1

1− Σ

)2

ω2
ζ

=
2

1 + ρh

(
R̃− 1

1− Σ

)2

ω2
ζ .

Using the definition of the relative volatility of the change in taxes and government spending, we

can obtain (32) in the text.

6.3.2 Deriving the Volatility of the Government Debt

Given (24), deft =
1−ρg

(1+n)(R̃−ρg)
(gt − g)− (1− ρh) ht − 1

1+n
Σϕ
1−Σ ,

var (deft) = var

(
1

1 + n

1− ρg

R̃− ρg
gt − (1− ρh) ht

)

=


 1− ρg

(1 + n)
(
R̃− ρg

)




2

var (gt) + (1− ρh)
2 var (ht)− 2

(1− ρg) (1− ρh)

(1 + n)
(
R̃− ρg

) cov (gt, ht)

=

(
1− ρg

R̃− ρg

)2
(
R̃− ρg

)2
ω2
ζ̃

1− ρ2g
+ (1− ρh)

2
ω2
ζ̃

1− ρ2h
− 2

(1− ρg) (1− ρh)

R̃− ρg

(
R̃− ρg

)
ω2
ζ̃

1− ρgρh

=

[
1− ρg
1 + ρg

+
1− ρh
1 + ρh

− 2
(1− ρh) (1− ρg)

1− ρgρh

]
ω2
ζ̃
, (56)

where we use the facts that ρh = 1 − Σ(R̃−1)
1−Σ , var (gt) = ω2

1−ρ2g
=

(R̃−ρg)
2
ω2
ζ

1−ρ2g
, var (ht) =

ω2

ζ̃

1−ρ2
h

,

and cov (gt, ht) =
(1+n)(R̃−ρg)ω2

ζ̃

1−ρgρh
. Using the definition of the relative volatility of the government

deficit and government spending, we can obtain (??) in the text.
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6.3.3 Deriving the Correlation between Government Debts and Spending

Given (24) and (11), the covariance between the government debt and spending is

cov (deft, gt) = cov


 1− ρg

(1 + n)
(
R̃− ρg

)gt − (1− ρh)ht, gt




=
1− ρg

(1 + n)
(
R̃− ρg

) var (gt)− (1− ρh) cov (ht, gt)

=
1− ρg

(1 + n)
(
R̃− ρg

)

(
R̃− ρg

)2

1− ρ2g
ω2
ζ −

(1 + n)
(
R̃− ρg

)
(1− ρh)

1− ρgρh
ω2
ζ̃

= (1 + n)
(
R̃− ρg

)( 1

1 + ρg
− 1− ρh

1− ρgρh

)
ω2
ζ̃
. (57)

Using (56) and (57), the correlation between the current account and net income can be written

as (33) in the text.

6.4 The Equivalence between the Univariate and Multivariate RB Models

The solution methods used to solve the univariate model and the standard multivariate model are

different in the sense that the expectation operator applies to different objects. In the univariate

model, the evil agent distorts the transition equation of ht which by itself includes the expecta-

tion on future income, whereas in the multivariate model the evil agent distorts the government

spending process (gt). Note that in this case the evil agent does not distort the law of motion for

bt because it is a predetermined variable with no uncertainty given τt. Specifically, the following

compact matrix equation can be used to characterize the dynamics of (b, g):

[
bt+1

gt+1

]
=

[
R

1+n
1

1+n

0 ρg

][
bt

gt

]
−
[

1
1+n

0

]
τt +

[
0

1

]
ǫt+1, (58)

where we ignore the constant term as it does not affect the stochastic properties of the model.

Assume that (58) is the approximation model. The corresponding distortion model is

[
bt+1

gt+1

]
=

[
R

1+n
1

1+n

0 ρg

][
bt

gt

]
−

[
1

1+n

0

]
τt +

[
0

1

]
(ǫt+1 + ωνt) . (59)

The robust control problem can thus be written as follows:

v (bt, gt) = min
τt

max
νt

{
−1

2
τ2t + β

[
ϑν2t + Et [v (bt+1, gt+1)]

]}
, (60)
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subject to (59). Since there is no closed-form solution for this problem, we solve this model

numerically. Following the standard procedure proposed in Hansen and Sargent (Chapters 2 and

10, 2007), we can solve this robust linear-quadratic regulator numerically and obtain a linear

function of τt in terms of (bt, gt):

τt = MPT(bt + λgt) , (61)

where MPT is the marginal propensity to tax, λ measures the relative importance of government

spending (g) and government debts (b) in determining optimal taxation. From 60), it is clear that

in the multivariate model RB might affect the relative importance of the two state variables on

the taxation function, while in the univariate model the relative importance of the two effects are

fixed in order to reduce the state space. (i.e., ht = bt+
1

R−ρg
gt+

(1−ρg)g
(R−ρg)(R−1) .) We now show that

numerically the two modeling strategies can lead to the identical decision rules. Note that in our

univariate model, after introducing the new state variable, the consumption function under RB

can be written as

τt = MPTht, (62)

where we ignore the constant term; MPT = R−1
1−Σ , ht = bt +

1
R−ρg

gt, and Σ = Rω2
ζ/ (2ϑ). Figure 6

illustrates how the marginal propensity of taxation (MPT) is affected by the degree of robustness

in both the multivariate and univariate models when we set R = 1.02, ρg = 0.6, and ω2 = 1. The

figure clearly shows that the two models deliver the identical MPT for various values of ϑ. For

example, the multivariate model predicts that

τt = 0.0353bt + 0.0841gt (63)

when 1/ϑ = 0.15, whereas the univariate model predicts that

τt = 0.0353ht = 0.0353 (bt + 2.381gt) = 0.0353bt + 0.0841gt (64)

for the same value of ϑ (i.e., Σ = 0.4337). In addition, we find the relative importance of

government spending and government debt is also identical in the two models. (See Figure 7 for

an illustration.)

6.5 Deriving the Standard Errors for the VAR Test

In this appendix we derive expressions for the standard errors of the estimators for λ1 and λ2

used in the VAR test of Section 4.4. Let d ≡ 1
R̃
,

A ≡

[
a11 a12

a21 a22

]
,
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and I be the 2× 2 identify matrix. Define

Λ ≡
[
λ1 λ2

]
= −

[
1 0

]
Ad (I − dA)−1 . (65)

Define

B ≡ (I − dA)−1 =

[
b11 b12

b21 b22

]
,

we have B (I − dA) = I, and we can solve for the coefficients of the B matrix:

b11 =
1− da22

(1− da11) (1− da22)− d2a12a21
,

b12 =
da12

(1− da11) (1− da22)− d2a12a21
,

b21 =
da21

(1− da11) (1− da22)− d2a12a21
,

b22 =
1− da11

(1− da11) (1− da22)− d2a12a21
.

Now we substitute the B matrix into Equation (65), obtaining

λ1 = −d
a11 (1− da22) + da12a21

(1− da11) (1− da22)− d2a12a21
≡ −d

c1
c2
,

λ2 = − da12
(1− da11) (1− da22)− d2a12a21

≡ −f1
f2

.

Let the 2×4 matrix G denote the gradient of Λ with respect to the vectorization of VAR coefficient

matrix A: vec(A) ≡
[
a11 a21 a12 a22

]T
, where G(i, j) = ∂λi

∂vec(A)j
(i = 1, 2; j = 1, 2, 3, 4) and

G is given by

G11 = − d

c2
(1− da22) (1− λ1) , G12 = −d2a12

c2

(
1 + d

c1
c2

)
,

G13 = −d2a21
c2

(
1 + d

c1
c2

)
, G14 =

d2

c2

(
a11 −

c1
c2

(1− da11)

)
,

G21 =
d

f2
λ2 (1− da22) , G22 =

d2

f2
λ2a12,

G23 = − d

f2
(1− λ2da21) , G24 =

d

f2
λ2 (1− da11) .

Finally, the covariance matrix of Λ is computed as

var (Λ) = G var (A)GT ,

where var (A) is the covariance matrix (4× 4) of vec (A).
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Figure 1: US Fiscal Policy
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Figure 2: The Relative Volatility of Tax Change to Government Spending
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Figure 3: The Correlation between the Government Deficit and Government Spending
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Figure 4: The Relative Volatility of Tax Change to Government Spending
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Figure 5: The Correlation between the Government Deficit and Government Spending
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Table 1: Key Moments on Relative Volatility and Correlation

Linear Filter HP Filter
sd(∆τ)
sd(∆g) 1.21(0.15) 1.21(0.15)

corr(def, g) 0.72(0.10) 0.57(0.09)

corr(def,∆g) 0.31(0.20) 0.31(0.20)

ρg(1951-2010) 0.83(0.04) 0.46(0.07)

ρg(1960-2010) 0.84(0.04) 0.50(0.07)

Table 2: Calibration Results

Variable Value

Σ 0.95

p 0.10

ρg 0.83
σ(g)
µ(g) 0.08
σ(ζ)
µ(g) 0.24

Table 3: Model Comparison (p = 0.1)

Data RE RB
sd(∆τ)
sd(∆g) 1.21 0.04 0.85

corr(def, g) 0.72 1.00 0.74
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Table 4: Calibration: Varying The Detection Error Probability

p = 0.09 p = 0.10 p = 0.11 p = 0.12 p = 0.13

Σ 0.952 0.949 0.944 0.941 0.936

Table 5: Robust Check: Model Comparisons

Data RE RB RB RB RB RB

(p = 0.09) (p = 0.10) (p = 0.11) (p = 0.12) (p = 0.13)
sd(∆τ)
sd(∆g) 1.21 0.04 0.90 0.85 0.79 0.73 0.69

corr(def, g) 0.72 1.00 0.73 0.74 0.75 0.76 0.78

Table 6: Key Moments on Relative Volatility and Correlation (1960-2010)

Linear Filter HP Filter
sd(∆τ)
sd(∆g) 1.09(0.15) 1.09(0.15)

corr(def, g) 0.78(0.10) 0.62(0.09)

Table 7: Model Comparison (p = 0.1, 1960-2010)

Data RE RB
sd(∆τ)
sd(∆g) 1.085 0.045 0.518

corr(def, g) 0.779 1.000 0.821

41



Table 8: Results of The VAR Test (1951 − 2010)

Model λ1 λ2 χ2
W (2) p-value

RE −0.09(0.21) 0.34(0.21) 20.04 0.00

Σ = 0.1 −0.08(0.21) 0.37(0.21) 19.48 0.00

Σ = 0.2 −0.07(0.21) 0.40(0.20) 18.28 0.00

Σ = 0.3 −0.07(0.21) 0.43(0.19) 16.41 0.00

Σ = 0.4 −0.06(0.22) 0.47(0.18) 14.03 0.00

Σ = 0.5 −0.06(0.22) 0.51(0.18) 11.36 0.00

Σ = 0.6 −0.05(0.22) 0.55(0.17) 8.70 0.01

Σ = 0.7 −0.05(0.22) 0.60(0.17) 6.28 0.04

Σ = 0.8 −0.05(0.23) 0.66(0.17) 4.28 0.12

Σ = 0.9 −0.05(0.23) 0.71(0.18) 2.78 0.25

Σ = 0.95 −0.06(0.23) 0.73(0.18) 2.23 0.33

Note: χ2
W (2) refers to the Wald statistics for the joint hypothesis test: λ1 = 0, λ2 = 1.
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Table 9: Results of The VAR Test (1960 − 2010)

Model λ1 λ2 χ2
W (2) p-value

RE −0.17(0.26) 0.38(0.29) 8.04 0.02

Σ = 0.1 −0.16(0.26) 0.42(0.27) 7.66 0.02

Σ = 0.2 −0.15(0.26) 0.46(0.26) 6.81 0.03

Σ = 0.3 −0.14(0.26) 0.50(0.25) 5.52 0.06

Σ = 0.4 −0.13(0.27) 0.56(0.24) 3.97 0.14

Σ = 0.5 −0.12(0.27) 0.63(0.24) 2.45 0.29

Σ = 0.6 −0.10(0.28) 0.73(0.25) 1.19 0.55

Σ = 0.7 −0.08(0.28) 0.85(0.30) 0.35 0.84

Σ = 0.8 −0.05(0.29) 1.02(0.39) 0.03 0.99

Σ = 0.9 −0.00(0.29) 1.28(0.55) 0.33 0.85

Σ = 0.91 −0.00(0.29) 1.31(0.57) 0.40 0.82

Note: χ2
W (2) refers to the Wald statistics for the joint hypothesis test: λ1 = 0, λ2 = 1.
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