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1. Introduction

Macroeconomists recognize that inventories play an important role in business cycle �uctuations,

but constructing macroeconomic models that explain this role successfully has been an elusive task.1

Early real business cycle (RBC) models, such as Kydland and Prescott (1982), treated inventories

as a factor of production. However, Christiano (1988) showed that RBC models with aggregate

inventories cannot explain the volatility and procyclicality of inventory investment without including

a more complex information structure and restrictions on the timing of agents�decisions. Moreover,

Christiano and Fitzgerald (1989) concluded that �the study of aggregate phenomena can safely ab-

stract from inventory speculation.�Nevertheless, the recent empirical literature continues to a¢ rm

the conventional view of inventories as propagating business cycle �uctuations. For example, Mc-

Connell and Perez-Quiros (2000), among others, argue that structural changes in inventory behavior

are an important reason for the decline in the volatility of U.S. GDP since the early 1980s.2

We re-examine the role of inventories in business cycle �uctuations by developing and estimating

a dynamic stochastic general equilibrium (DSGE) model rich enough to explain essential elements

of inventory behavior. To confront the data, the model requires four extensions over existing models

with inventories: 1) two sectors, di¤erentiated by whether they hold inventories; 2) a disaggregation

of inventories into two theoretically and empirically distinct types, input and output inventories; 3)

several modern DSGE features, which have been shown to be necessary to �t the data; and 4) multiple

shocks, which provide a diverse array of economically interpretable sources of stochastic variation.

Because these extensions increase the complexity of the model, we abstract from other potentially

important features � variable markups, nominal rigidities, intermediate goods with input-output

relationships, and nonconvexities.3

Studying inventories in a general equilibrium framework motivates a natural sectoral decomposi-

tion. Because inventories are goods mostly held by the �rms that produce goods, our model contains

a goods-producing sector that holds inventories and a service-producing sector that does not hold

inventories. This inventory-based sector decomposition yields a broader goods sector than in prior

1See Blinder and Maccini (1991) and Ramey and West (1999) for surveys. Ramey (1989) and Humphreys, Maccini,
and Schuh (2001) study the importance of inventory investment in the decline of GDP during recessions.

2See also Blanchard and Simon (2000); Kahn, McConnell and Perez-Quiros (2002); Kahn and McConnell (2003);
Irvine and Schuh (2005a); and Herrera and Pesevento (2005).

3Papers that incorporate variable markups and/or sticky prices include Bils and Kahn (2000); Hornstein and Sarte
(2001); Boileau and Letendre (2004); Coen-Pirani (2004); Jung and Yun (2005); and Chang, Hornstein, and Sarte
(2006). General equilibrium models with intermediate goods and input-output relationships include Huang and Liu
(2001) and Wen (2005a). Models with nonconvexities include Fisher and Hornstein (2000) and Khan and Thomas
(2007), which incorporate (S,s) policies for retail inventories and intermediate goods inventories respectively.
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studies that distinguished goods from services because the model includes industries that distribute

goods (wholesale and retail trade plus utilities).4

Our model disaggregates inventories into input (materials and work-in-progress) and output (�n-

ished goods) stocks, as suggested by the stage-of-fabrication approach employed in Humphreys,

Maccini and Schuh (2001).5 Wen (2005a) o¤ers an alternative, purely theoretical analysis of input

and output inventories in general equilibrium; Khan and Thomas (2007) develop a calibrated general

equilibrium model with only inventories of intermediate goods, which are held by �nal goods produc-

ers and ordered with (S,s) policies. An advantage of these two studies is that they incorporate the

interaction between �rms in a supply-chain, which we do not. The advantages of our approach are:

1) we incorporate a utility bene�t of holding output inventories; 2) we model the entire economy,

including the services sector; and 3) we �t the model to the data.

Our estimated model motivates holdings of the two inventory stocks di¤erently. As in earlier

models, input inventories enter as a factor of production, but only in the goods-producing sector.

Output inventories, however, pose a di¤erent speci�cation challenge. Most of the inventory litera-

ture deals with partial-equilibrium analyses of the inventory-holding problem. Typically, a �rm is

assumed to hold output inventories either to avoid lost sales when stockouts occur (Kahn 1987) or to

�facilitate�sales (Bils and Kahn 2000). In a general equilibrium framework, however, one must con-

front the value of output inventories to consumers more explicitly. Like Kahn and McConnell (2003),

we assume that output inventories enter the consumers�utility function directly; hence the utility

services provided by output inventories are a proxy for shopping time, variety, or other consumer

bene�ts associated with the underlying retailing service.

Empirically, the data strongly suggest disaggregating aggregate inventories. We de�ne output

inventories (F ) as stocks held by retailers for �nal sale; all other stocks are input inventories (M).

By these de�nitions, input inventories empirically are more volatile and procyclical than output

inventories. Perhaps more importantly, as implied by the model, the ratios of each inventory type

to its steady-state target exhibit very di¤erent cyclical behavior. Relative to output of goods, input

inventories (M=Yg) are very countercyclical. However, we �nd that relative to the consumption of

4Marquis and Trehan (2005a) de�ne goods producers as manufacturing �rms, while Lee and Wolpin (2006) use the
broader NIPA de�nition (agriculture, mining, construction, and manufacturing). For multi-sector models based on
consumption and investment, see Kimball (1994); Greenwood, Hercowitz, and Krusell (1997, 2000); Whelan (2003);
and Marquis and Trehan (2005b).

5The importance of stage-of-fabrication inventories dates back to Lovell (1961) and Feldstein and Auerbach (1976).
More recent models include Husted and Kollintzas (1987), Bivin (1988, 1993), Ramey (1989), and Rossana (1990).
Cooper and Haltiwanger (1990) and Maccini and Pagan (2007) examine the linkages between �rms created through
inventories playing di¤erent input and output roles in production.
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goods, output inventories (F=Cg) are essentially acyclical.

Our setup also includes several important features now standard in estimated DSGE models, such

as adjustment costs on all capital stocks (including inventories) and variable utilization of capital.

We also allow for non-zero inventory depreciation (or, equivalently, an inventory holding cost that

is proportional to the total stock). This addition is a relatively novel feature in the inventory

literature, except in models of inventories with highly perishable goods (Pindyck 1994). We allow

nonzero depreciation because it is theoretically plausible and essential to �t the data. The model

incorporates six shocks. It is relatively standard to include two (correlated) sector-speci�c technology

shocks and one demand-type shock to the discount rate. A fourth shock, necessary for the two-sector

model, captures shifts in preferences between goods and services. Lastly, we introduce two inventory-

speci�c shocks that create roles for unobserved changes in inventory technologies or preferences to

in�uence the model.

We estimate the model using Bayesian likelihood methods. The estimated model �ts the data

well. Parameter estimates are consistent with the theory and are relatively precise. The estimated

model replicates the volatility and procyclicality of inventory investment, and the qualitative di¤er-

ences in the observed cyclicality of the two inventory-target ratios. In particular, the model captures

the countercyclicality of the input inventory ratio and the relatively acyclicality of the output inven-

tory ratio. We also �nd that inventory shocks do explain some of the variation in investment and

consumption, but little of the variation in aggregate output. Altogether, the results are consistent

with the conventional view that inventories are an important part of the propagation mechanism,

but in and of themselves are not an important source of macroeconomic �uctuations.

Our model and �ndings are related to Khan and Thomas (2007), who �nd that a calibrated

equilibrium model with �xed delivery costs and driven by a single technology shock is successful

in reproducing the cyclical properties exhibited by total inventories. We also match the cyclical

properties of inventories, but our model distinguishes inventories by stage of fabrication and does

not require �xed costs. The multiplicity of shocks in our model and our inclusion of a services sector

(that does not hold inventories) provide additional richness in assessing the role inventories play in

business cycle �uctuations, and allows us to better capture their volatility. Our use of Bayesian

estimation (rather than calibration) constitutes another important di¤erence.

The econometric results obtained with our model shed light on inventory behavior in general

equilibrium. Consistent with Christiano (1988), we �nd that the elasticity of substitution between

input inventories and �xed capital in the production function is much smaller than unity. In contrast,
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the elasticity of substitution between consumption and output inventories in the utility function is

closer to unity. Adjustment costs on �xed capital are large, while adjustment costs on inventory

stocks are small and relatively insigni�cant. However, estimated depreciation rates for inventories

are non-negligible, especially for output inventories, which decay at a rate estimated at about 8

percent per quarter. The magnitude of this depreciation rate and its importance in �tting the data

motivate further research on understanding inventory depreciation.

Finally, we provide the �rst data-consistent, structural decomposition of the Great Moderation

using an estimated DSGE model that incorporates independent roles for input and output inventories.

By estimating the model over the sub-periods 1960�1983 and 1984�2004, we account for the notable

changes in the steady-state values of the inventory-to-target ratios and for the relatively greater

importance of the services sector in the U.S. economy since 1984. We �nd that most of the decline in

aggregate output volatility is attributable to the lower volatility of shocks, which occurred primarily

in the goods-sector technology shock.6 The volatility of the input-inventory technology shock also

declined, but this decline only accounts for a very small reduction in the volatility of aggregate

output or goods output. We also �nd that structural changes in the parameters account for a small

fraction of the reduction in aggregate output volatility. Among these changes, an increase in the

cost of adjusting �xed capital (especially in the goods sector) and an increase in the cost of varying

capital utilization (especially in the services sector) are the main contributors to structural change.

The reduced ratio of input inventories to goods output observed in the data is associated with a

decrease in GDP (and goods-sector) output volatility, but the size of the decrease is small.7

Section 2 describes the model and relates it to the literature. Section 3 discusses the choices

present in applying the model to data. Speci�cally, we explain how we disaggregate the economy

into goods and services sectors and how we disaggregate inventories by stages of fabrication. Section

4 presents the estimation methodology. Section 5 presents the estimation results. Section 6 concludes

by summarizing our results and discussing the implications for future research.

6This result is consistent with other aggregate analyses of the Great Moderation. See the VAR-based analyses of
Blanchard and Simon (2001); Stock and Watson (2003); and Ahmed, Levin, and Wilson (2004). See also Khan and
Thomas (2007) and Maccini and Pagan (2007) for analyses based on structural models with inventories. Arias, Hansen,
and Ohanian (2006) use a calibrated RBC model without inventories, and Leduc and Sill (2006) use an equilibrium
model to assess the quantitative importance of monetary policy.

7Ramey and Vine (2006), studying the automobile industry, also do not �nd much evidence of structural change
related to inventories. They emphasize structural change in the persistence of exogenous sales and, to a much lesser
extent, in the costs of adjusting employment.

5



2. The Model

2.1. Motivating Inventories

To motivate why input inventories are held, we follow the most of the literature and treat them

as a factor of production.8 This motivation for inventory holding assumes that the stock of input

inventories on hand facilitates value-added production beyond the usage of materials and intermediate

goods.9 Although this motive does not explicitly identify the underlying mechanism, maintaining a

stock of input inventories may facilitate production by minimizing resource costs of procuring input

materials, by guarding against stockouts of input materials that reduce productivity, by allowing

batch production, or by generally enabling better organization and e¢ ciency of the production

process. As a factor of production, one can think of inventory stocks as a type of capital. Viewed

as a factor of production, inventories have associated costs of adjustment (but likely less than those

associated with �xed capital), are subject to depreciation, and are likely to incur holding costs. If

the costs of holding inventories are proportional to the stock, then the inventory depreciation rate

will include physical wastage and the resource cost of holding inventories.

To motivate why output inventories are held, we take an approach parallel to that used for input

inventories by entering the stock of output inventories into the utility function directly, as do Kahn

and McConnell (2003). Inventories of �nished goods that are readily available for consumption are

assumed to provide convenience services to the consumer. One way output inventories may yield

utility is by economizing on consumers� shopping time. For example, the idea we are trying to

capture in the model is that a large stock of wine bottles at a local wine store increases utility

beyond that derived from actually consuming the wine. This convenience argument is analogous

to the general logic for including money in the utility function, but the argument for including

inventories is even more compelling.10 In other words, entering output inventories in the utility

function is analogous to including the stock of consumer durables in the utility function, as this

yields a service �ow proportional to the stock.11 However, the nature of the service �ow from output

inventories is di¤erent (yielding convenience, less shopping time, and greater variety) and it pertains

8 In addition to the early RBC models, see also Ramey (1989) and Feroli (2002).
9Humphreys, Maccini, and Schuh (2001) and Maccini and Pagan (2007) argue that it is important to model the

delivery and usage of input materials in gross production together with the holding of input inventories. However,
absent input-output (supply-chain) relationships among �rms, a representative-�rm approach in a general equilibrium
model cannot admit deliveries of raw materials produced by an upstream supplier in an internally, model-consistent
fashion. Thus, we make the simplifying assumption that the stock of inventories enters the production function.
10See, for instance, McCallum and Goodfriend (1987).
11See Baxter (1996) and Wen (2005b).
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to nondurable goods as well.

Our representative-agent approach to output inventories abstracts from the decentralized problem

of inventory holding by retailers (or by �nal good producers) that is common in partial-equilibrium

analyses of inventories. To address this issue properly, one should model explicitly the relationship

between individual consumers and retailers (or �nal good producers) in an imperfectly competitive

setting. We leave this important task for future research in the context of a model that also allows for

input-output (supply-chain) relationships, which are equally important to the decentralized problem.

In this paper, we assume that households maintain community storehouses with output inventories

from which they withdraw output inventories in such a way there are no stockout problems. More

importantly, we assume that individual utility depends on the stock of privately-held inventories,

rather than the aggregate inventory stock, so as to rule out any externalities or free-riding problems

that may arise with the aggregate stock.

2.2. Preferences

The household chooses consumption of goods Cg, services Cs; output inventories F; and hours in the

goods sector Lg and services sector Ls to maximize the following objective:

E0

1X
t=0

�t
�
"�t

�
log
�

"
tX

��
t + (1� 
"
t)C��st

��1=�
� � (Lgt + Lst)

��
,

where Xt is a CES bundle of goods and output inventories, and is de�ned as

Xt =
�
�"FtC

��
gt + (1� �"Ft)F

��
t�1

��1=�
, (1)

where

0 < 
 < 1, 0 < � < 1 and � � �1.

In this formulation, 1 + � is the inverse elasticity of substitution between the consumption of �nal

goods and output inventories. Similarly, 1+� is the inverse elasticity of substitution between services

and the bundle of goods (consumption-output inventories). Utility is linear in leisure, following

Hansen (1985) and Rogerson (1988), which both assume that the economy is populated by a large

number of identical households that e¢ ciently allocates individual members either to full-time work

in the labor market or not at all.

We allow for three disturbances to impact the intertemporal and intratemporal margins of the
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household. The shock "�t a¤ects the preference for goods, services, and leisure today versus tomorrow.

The preference shock "
t a¤ects the relative preference between goods and services.12 Finally, the

shock "Ft a¤ects the relative preference between the consumption of goods and output inventories:

this shock may also capture the reduced-form impact on utility due to changes in output inventory

�technology�occurring in the storage of �nished goods at retailers. Such technology may include the

emergence of megastores like Walmart, Internet shopping, and other key U.S. retail developments,

especially since the early 1980s.

2.3. Sectoral technologies

Following Christiano (1988), production in the goods sector is modeled as a Cobb-Douglas function

in labor Lgt, and a CES aggregate of services from �xed capital and input inventories,

Ygt = (AgtLgt)
1��g �� (zgtKgt�1)

�� + (1� �) ("MtMt�1)
�����g=� , (2)

where

0 < � < 1 and � � �1 .

In equation (2), Kgt�1 is the end-of-period t� 1 capital in the goods sector (plant, equipment, and

structures), zgt is the time-varying utilization rate of Kgt�1, and Mt�1 is the end-of-period t � 1

stock of input inventories. In this formulation, 1 + � measures the inverse elasticity of substitution

between �xed capital and input inventories. If � > 0; then �xed capital and input inventories will

be de�ned here as complements; if �1 � � � 0 then input inventories and capital are substitutes.

We allow for two disturbances in the goods sector technology: Agt is a technology shock, while

"Mt is a shock that a¤ects the productive e¢ ciency of input inventories, so that "MtMt�1 is input

inventories in e¢ ciency units. This shock captures, in a reduced-form way, the impact on production

e¢ ciency of changes in input inventory technology. Such technological changes may include new

methods of inventory management like just-in-time production, which are characterized by elaborate

supply and distribution chains. Irvine and Schuh (2005a) o¤er evidence that such supply-chain

management may have changed in the early 1980s, but the exact mechanisms underlying these

new inventory management methods have not been incorporated well in existing macroeconomic

models. Information and computing technology may also play an important and related role in these

12For the model to admit a solution, a necessary condition is that 
"
t never exceeds unity for each possible realization
of "
t . Even though we assume that log "
t has an unbounded support, empirically its standard deviation turns out
to be rather small, so that this condition is always satis�ed in practice.
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new inventory management techniques, as argued by Kahn, McConnell, and Perez-Quiros (2002).

We introduce "Mt as a shorthand term to capture variations in input-inventory management.13

Obviously, evolution in input-inventory management techniques can also be re�ected in the weight of

input inventories in the CES aggregate, 1��, in the parameter governing the elasticity of substitution,

�; or, more generally, in the ratio between the stock of input inventories and goods output.

Production in the services sector is modeled by a Cobb-Douglas production function only for

labor Lst and capital services:

Yst = (AstLst)
1��s (zstKst�1)

�s , (3)

where Kst�1 is the end-of-period t � 1 capital in the service sector, and zst is the time-varying

utilization rate of Kst�1. The empirical fact that service-producing �rms do not hold inventories

motivates our model�s di¤erent speci�cation of the services-production technology. We also allow for

one general technology disturbance, Ast, in the services sector.

2.4. Aggregate Economy

Output from the goods sector provides consumption goods, new �xed investment in both sectors,

and investment in output and input inventories. Output from the services sector provides services.

Thus, the resource constraints for the goods and service sectors of the economy are, respectively,

Ygt = Cgt +Kgt � (1� �Kg (zgt))Kgt�1 +Kst � (1� �Ks (zst))Kst�1 + Ft � (1� �F )Ft�1 (4)

+Mt � (1� �M )Mt�1 + �Kg (Kgt;Kgt�1) + �Ks (Kst;Kst�1) + �F (Ft; Ft�1) + �M (Mt;Mt�1)

and

Yst = Cst . (5)

The capital depreciation rates in both sectors, �Kg (zgt) and �Ks (zgt), are increasing functions of

the respective utilization rates. The inventory depreciation rates, �F and �M , are �xed and possibly

capture inventory holding costs as well. We also allow for standard, convex adjustment costs in Kgt,

Kst; Ft and Mt, �Kg (Kgt;Kgt�1), �Ks (Kst;Kst�1), �F (Ft; Ft�1), and �M (Mt;Mt�1) :

13The information structure in Christiano (1988), as well as in Kahn and McConnell (2003), is more complex. For
instance, Christiano (1988) assumes that hours worked and capital-investment decisions are made on the basis of noisy
information from the shocks, while inventory and consumption decisions are made after the shock is revealed fully.
This di¤erence is not central to the present analysis.
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Gross aggregate output (GDP) is a weighted sum of output from the two sectors. The relative

size of each sector is determined, on average, by the preference weight 
, which relates the goods

bundle to the services component in the utility function.

2.5. Optimality Conditions

Because the two welfare theorems apply, we solve the model as a social planner�s problem. The

�rst-order conditions for the planner�s problem are standard and summarized here:

@ut
@Cgt

= �t (6)

@ut
@Yst

= !t (7)

� @ut
@Lgt

= �t
@Ygt
@Lgt

(8)

� @ut
@Lst

= !t
@Yst
@Lst

(9)

�t

�
1 +

@�Kst
@Kst

�
= �Et

�
�t+1

�
1� �Kst+1 �

@�Kst+1
@Kst

�
+ !t+1

@Yst+1
@Kst

�
(10)

�t

�
1 +

@�Kgt
@Kgt

�
= �Et

�
�t+1

�
1� �Kgt+1 �

@�Kgt+1
@Kgt

+
@Ygt+1
@Kgt

��
(11)

�t

�
1 +

@�Ft
@Ft

�
= �Et

�
@ut+1
@Ft

+ �t+1

�
1� �F �

@�Ft+1
@Ft

��
(12)

�t

�
1 +

@�Mt

@Mt

�
= �Et

�
�t+1

�
1� �M �

@�Mt+1

@Mt
+
@Ygt+1
@Mt

��
(13)

@�Kgt
@zKgt

Kgt�1 =
@Ygt
@zKgt

(14)

@�Kst
@zKst

Kst�1 =
@Yst
@zKst

. (15)

The �rst two conditions equate the marginal utility of consumption of goods and services to

their respective shadow costs, �t and !t. Equations 8 and 9 are the optimality conditions between

the consumption of goods and services versus leisure. Equations 10 to 13 are the intertemporal

optimality conditions that govern the choices of Kst, Kgt, Ft, and Mt: The last two equations set the

marginal bene�t from capital utilization equal to its marginal cost.
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2.6. Driving Processes

The model is closed by assumptions about the stochastic behavior of the preference and technology

shocks. Shocks "�t; "
t; "Ft; "Mt; Agt; and Ast follow AR(1) stationary processes in logs:

ln ("
t) = �
 ln ("
t�1) +
�
1� �2


�1=2
u
t (16)

ln ("�t) = �B ln ("�t�1) +
�
1� �2�

�1=2
u�t (17)

ln ("Ft) = �F ln ("Ft�1) +
�
1� �2F

�1=2
uFt (18)

ln ("Mt) = �M ln ("Mt�1) +
�
1� �2M

�1=2
uMt (19)

ln (Agt) = �g ln (Agt�1) +
�
1� �2g

�1=2
ugt (20)

ln (Ast) = �s ln (Ast�1) +
�
1� �2s

�1=2
ust. (21)

The innovations u�t; u
t; uFt; uMt; ugt, and ust are serially uncorrelated with zero means and standard

deviations given by ��t; �
t; �Ft; �Mt; �gt, and �st. In addition, we allow for mutual correlation

between the two technology innovations, ugt and ust.

2.7. Functional-form Assumptions

Adjustment costs are quadratic and given by the expression

��t =
 �
2��

�
�t � �t�1
�t�1

�2
�t�1 (22)

for �t = (Kgt;Kst;Mt; Ft). In this formulation, because the marginal adjustment cost is zero in

steady state, it is straightforward to show that the elasticity of capital (investment) with respect to

its shadow price is ��= � (1= �). For the utilization function, we choose a parameterization such

that the marginal cost of utilization equals the marginal product of capital in steady state.14 The

time t depreciation rate of Kit, de�ned as �Kit (with i = g; s), is given by

�Kit = �Ki + bKi�Kiz
2
Kit=2 + bKi (1� �Ki) zKit + bKi (�Ki=2� 1) . (23)

14This way, steady-state depreciation is independent of the curvature of the function. See Christiano (2004).
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In this formulation, �Ki > 0 determines the curvature of the capital-utilization function, where

bKi = 1=�� (1� �Ki) is a normalization that guarantees that utilization is unity in the steady state.

2.8. The Steady State

In the absence of shocks, the model�s equations imply that the variables will converge to a constant in

the steady state. The �rst-order conditions for �xed capital in the goods sector and input inventories

imply that in the steady state, the capital-to-output ratio in the goods sector, kg = Kg=Yg, and the

input-inventories-to-output ratio, m =Mg=Yg, can be written, respectively, as

kg =
�g��

1� � (1� �Kg)
1

� + (1� �)
�

�
1��

1��(1��M )
1��(1��Kg)

� �
1+�

(24)

m =
�g� (1� �)

1� � (1� �M )
1

(1� �) + �
�

�
1��

1��(1��M )
1��(1��Kg)

�� �
1+�

. (25)

These conditions state that the capital-to-output ratio and the input-inventory-to-output ratio are

increasing in their relative weights in production, � and 1 � �, respectively. At the same time,

the di¤erent factor intensities depend on the degree of substitutability. When the ratios in large

parentheses are larger than one, which is true empirically because input inventories are much smaller

than the capital stock, then capital is decreasing in � and input inventories are increasing in �.

The optimality conditions for goods consumption and output inventories imply that in the steady

state:

cg =

�
�

1� �
1� � (1� �F )

�

� 1
1+�

f , (26)

where cg = Cg=Yg and f = F=Yg. The ratio of consumption to output inventories is increasing in

�; while it is decreasing (increasing) in � when the term in parentheses is larger (smaller) than one.

Using the linear homogeneity of the CES aggregators and the �rst-order conditions for Ks; Cg, and

Cs, we derive the following expression for ks:

ks =

�
�

!

� ��
1+�

�
1� 

�


� 1
1+� �s�

1� � (1� �Ks)

�
�+ (1� �)

�
cg
f

��� ���
�(1+�)

cg. (27)

This equation says that capital in the services sector is higher when the relative price of goods in

terms of services (�=!) is low, when the weight to services in utility, 1 � 
, is high, or when the

production function for services is capital intensive (�s high). Using the �rst-order conditions for
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labor and the linear homogeneity of the production functions, the relative price of goods is:

�

!
=

0BB@ (1� �s)
�

�s�
1��(1��Ks)

� �s
1��s

(1� �g)
�
�k��g + (1� �)m��

g

� ��g
�(1��g)

1CCA
1��s

. (28)

Finally, the market-clearing condition for the goods sector is

cg + �F f + �Kgkg + �Ksks + �Mm = 1 . (29)

For given parameter values, equations 24 to 29 above can be jointly solved for f; cg; ks; kg, m

and �=!. The �rst-order conditions for Lg; Ls; Cg, and Ys, together with the production functions,

can be solved for Lg; Ls; Yg; Ys; !; and �. (Details for all the derivations are given in the technical

appendix.) The model�s optimality conditions, together with the market-clearing conditions and the

laws of motion for the shocks, can be used to obtain a linear approximation around the steady state

for the decision rules of the model variables, given the initial conditions and the realizations of the

shocks. Given the model�s structural parameters, for a given set of values, the solution takes the

form of a state-space econometric model that links the behavior of the endogenous variables to a

vector of partially unobservable state variables that includes the six autoregressive shocks. In our

econometric application, we use observed deviations from the steady states of 1) the output of goods

and services, 2) the stock of input inventories and output inventories, 3) the relative price of goods,

and 4) total �xed investment to estimate the model�s parameters and the properties of the shocks.

Before describing the procedure for constructing deviations from the steady state, an important task

is to map the model variables into their data counterparts.

3. Data

3.1. Sector and Inventory De�nitions

To obtain model-consistent sectors, we divide the economy according to the inventory-holding be-

havior of industries. The goods sector in the model includes all seven industries that hold empirically

measured inventories: agriculture, mining, utilities, construction, manufacturing, and wholesale and

retail trade. All other private industries that do not hold inventories (as measured by statistical

agencies) are classi�ed as services in the model. Table 1 shows our sectoral classi�cation, along

with output shares in the year 2000. These model-consistent (inventory-based) sectors are di¤erent
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from the now-conventional view of the U.S. economy as dominated by the service sector. The model�s

goods sector is about twice as large as the service sector (59 percent versus 28 percent), and accounts

for about two-thirds of private-sector output. However, because the model-consistent goods sector

accounts for a much larger portion of international trade, the sectors become much closer in size

when we abstract from net exports in the next subsection.

Table 1 also illustrates how the model-consistent sector de�nitions di¤er from standard national

income and product account (NIPA) de�nitions, and why the goods sector is relatively more im-

portant in our data. We include the NIPA structures sector (which is essentially the construction

industry) and roughly one-quarter of the NIPA services sector (utilities and wholesale and retail

trade industries) in the model�s goods sector because these industries hold inventories. Including

construction in the model�s goods sector is not a controversial choice because, in the NIPA two-

sector classi�cation scheme, the �goods-producing� de�nition does so. However, moving a sizable

portion of the NIPA service sector to the goods sector warrants some justi�cation. We include util-

ities and the trade industries as part of the goods sector because the �services� these industries

provide involve making �nished goods available to the consumer. We view this distribution of goods

as reasonably classi�ed as part of the overall production process of a representative goods-producing

�rm. Yet we recognize that separate treatment of the production and distribution of goods would

be preferable in future research that incorporates stages of processing in the goods sector.15

We divide all NIPA inventories into input (M) and output (F ) stocks, following the stage-of-

fabrication perspective used by Humphreys, Maccini, and Schuh (2001) for manufacturing stocks.

Table 2 shows the inventory de�nitions by industry and type, along with inventory shares in year

2000. The industries are ordered approximately according to their stage of processing, with the

industries producing raw materials listed �rst and the industries distributing �nished goods listed

last.16 We assume that, to a �rst approximation, most of the output (sales plus output inventories)

of each industry becomes an input to the next industry situated along this supply and distribution

chain. Prior research has focused mainly on the manufacturing sector, and thus generally has not

grappled with the task of classifying total inventories in general equilibrium. However we de�ned

output inventories as retail inventories because these stocks comprise the most �nished set of goods in

the supply and distribution chain. Under this empirical de�nition of the model�s inventories, output

15The reclassi�cation of utilities as goods production is consistent with already including other energy production in
the goods sector. Petroleum re�ning is included in manufacturing, as part of the standard NIPA goods sector.
16According to the U.S. Census of Construction, inventories in the construction industry are materials and do not

include unsold �nished buildings.
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(retail) inventories account for about one-fourth of all stocks while input (the remaining) inventories

account for about three-fourths. By comparison to earlier research focusing on the manufacturing

sector only, the analogous de�nitions of input and output inventories leaves �nished goods (output)

inventories accounting for about one-third (11.1 percent out of 31.1 percent) of all manufacturing

stocks. Also, our model�s de�nition of input inventories is heavily oriented toward work-in-process

(54 percent), whereas work-in-process inventories account for less than one-third of all manufacturing

stocks (8.9 percent out of 31.1 percent).17

3.2. Data Construction

Based on the sector and inventory de�nitions, we use standard NIPA data and identities to construct

the following model-consistent data for use in our econometric work:18

Yg = Cg + Ig + Is +�F +�M

Ys = Cs

Y = Yg + Ys.

Because our model�s inventory-based sector de�nitions di¤er from the NIPA de�nitions, the

consumption, investment, and inventory data require three types of adjustments to obtain model-

consistent variables. First, consumption of energy services is partly consumption of goods output

produced by the utilities industry because �even though the industry provides a service by distrib-

uting energy to consumers �the energy itself is essentially a good (gas, oil, electricity, and the like).

Therefore, we rede�ne this output as goods consumption. Second, we use non-NIPA investment-

by-industry data to obtain measures of investment in each sector. Finally, we splice inventory data

from two industrial classi�cation schemes �the old SIC system and the newer NAICS system �to

obtain consistent time-series data for our sample. See the technical appendix for full details of the

17The de�nition of stage-of-fabrication inventory stocks in general equilibrium is not well guided by theory or data.
One could make a reasonable theoretical case for classifying manufacturing �nished goods and wholesale stocks as
output inventories too. However, no strong empirical justi�cation exists for any particular alternative de�nition. For
instance, wholesales inventories include construction material supplies, and manufacturing-output inventories contain
goods that do not enter the consumer�s utility function. Moreover, each industry�s inventory investment exhibits
di¤erent cyclical and trend characteristics, and the correlation of inventory investment between industries is low.
18For simplicity, we suppress the details of chain-weighting from equations included in the text. When constructing

the actual real chain-weighted data, we use the Tornquist index that weights growth rates of subcategories by their
nominal shares, as recommended by Whelan (2002). The Tornquist index is a good approximation to the BEA�s Fisher
ideal chain index.
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data adjustments and construction.19

3.3. Output and Investment

Figure 1 depicts the model-consistent output and investment data by sector. The left column contains

output shares (Yg=Y and Ys=Y ) and the right column contains investment-to-output ratios (Ig=Y

and Is=Y ), plotted both in nominal and in real terms. Clearly, nominal output has been shifting

away from the goods sector toward services, though the respective shares have stabilized in recent

years. In contrast, real output shares have been relatively stable over the full sample, with each

sector accounting for roughly half of real aggregate output, though the portion attributed to goods

is slightly larger (roughly 50�55 percent). In nominal terms, gross investment relative to aggregate

income has been rising in the services sector and falling in the goods sector. In real terms, investment-

to-income in the goods sector is slightly decreasing but roughly stable, though in the services sector

investment-to-income is clearly rising.

These nominal and real output trends di¤er from those previously noted in the two-sector liter-

ature. Sectoral decompositions based on consumption versus investment (for examples, see Green-

wood, Hercowitz, and Krusell 1997, 2000; Marquis and Trehan 2005b), or based on durable goods

versus nondurable goods and services (for example, Whelan 2003), tend to �nd that nominal shares

are roughly stationary. In contrast to our results, these earlier studies �nd that real shares exhibit

nonstationary trends because technological change is faster in the investment and durable goods

sectors. Marquis and Trehan (2005a) also �nd nonstationary trends in real shares for the manufac-

turing sector only. However, in our model the inventory-holding goods sector contains durable goods,

nondurable goods, and several services industries. Because these industries exhibit heterogeneous

trends, combining them in our model produces substantially di¤erent aggregate real and nominal

sectoral trends.

Although these trend di¤erentials are important, we abstract from them for at least two reasons.

First, our focus is on the relationship between inventory investment and business cycle �uctuations

�hence on deviations from these trends. Second, to address the issue of di¤erences in the rates of

sector-speci�c technical change, it may well be necessary to divide the inventory-holding component

19Despite these adjustments, our e¤orts to construct private-sector output for a model that excludes the foreign and
government sector yield an imperfect approximation. Excluding international trade causes exports to be excluded from
sector output, but imports are implicitly attributed to domestic sector output. One does not want to omit imports of
capital goods, however, because investment goods purchased from abroad and installed domestically should be included
in the capital accumulation equations. Similarly, some inventory holdings probably are associated with international
trade. Finally, government spending probably has at least an indirect in�uence on actual consumption and investment.
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of the economy into more than just two sectors. Following the common procedure in the inventory

literature, we detrend all data used in the econometric work.20

Regarding business cycle properties, goods output is much more variable than services output.

Output �uctuations in the inventory-based goods sector account for 76 percent of the variance of

real output. By comparison, the growth rate of goods output in the narrower, more volatile three-

sector NIPA de�nition (which includes only the agriculture, mining, and manufacturing industries)

accounts for 89 percent of the variance of real GDP growth (Irvine and Schuh 2005b).

3.4. Input and Output Inventories

Figure 2 plots data on input and output inventories that portray the central inventory facts we wish

to explain with our model. The left panels of Figure 2 plot actual data while the panels in the right

column plot detrended data; all data are given in real chain-weighted terms (year-2000 dollars).

The upper left panel of Figure 2 shows that the actual inventory-target ratios, de�ned by F=Cg

and M=Yg, exhibit opposing trends.21 Input inventories have been declining relative to their target

(M=Yg), with a notably faster rate of decline since the early 1980s. This reduction in input inven-

tories probably resulted at least partly from improved inventory management techniques and better

information �ows. Because this trend break occurs at about the same time that aggregate output

volatility declined, a connection between these two events is a natural hypothesis to investigate,

which we do later by allowing steady-state parameters to change between sample periods.

In contrast, output (retail) inventories have been rising relative to their target (F=Cg). Little

attention has been devoted to explaining this phenomenon and its implications for the aggregate

economy. However, by separating inventories into input and output components, we highlight the

need to understand the economic factors behind the trend increase in output inventories. Also,

the output inventory-target ratio leveled o¤ in the 1990s, much later than the break for the input

20A trend is removed from the variables in logs, using the band-pass �lter of Baxter and King (1999) that isolates
frequencies between 3 and 32 quarters. Linear quadratic detrending and �rst-di¤erencing are also common in the
literature, but these techniques tend to yield similar cyclical properties in the detrended data. However, Wen (2005c)
shows that the cyclical properties of detrended inventory investment are sensitive to the cyclical frequency. Business
cycle frequencies like ours yield procyclical inventory investment, whereas higher frequencies (2�3 quarters) yield
countercyclical inventory investment. After detrending, the data are restored to natural units by adding the detrended
log residual to the mean of the log data, then taking the anti-log of this sum. Working with natural units is important for
ratios, which are central to steady-state calculations. All detrended data used in estimation are divided by steady-state
(average) goods output, but this scaling is not crucial.
21AlthoughM=Y is consistent with traditional practice in the inventory literature, such as Lovell (1961) and Feldstein

and Auerbach (1976), F=C di¤ers from the traditional inventory-to-sales ratio speci�ed by microeconomic models of
the �rm. In the two-sector general equilibrium model, the �sales�measure most analogous to that used in the inventory
literature is �nal goods sales, Sg = Cg + I. Empirically, however, the choice of the scale variable for inventories does
not alter the qualitative properties of inventory-target ratios.
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inventory-target ratio, a fact that also warrants further investigation.

Distinctly di¤erent trends in inventory-target ratios provide one motivation for disaggregation of

inventories in general equilibrium. Secular trends in these ratios have been analyzed by Kahn and

McConnell (2002, 2003, and 2005), Ramey and Vine (2004), and Irvine (2005), but this research has

not produced a consensus explanation for the kinds of low-frequency movements seen in Figure 2.

Because our primary focus is on the role of inventories in business cycle �uctuations, we abstract

from the secular trends in inventory-target ratios by detrending the data.

The key fact to emphasize regarding inventory-target ratios is the substantial di¤erences in their

cyclical properties (right panels, Figure 2). On average, the output-inventory ratio is roughly acyclical

(the correlation with goods output is .10), as can be seen by the lack of consistent movement during

recessions (shaded regions). Although the output-inventory ratio shot up during the 1973�1975

recession, it did not do so during previous or subsequent recessions. In contrast, the input-inventory

ratio is very countercyclical (the correlation with goods output is �0:89), as can be seen by its

consistent increase during recessions. Thus, the existence of countercyclical inventory-target ratios

for manufacturing output inventories, as emphasized by Bils and Kahn (2000), is not evident for all

inventories. This result suggests that successful theories of aggregate inventory behavior must be

comprehensive enough to explain heterogenous behavior among di¤erent types of stocks.

Another key fact seen in Figure 2 (lower left panel) is that input-inventory investment is nearly

four times more variable than output-inventory investment (the ratio of variances is 3.8), when both

investment series are scaled by goods output. This relative volatility is comparable to the analogous

variance ratio observed within manufacturing (Blinder and Maccini 1991). However, the relative

volatility of the two types of inventory investment has declined dramatically, from a ratio of 4.6 in the

early sample (1960�1983) to a ratio of 2.5 since then. The volatility of input-inventory investment

fell while the volatility of output-inventory investment remained about constant. Both types of

inventory investment are procyclical over the full sample period, but input-inventory investment is

more procyclical than output-inventory investment (the correlation with goods output is .64 for input

inventories and .42 for output inventories). Their cross-correlation is only .26. The procyclicality of

output-inventory investment decreased from .47 in the early sample (1960�1983) to .28 since then,

but the cyclical correlation of input-inventory investment has remained relatively stable.

In sum, the distinctly di¤erent cyclical properties of input- and output-inventory investment

provide additional motivation for disaggregating inventories. Thus, theoretical models that allow

di¤erent inventory-target adjustments and volatility across stocks are likely to have an advantage in
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explaining and understanding aggregate inventory behavior.

4. Model Estimation

4.1. Overview

We use observations on the following variables: (1) output from the goods sector; (2) output from

the service sector; (3) the stock of input inventories; (4) the stock of output inventories; (5) the

relative price of goods to services; and (6) total �xed investment. We estimate the model for the

full sample from 1960:1�2004:4. We also estimate the model for the two sub-periods: 1960:1�1983:4

and 1984:1�2004:4. The breakpoint corresponds to point estimates of when the Great Moderation

began, as indicated in McConnell and Perez-Quiros (2000). We plot our series in Figure 3.

We use Bayesian techniques to estimate the structural parameters.22 For given values of the

parameters, the solution to our linearized model takes the form of a state-space econometric model,

and the Kalman �lter enables to evaluate the likelihood of the observable variables as follows:

L
�
fxtgTt=1 j�

�
,

where � is the vector collecting all the model parameters and xt is the vector of observable variables.

We combine the information observed in the data with prior information on the model parameters

to construct the posterior density function:

p
�
�j fxtgTt=1

�
_ L

�
fxtgTt=1 j�

�
�(�) .

Speci�cally, we �rst calculate the posterior mode of the parameters using a numerical optimization

procedure. Then we generate 250,000 draws from the posterior mode using the Metropolis-Hastings

algorithm to obtain the posterior distribution. The mean of the posterior distribution is used to

compute impulse response functions, variance decompositions, and moments of the estimated model.

4.2. Prior Distributions

We keep some parameters �xed during our estimation exercise. More speci�cally, we set the quar-

terly discount factor at 0:99; implying an annual interest rate of 4 percent. We also calibrate the

depreciation rates for �xed capital, which we set at �Kg = �Ks = 0:02 �a conventional choice in the

22For the solution and the estimation of the model, we use the Dynare toolkit developed by Michel Juillard.
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literature.23 Once these values are set, 29 remaining parameters need to be estimated. We partition

these into three groups:

1. The autocorrelation parameters (�g; �s; �B; �
 ; �F ; �M ), standard deviations of the innovation

disturbances (�g, �s; �B, �
 ; �F , �M ), and the correlation coe¢ cient between the innovations

in the goods-sector technology and the services-sector technology (�g;s).

2. The adjustment cost parameters ( Kg,  Ks;  F , and  M ), and the parameters characterizing

the curvature of the utilization functions for �xed capital (�Kg, �Ks).

3. The inventory depreciation rates (�M and �F ), the elasticities of substitution (�; �, �), the labor

shares (�g; �s), the weight of services in utility (
), the weight of input inventories in the CES

capital aggregator (�), and the weight (�) on consumption in the goods-bundle aggregator.

This third group of parameters a¤ects not only the model�s dynamics, but also the steady-

state values of �xed capital and input- and output-inventory stocks relative to output, as well

as the relative size of the services versus the goods sector. For our sample (and for the two

sub-samples), the average values of these ratios (F=Yg, M=Yg; Kg=Yg, Ks=Yg; (!=�)Ys=Yg)

are reported in Table 3. Observe that, for each combination of �M , �F ; �, �, �, it is possible to

determine a unique set of values for �g; �s; 
; �; and � that are consistent with these �ve ratios

listed in Table 3 (see the technical appendix for details).24 Accordingly, in the estimation of

the model, for each value of the �M , �F ; �, � and � parameters, we set the �g; �s; 
; �; and �

parameters to the values that match the ratios.25 Intuitively, we let the likelihood function use

information on the behavior around the steady state of our observable variables to determine

values for the depreciation rates, �F and �M ; and the elasticity of substitution in the CES

aggregates in the production and utility functions, �, �, and �. Doing this does not compromise

the model�s ability to be consistent with the �rst moments of the data. This procedure also

allows us to account for the changes in the ratios over the entire sample period. In fact, when

we estimate the model separately over the dates 1960:1�1983:4 and 1984:1�2004:4, we use the

average values of the relevant ratios in each period.

23 In the data, the service sector has a higher proportion of structures in its total capital stock than the goods sector
does. Because structures generally have lower depreciation rates than equipment, we also estimated a model with
a smaller depreciation rate of capital in the service sector for robustness. The econometric results from the model
with heterogeneous sectoral depreciation rates of capital are very similar the results from our baseline model with
homoegeneous depreciation rates reported below.
24The formulas for these parameters are in the technical appendix.
25Christiano (1988) follows the same strategy: in his model, which includes inventories in the production function,

he chooses � (in our notation) to maximize the likelihood function and � (our notation) to match the steady-state
rental rate of inventories in the data.
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Our prior distributions of the parameters are summarized in the �rst three columns of Table 4.

For the parameters measuring adjustment costs  ; we specify a beta prior over  
1+ ; with a mean

equal to 0.5 and a large standard deviation: this value corresponds to a prior mean of unity for the

elasticity of investment to its shadow price. For the curvature of the utilization function, we choose a

beta prior over �
1+�with the mean equal to 0.5. For the elasticity of substitution between services and

the goods bundle, between consumption and inventories, and between input inventories and capital,

we select priors centered around two-thirds (that is, 1 + � = 1:5). In other words, our prior goes

slightly in favor of complementarity between these variables.

The existing literature and the national income and product accounts (NIPA) o¤er little guidance

in choosing the inventory depreciation rates, �F and �M . An assumption in line with the procedures

used in the NIPA would be that inventories do not depreciate. Yet, in addition to incurring holding

costs, inventories are subject to various forms of �shrinkage,� such as breakage, wear and tear,

perishability, and obsolescence, so the depreciation parameter may well be larger than the rate set

for �xed capital. For instance, on a quarterly basis, Ramey (1989) reports inventory holding and

storage costs of 4 percent per quarter, while Khan and Thomas (2007) set these costs at 3 percent per

quarter. To limit the chances of obtaining an implausibly high estimate, we choose a conservative,

tight prior mean for the depreciation rates equal to 0:02 per quarter.

The autoregressive coe¢ cients of the exogenous shocks have beta prior distributions, as in Smets

and Wouters (2003), centered at 0.75. The unconditional standard deviations of the shocks are

assigned a di¤use inverse gamma distribution prior, which guarantees positive variance with a large

domain. The correlation between ugt and ust is assumed to be normal and is centered around

0.50. The choices of the mean of the prior distribution for the standard deviation of the technology

and preference shocks are in the ballpark of the previous �ndings in the literature.26 Preliminary

estimation attempts also suggested a higher standard deviation for the input-inventory shock.

5. Estimation Results

5.1. Full Sample

Parameter estimates. We begin by discussing the estimates over the full sample, 1960�2004.

Table 4 reports the mean and the 5th and 95th percentiles of the posterior distribution of the

26See, for instance, Ireland (2004) and Smets and Wouters (2003).
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parameters obtained through the Metropolis-Hastings algorithm.27

Consistent with the autoregressive priors, all shocks are estimated to be quite persistent, with

the autoregressive parameters ranging from :82 to :94. The unconditional standard deviation of

the shocks ranges from :0032 (for the output-inventory shock) to :0944 (for the input-inventory

shock): the quantitative relevance of each shock will be discussed below in the variance-decomposition

exercise. Perhaps unsurprisingly, we �nd that the standard deviation of the technology shock in the

goods sector (:0175) is higher than for that found in the services sector (:0142).

The elasticity of substitution betweenM andK (the inverse of 1+�) equals 0:30. The elasticity of

substitution between F and Cg (the inverse of 1+ �) equals 0:94, and it is not signi�cantly di¤erent

from unity. Similarly, the elasticity of substitution between services and the CES aggregator for

consumption of goods and output inventories (the inverse of 1 + �) is close to one.

The estimates of the inventory adjustment-cost parameters,  F and  M , are close to zero, in-

dicating very small costs of adjusting input and output inventories, while the bigger values of  Kg

and  Ks indicate larger adjustment costs for �xed capital. At the posterior mean, the estimated

values imply an elasticity to the user cost of investment equal to 1:12 in the goods sector, and equal

to 2:96 in the service sector.28 These di¤erent elasticities con�rm that input inventories and �xed

capital are indeed distinguished by having di¤erent degrees of adjustment costs.

Another important di¤erence between inventories and �xed capital emerges from the estimates of

depreciation rates for input and output inventories. The depreciation rate forM is 2.0 percent, about

the same a capital, but the depreciation rate for F is 7.8 percent, much larger. Finally, estimates of

the convexity of the utilization function suggest that the marginal cost of capital utilization (in terms

of increased depreciation) is more sensitive to changes in the utilization rate in the goods sector than

in the services sector. As a result, variable capital utilization is more important in the services sector

than in the goods sector.

As we mentioned in the previous section, we do not directly estimate the parameters measuring

the relative shares of consumption in utility and of capital, and inventories in production. Rather,

given the estimated parameters, we calculate the values of �; �; �g; �s; and 
 (see Table 5) that are

consistent with the sample means of F=Yg, M=Yg; Kg=Yg, Ks=Yg; and (!=�)Ys=Yg (see Table 3).

27As is well known (see, for instance, Canova 2007), an important issue concerns the convergence of the simulated
draws from the posterior distribution of the parameters. We �ne tune our estimation algorithm in order to obtain
acceptance rates between 30 and 40 percent, and we check for convergence using the cumulative sum of the draws
statistics. Although convergence typically obtains within 50,000 iterations, we set the number of draws to 250,000 and
calculate the statistics of our estimated model based on the last 75 percent of the draws.
28One can interpret  as the inverse elasticity of each type of investment to its shadow price. Our numbers are in

line with microeconometric �ndings based on estimates of investment equations: see, for instance, Chirinko (1993).
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Impulse responses and variance decompositions. Figure 4 presents the model impulse re-

sponses to the estimated shocks. In Table 6, we report asymptotic variance decompositions. Both

in Figure 4 and in Table 6, we choose an orthogonalization scheme that orders the goods technology

before the services technology shock. As a result, any variation in the responses due to the correlation

between the goods and the services shock is attributed to the goods technology disturbance.

The �rst row plots the responses to a positive technology shock of one standard deviation.29 This

shock leads to an increase in Ag of .87 percent, and to an increase in As (given our ordering scheme)

of :37 percent. This disturbance is fundamental in generating comovement of quantities in our model,

and accounts for a large fraction of the �uctuations in economic activity. In response to the positive

technology shock, consumption, business investment, and both types of inventory investment all rise.

The goods shock spills over to the services sector (over and above the e¤ect caused by the correlation

of the shocks) because it facilitates the production of �xed capital that is then used in the service

sector. The goods technology shock also accounts for a non-negligible fraction of the �uctuations in

both types of inventory investment �around 12 percent for output inventories and 16 percent for

input inventories. These responses of output and input inventory investment are, as a proportion

of the respective stocks, larger than the one for �xed investment, relative to the �xed capital stock.

For instance, the impact response of input inventories relative to business investment is half as big,

when both variables are scaled by goods output. However, since the steady state stock of business

capital is about ten times larger than the stock of input inventories, the response of input inventories

is �ve times larger than that of business investment, when both variables are scaled by their own

steady state stock. This is not surprising, since �xed capital is more costly to adjust. In this sense,

inventories are an important part of the propagation mechanism, even if inventory investment counts

for a small fraction of steady state output.

The second row shows the responses to a discount factor shock: this shock moves consumption and

investment in opposite directions, and creates negative comovement between each sector�s output.

It also contributes to �uctuations of input inventories �16 percent of the total variance.

The third row shows responses to a shock that shifts preferences away from �nal inventories

towards goods consumption. The mechanics of this disturbance have the classic implications of a

demand shock. Consumption of goods increases; inventories of �nished goods fall. Following the

increase in demand, with a modest lag, the output of the goods sector increases while output of the

29To facilitate comparison across all investment categories, we scale the response of inventory investment and business
investment by steady-state goods output (rather than by their own steady state values). This way, the vertical axis
measures the percent growth contribution of each investment category to the response of goods output.
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services sector is only marginally a¤ected (because the estimated elasticity of substitution implies

an approximate separability in utility between goods and services). This preference-based shock

accounts for a large share (about 80 percent) of the �uctuations in output-inventory investment.

The fourth row shows the response to a shock that shifts preferences away from services and

towards goods. While this shock, which basically re�ects shifts in the composition of demand,

accounts only for a small fraction of GDP �uctuations, it accounts for a quarter of the variance of

output in the services sector. It also accounts for about half of the total variance of sectoral hours,

because the shock causes a reallocation of labor from one sector to the other (something not reported

in Figure 4 or Table 6).

The �fth row plots the response to a positive shock to the e¢ ciency of input inventories. This

shock captures a large fraction (about 67 percent) of the variation in input-inventory investment.

More e¢ cient management of input inventories reduces their usage, increases the demand for �xed

capital, and raises consumption (immediately) and output (with a slight delay). The positive input-

inventory shock accounts for 6 percent of the variance of investment in �xed capital, and for about

2.5 percent of the variance of goods output. The rest of the variance of input inventories is explained

by the general preference shock and by the general technology shock that occurred in the goods

sector.

The last row plots responses to a positive technology shock in the services sector. While it is

obviously important in explaining output of services, the e¤ects of the shock in this sector are only

marginally transmitted to the rest of the economy because the services sector does not produce

capital.30

The literature has often looked at the cyclical properties of the inventory-target ratios, so Figure

5 reports the impulse responses of total output (model-based GDP) and the inventory-target ratios

to the three disturbances � a goods technology shock, an output-inventory shock, and an input-

inventory shock � that cause most of the variation in GDP and inventories. Following the goods

technology shock, the input-inventory target ratio is strongly countercyclical, as is observed in the

data. Input inventory investment rises but, because business capital is costly to adjust, the stock of

input inventories � which is complementary to business capital � does not rise substantially, so that

its ratio to GDP falls. The output inventory-target ratio is virtually acyclical (as in the data), since

30The logic of this result can be interpreted using an analogy to the consumption-technology neutrality result de-
scribed in Kimball (1994). With separable preferences over goods and services (as implied by our estimated model),
technology shocks that only a¤ect the consumption-producing sector (in our model, the service sector) also have no
impact on employment or capital accumulation.
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the household prefers to maintain a relatively constant balance of output inventories to consumption.

The second and third row of Figure 5 show the aggregate responses to the inventory-speci�c shocks.

While these shocks are central to reproducing the volatility of inventory investment observed in the

data, these shocks mostly a¤ect the inventory-target ratios through their e¤ects on the numerators,

and do not have large e¤ects on output or consumption. In other words, inventory-speci�c shocks

help �t the volatility of inventory investment, but they do not in�uence the cyclical properties of the

inventory-target ratios, which are mostly driven by the aggregate productivity shocks.

A comparison between the model and the data. Figure 6 o¤ers a visual check of the model�s

ability to reproduce key features of the data. We compare the empirical impulse responses and the

model responses, which were obtained from the model�s reduced form by ordering and orthogonalizing

the model shocks, as was done in the VAR. In the �rst two columns of Table 9, by contrast, we focus

on some unconditional correlations in the data, and compare these with those generated by our

estimated model.31

The message that emerges both from Figure 6 and Table 9 is that our model accounts reasonably

well for the variance of the key model variables, as well as for how these variables respond to

various shocks and for many of the correlations among the variables in the data. In particular, the

model simultaneously accounts for the volatility and procyclicality of inventory investment.32 More

speci�cally, it successfully mimics the greater volatility of input-inventory investment and its higher

degree of procyclicality as compared to output-inventory investment. This result is true whether we

look at the correlation between inventory investment and goods output, or the connection between

changes in inventory investment and the change in GDP. Moreover, the model can reproduce the

countercyclicality of the input-inventory target ratio, although not its magnitude, and the relative

acyclicality of the output-inventory target ratio. Finally, the model successfully reproduces the

relative volatilities of all types of investment.

To better gain insights into how our model achieves these results, it is useful to think of a

reference model that treats all types of capital symmetrically with respect to adjustment costs, and

assumes a zero depreciation rate on inventories. Recall that Christiano�s (1988) RBC model, which

31The impulse responses are based on a 6-variable VAR with a constant and two lags and are based on the ordering
shown in Figure 6.
32 In Christiano (1988), it was necessary to rely on a more complex information structure in order to account for these

two features of the data. He assumes that, at the time labor hours and capital decisions are made, �rms observe the
shocks with noise. Inventory and consumption decisions are, instead, made with full knowledge of the shocks. When
there is no signal-extraction problem, his model can generate enough inventory-investment variability, but at the cost
of a negative correlation between the change in inventory investment and output growth.
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contains aggregate inventories as a factor of production, has no adjustment costs and assumes a zero

depreciation rate for aggregate inventories. When we impose these two assumptions, our model�s

ability to explain the volatility of inventories and �xed investment worsens considerably. Figure 7

demonstrates this result by plotting impulse responses to a positive technology shock in the goods

sector from two restricted versions of our model � one with zero inventory depreciation and the

other with no adjustment costs for K; M , and F . With estimated (non-zero) depreciation rates

but zero adjustment costs (starred lines), the responses of GDP and capital investment are much

larger, and the response of output-inventory investment much smaller, than the respective responses

from the unrestricted model (that, recall, match their empirical counterparts). With estimated (non-

zero) adjustment costs but zero inventory depreciation rates (circled lines), the responses of GDP

and capital investment are essentially the same as in the unrestricted model, but the responses of

both types of inventory investment are too small � inventory investment is essentially �at in this

counterfactual simulation.

This counterfactual exercise shows that positive depreciation rates and heterogeneous adjustment

costs (large for �xed capital, small for inventories) are essential features of the model to �t the relative

volatilities of all forms of investment. Absent depreciation, inventory investment would be excessively

smooth and persistent. Due to standard consumption smoothing reasons, output inventories would

be smooth too. Input inventories would not be very volatile because capital, in the absence of

adjustment costs, would respond more quickly to general productivity shocks, since these shocks have

a larger e¤ect on the marginal return to �xed capital. This response occurs because a productivity

shock has the same e¤ect, percentage-wise, on the marginal return to �xed capital and inventories.

When the depreciation rate on inventories is much smaller (equal to zero), and �xed capital must be

compensated for the higher depreciation rate with a higher return, the absolute e¤ect of a shock on

the marginal return to capital is much greater in absolute value. As a result, capital would be more

responsive to productivity shocks than would input inventories if inventory depreciation were zero.

5.2. Sub-samples

Parameter estimates. We re-estimated the model with the same priors over the sub-periods

1960:1�1983:4 and 1984:1�2004:4. In this exercise, we allow �; �; �g; �s; and 
 to di¤er across sub-

samples to match the di¤erent sample means for the share of services in the economy and for the

investment and the inventory ratios relative to goods output (reported in Table 3). This exercise

allows us to investigate what lies at the root of the decline in output volatility since 1984, and what
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role, if any, inventories may have played in this regard.

Table 7 reports the results of the sub-sample estimation. With few exceptions, the full-sample

parameter estimates lie between those for the two sub-samples. Regarding the structure of the

economy, three results are worth emphasizing. First, the depreciation rate for output inventories, F ,

is smaller in the second part of the sample, as it goes from 6 to 4 percent. Second, the utilization

function for capital in the service sector becomes more convex (�Ks rises). Third, �xed capital

becomes more costly to adjust in the latter sub-period.

It is di¢ cult to provide exhaustive explanations for the changes in these �deep�parameters of

the model. Potential reasons for the lower estimate of the depreciation rate �F might be a change

in the inventory mix or better inventory management in general. It is not clear how to interpret the

higher adjustment costs for �xed capital, although these might re�ect: 1) the increased weight of

innovative investment in the second sub-period, and the greater associated costs in terms of learning

and disruption; or 2) higher sector (or �rm) speci�city of capital goods.

We also �nd important changes in the parameters characterizing the stochastic processes for

technology and preferences. The most important result is that the standard deviation of the tech-

nology shock in the goods sector and of the input-inventory shock experience the largest fall. The

decrease in the importance of the input-inventory shock is consistent with the idea that new methods

of inventory management adopted since the early 1980s have made it easier to control the level of

input inventories in e¢ ciency units. The reduced volatility of the technology shock in the goods

sector is consistent with the idea that the decline in GDP volatility is due to a change in the nature

of the shocks, particularly those a¤ecting technology (Stock and Watson 2003). We also �nd that

the correlation between the technology shocks in the two sectors decreases substantially between

the two sub-periods, from 75 percent to 51 percent. Interestingly, however, unlike for technology

(supply) shocks, we �nd that the variances of innovations coming from the preferences (demand)

side have all increased across the sub-periods. This result is true for the output-inventory shock, for

the discount-factor shock, and for the shock to preferences for goods versus services.

Correlations and variance decompositions. The last four columns of Table 9 show that, across

the two sub-periods, the model can reproduce the volatility decline in most macroeconomic aggre-

gates. There are no sizeable changes in the volatility of model�s input or output inventory investment

variables, a result that is generally consistent with the data. The model accurately reproduces the

reduced procyclicality of output inventory investment after 1983.
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Table 8 shows how, in the second sub-period, inventory movements depend more on their own

innovations (in relative terms). As for the other variables, a larger chunk of the volatility in economic

activity (as summarized by the GDP measure) appears to be due to demand-preference shocks: in the

second part of the sample, the share of GDP variance that can be accounted for by non-technological

shocks rises from 13 percent to 31 percent. In the goods sector, technology shocks play a smaller role

in accounting for the variance of input- and output-inventory investment. Finally, the fraction of

variance in �xed investment that is explained by the input-inventory shock declines from 12 percent

to 7 percent in the second sub-period.

5.3. The Role of Inventories in the Great Moderation

Prompted by the preceding results, a natural question is to what extent the reduced volatility of

economic activity in the post-1984 sample is due to a reduction in the volatility of the shocks �

often called the �good luck�hypothesis � or to a change in the economy�s structure?

We begin by observing that our estimated model successfully reproduces the reduction in volatility

across the two sub-periods. In our data, the standard deviation of detrended GDP drops by .82

percentage points between the 1960�1983 and 1984�2004 sub-periods (from 2.16 percentage points

to 1.35). As shown by the last four columns of Table 9, our sub-sample estimates match the volatility

decline almost perfectly, showing a reduction in the standard deviation of GDP of .86 percentage

points. With this in mind, we ask what features of the model contribute to the reduction in volatility?

To answer this question, we partition the elements that can independently a¤ect the implied volatility

of the model variables into the following three sets:

1. Parameters that are determined by using the steady state of the model. Recall that when

we estimate the model across sub-samples, we choose values of �; 
; �; �g, and �s for each

sub-sample that exactly match the average values of the ratios of input inventories to output

and capital investment to output, plus the share of services in GDP.

2. Parameters that measure the unconditional standard deviations of the shocks.

3. Parameters that a¤ect the dynamics of the model around the steady state, and which are

estimated without using information on the steady-state ratios. This parameter set includes

the autocorrelation parameters of the shocks, the inventory depreciation rates, the elasticities

of substitution, the adjustment costs, and the parameters associated with capital utilization.
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Table 10 breaks down how the three sets of parameters above contribute to the reduction in

volatility captured by the model. Using the estimates obtained from the 1960�1983 sample as a

reference point, we change one estimated parameter at a time, setting it to the value estimated

for the 1984�2004 sample. This way, we can measure each parameter�s contribution to the change

in volatility.33 The main result is that most of the reduction in GDP volatility is attributable to

the reduction in the volatility of the underlying shocks � especially of the technology shock in

the goods sector. By themselves, smaller shocks can explain a reduction in GDP volatility of .70

percentage points (as measured by the standard deviation), compared to an estimated total decline

of .82 percentage points. Most of the remainder (.12 percentage points) is attributable to larger

capital-adjustment costs and capacity-utilization costs, as well as the increased importance (share)

of services in the U.S. economy. Interestingly, while the rise of the service-based economy explains a

non-negligible part of the reduced volatility, the net e¤ect of changes in the steady-state parameters

is smaller. In particular, the larger ratio of aggregate capital to goods output o¤sets the e¤ects of

the larger share of the services sector; this result occurs because a larger investment share renders

output inherently more volatile.

What about the role inventories may have played in the Great Moderation? The smaller volatility

of input-inventory shocks accounts for about .01 or .02 percentage points of the total reduction in

volatility, depending on whether we look at GDP or just output of the goods sector. The reduced

ratio of input inventories to goods output accounts for approximately .03 percentage points (.08) of

the decrease in the volatility of GDP (output of the goods sector).

To summarize, our estimated model suggests that reductions in the volatility of the model�s

structural innovations account for most of the reduction in GDP volatility � a result generally

consistent with the �good luck� hypothesis. Structural changes in the model�s parameters have

contributed to the reduction in GDP volatility by a smaller amount, working primarily through

parameter changes that reduced the volatility of �xed investment. We are unable to �nd a signi�cant

role for inventory investment in the Great Moderation � neither reduced volatility of either inventory

shock, nor changes structural parameters associated with inventories, appear to have played much

of a role in the decline in GDP.34

33Of course, because the model decision rules are nonlinear in the model structural parameters, it is possible that
this exercise does not capture appropriately the actual contribution of a variable to the reduction in volatility.
34This conclusion is consistent with Khan and Thomas (2007), who consider how aggregate volatility changes in a

general equilibrium model following a decrease in �xed ordering costs.
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6. Conclusions

The most important lesson of this paper is that an estimated DSGE model can incorporate inventories

and �t the data reasonably well with plausible and interesting estimates of structural parameters that

help characterize the role of input and output inventories. Each type of inventory investment plays

a logically di¤erent role in the model and exhibits di¤erent degrees of volatility and procyclicality.

The model can replicate the observed volatility and cyclicality of both input and output inventory

investment, and particularly the fact that input-inventory investment is more volatile and procyclical

than output-inventory investment. Moreover, the model also can reproduce the countercyclicality of

the input-inventory target ratio, and the relative acyclicality of the output-inventory target ratio.

This �nding represents a step forward relative to previous attempts to model inventories in DSGE

models, especially given our model�s ability to �t the data. Thus, our model provides a new, more

expansive, and data-consistent framework for analyzing the cyclical properties of inventories.

When estimated across two sub-periods, 1960�1983 and 1984�2004, the model captures the

volatility reduction observed in aggregate variables, as well as the decline in procyclicality of output-

inventory investment. However, the model suggests that the bulk of the Great Moderation is ex-

plained primarily by a reduction in the volatility of the technology shock in the goods sector. The

reduction in the volatility of inventory shocks accounts for only a small portion of the decrease in

output volatility. Nevertheless, the model�s framework identi�es several dimensions along which the

economy�s structure changed in an economically important manner, and contributed to the reduction

in GDP volatility. Some of these structural changes are related to inventory behavior and in�uence

the propagation role inventories play in the macroeconomy, but, at best, they have only played a

minor role in accounting for the reduced volatility of output.

These conclusions are based on an estimated two-sector general equilibrium model that includes

novel features such as the distinction between the goods-producing and the services-producing sec-

tors according to their inventory-holding behavior, and the distinction between input and output

inventories. Non-zero inventory depreciation, which in the model provides an incentive to adjust

inventories more in response to shocks, is another novel feature that is empirically important.

Despite the additional complexity, our model precludes an examination of certain aspects of

inventory behavior that may be important to understanding business cycle �uctuations. First, we

eschewed a richer examination of the stage-of-fabrication structure within the goods sector. For

example, simplifying inventories into only two types abstracts from the supply and distribution

chains that now pervade the actual input-output structure of the goods sector and probably play a
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vital role in the propagation of shocks. A second issue is that the model is silent on how markup

variations and nominal features matter for inventory behavior and business cycles. Some inventory

research examines how markup variation or interest rate policies in�uence inventory behavior.35

However, this work with nominal rigidities generally has not incorporated the stage-of-fabrication

inventory distinction in a general equilibrium setting that we have advanced here. Third, we have

sidestepped the micro-founded motivation for �rms�holding of �nished goods (output inventories).

By focusing on the value of output inventories to households through utility and concentrating on

the social planner�s solution, we have not taken up a more detailed examination of the determinants

of a �rm�s decision to hold output inventories in a market environment. We plan to address these

issues in future work, and we hope that others will too.

35See footnote 3 for detailed references on this issue and on supply and distribution chains.
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Appendix

A: Modeling Details

The Model Equations

Below, we summarize the model equations:
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The stochastic processes for the shocks are described in Section 2.6 of the main text. In the �rst equation, the term

AC denotes the total adjustment costs.

The Steady State

After some algebraic manipulations, we can show that the main ratios that describe the steady state of our model are

described by the following equations:
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cg + �F f + �Kgkg + �Ksks + �Mm = 1. (28)

Given speci�c values for the model parameters, equations 23 to ?? can be solved for f; cg; ks; kg, m, and the !=� ratio.

Matching Steady-State Ratios Through Choices of �; �g; �s; �; and 


For each estimated value of �, �, �, �F , and �M , and given calibrated values for �, �Kg, and �Ks, our estimation

procedure aims to exactly match the following steady-state ratios that we take to be the average values obtained from

the data (denoted with a bar):

f = output inventories over goods output

m = input inventories over goods output

kg = capital stock in goods industries over goods output

ks = capital stock in service industries over goods output

y0s = services output over goods output,

where y0s =
!Ys
�Yg

= !
�
ys measures services output in units of goods output.

Given �; �Ks; �Ks; �; �; �; �F ; and �M ; simple algebraic manipulation shows that there is a unique set of values
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for �; �g; �s; �; 
 that satis�es the �ve ratios above, obtained as follows. Given the
�
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�
ratios, we obtain
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From the cg=f ratio, we derive
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The formula for kg=yg can be used to derive

�g =

�
� + (1� �)

�
kg=m

���
(1� � (1� �Kg))

��
kg . (31)

Finally, we need to choose 
 and �s to match the values of ks and y0s: From the formula for ks=y0s ; we derive an

expression for �s:

�s =
1� � (1� �Ks)

�

ks

y0s
. (32)

Last, we need to obtain 
. Using the expressions for ks=f and ks=y0s above, we obtain


 =

�
cg=y0s

�1+�
(!=�)� c���g

�
�c��g + (1� �) f

��
����

�

�+
�
cg=y0s

�1+�
(!=�)� c���g

�
�c��g + (1� �) f

��
����

�

, (33)

where !=� is given by the equation ?? above.

To summarize the material thus far: (1) for given observed values in the data of kg; ks; m; cg; f; and y0s; and (2)

for any possible combination of (�; �Ks; �Ks; �; �; �; �F ; and �M ) ; the values of �; �g; �s; �; and 
 that satisfy

equations 29 to 33 are consistent with the the steady-state values of the ratios kg; ks; m; cg; f; and y0s.

Calculating Steady-state Hours, Output, and Prices

The optimal labor supply schedules satisfy

� = � (1� �g)
Yg
Lg

(34)

� = ! (1� �s)
Ys
Ls
. (35)

A closed-form solution can be calculated only when � = 0: Otherwise, we need to use the following expressions.

From the �rst-order conditions for Cg and YS ; after some algebraic manipulations, we obtain the following formula:

�Yg =

�

cg

 



�
�+ (1� �)

�
cg
f

���
+ (1� 
)

�
�+ (1� �)

�
cg
f

��� ���
�(1+�)

�
!

�

�


1� 


� �
1+�

!�1
. (36)

By the same token, we �nd that:

!Ys = (1� 
)

 



�
�+ (1� �)

�
cg
f

��� 1+�
�

�
1+�

�
!

�

�


1� 


� ��
1+�

+ (1� 
)

!�1
. (37)

34



From the production functions, we know that:

Yg = Lg
�
�k��g + (1� �)m��

g

�� �g
�(1��g) (38)

Ys = Ls

�
Ks

Ys

� �s
1��s

. (39)

Equations 34 through 39 can be then be solved for Lg; Ls; Yg; Ys; !; and � using a non-linear equation algorithm.

B: Data

Most of our data come from the national income and product accounts (NIPA) produced by the U.S. Commerce

Department, Bureau of Economic Analysis (BEA), and obtained from Haver Analytics, Inc. All NIPA data are quarterly.

The real data are expressed in chain-weighted terms (year-2000 dollars). Table B.1 lists the variable names, Haver

mnemonics, and variable descriptions. Our model and data exclude net exports and government spending.

Although the formulas in this appendix suppress the notational details associated with the proper manipulation of

chain-weighted real data, we use the appropriate Tornquist approximation for chain-weighted data in constructing the

actual data, as recommended by Whelan (2002).

The NIPA data classify output by three sectors called goods (g), structures (t), and services (s):

Y = Y g + Y t + Y s:

In contrast, inventory investment, �V , is classi�ed by industry (goods inventories include the agriculture, mining,

and manufacturing industries; structures inventories include the construction industry; and the services sector includes

utilities and trade). Thus, the NIPA output and inventory data do not correspond to the inventory-based sectors of

our model de�nitions of goods and services.

To obtain model-consistent data, we can think of the task as one that condenses the three NIPA sectors into two

by rede�ning and combining the NIPA sector variables as follows. First, express the components of aggregate output

as

Y = (Cg + Ig +�V g) +
�
It +�V t�+ (Csg + Css + Is +�V s) .

There is no household consumption of structures (Ct) because the construction of structures is pure physical capital,

in which we assume each sector invests. Household consumption of services, Cs = Csg+Css, includes two components,

distinguished by a second superscript indicating the appropriate model sector to which the services consumption data

should belong. Thus, Csg represents the consumption of services from industries that distribute goods (utilities and

trade) that we wish to rede�ne as goods consumption. Also, Css includes the service �ow from housing.

Given these de�nitions, we can then write model-consistent goods output as

Y g = (Cg + Csg) +
�
Ig + It + Is

�
+
�
�V g +�V t +�V s� ,
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Table B.1: Variable Names and Data De�nitions

Variable Mnemonic Description
C C Consumption
Cgn CN Consumption of nondurable goods
Cgd CD Consumption of durable goods
Cs CS Consumption of services
Cse CSE Consumption of energy services
I F Fixed investment (including residential)
V ga SF Farm inventories
V gm SNM Manufacturing inventories
V sw SNW Wholesale trade inventories
V sr SNR Retail trade inventories
V o
SIC SNO2 Other inventories, SIC (�xed-weight $1996)
VMUC SNB Mining, utilities, and construction inventories
V o
NAICS SNT Other inventories, NAICS
V CW RES513 Inventory chain-weighted residual
P JC Consumption chain-weighted price index
P s JCS Consumption of services chain-weighted price index
P se JCSE Consumption of energy services chain-weighted price index

Note: These Haver mnemonics are for the nominal data; the real data have an �H�added at the end and, unless
otherwise noted, are in real chain-weighted terms (year-2000 dollars).

and model-consistent services output as

Y s = Css:

The remainder of this appendix explains how each of the relevant variables is de�ned and constructed.

Consumption

NIPA consumption data are classi�ed by the type of good consumed by households,

C = Cgn + Cgd + Cs .

In this equation, goods consumption includes nondurables (gn) plus durables (gd); consumption of services (s) includes

the service �ow obtained from housing. Theoretically, it would be preferable to construct the service �ow from other

consumer durable goods besides housing, rather than use actual expenditures, but this is not done in the NIPA data

(except for automobile leasing, which is implicitly a service yield). Because we are ultimately trying to explain the

volatility, and the change in volatility, of actual GDP data, we use the raw NIPA data instead.

Using the NIPA consumption data to construct model-consistent consumption data, we must reclassify the portion

of consumption data pertaining to NIPA services obtained from the trade and utilities industries that our model

de�nes as goods-producing (Csg) into consumption of goods (Cg). Because the NIPA do not treat energy consumption

(such as electricity) as a good, we must de�ne household energy (e) consumption services as model-consistent goods

consumption: Csg = Csge. Because energy is output consumed as a good obtained from the utilities industry, which

holds inventories, we assume that all types of energy are measurable goods distributed to consumers. In this regard,

electric and natural gas utility �rms are similar to �rms specializing in wholesale and retail trade, which distribute
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�nished goods from goods producers to consumers. Thus, the model-consistent data (denoted by a double tilde) for

services consumption are

ffCs = Cs � Csg ,

and the model-consistent data for goods consumption are

ffCg = Cgn + Cgd + Csg .

Because the underlying NIPA data are based on the type of good consumed, Cgn and Cgd already contain the output

from the retail-trade industry and any output from the wholesale-trade industry that is categorized as consumption

(meaning a �nal sale to consumers, as opposed to an intermediate input into retail trade or back into manufacturing).36

Investment

Because capital is a good, it is logical to de�ne investment as output from the goods sector. However, because our

model has two distinct sectors that each accumulates sector-speci�c capital (and thus has two capital accumulation

equations), the model requires that we construct investment data classi�ed by the type of �rm or industry (sector) in

which the capital is installed. Although the NIPA data do not classify investment by the sector in which it is installed,

the BEA provides other annual data on investment by industry that do, and we use these latter data to divide total

investment into sector-speci�c investment components.37

We de�ne the goods sector to include the seven inventory-holding industries: agriculture, mining, utilities, con-

struction, manufacturing, wholesale trade, and retail trade. Using the BEA data on investment by industry (denoted

by a double hat) for these seven speci�c industries, we de�ne the share (s) of goods investment as

bbs = �bbIg=b̂I� .

These annual-share data are interpolated to obtain a quarterly frequency. Then goods-sector investment data are

described as eeIg = bbsI ,
where I is total �xed investment. The services-sector investment data are

eeIs = �1� bbs� I = I � eeIg
and applied to the actual quarterly data on total �xed investment.

Inventories

According to the NIPA de�nitions, each output sector is associated with at least one inventory-holding industry,

36One way to think of the di¤erent types of �goods� is in terms of their depreciation rates: 0 < �sh < �d < �n <
�so = 1, where superscript sh denotes housing services and so denotes other services (that is, not a �ow from a durable
stock).
37These data can be obtained from http://bea.gov/bea/dn/FA2004/Index.asp.
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V g = V ga + V gn + V gm

V t = V tc

V s = V su + V sw + V sr ,

with industries de�ned as agriculture (a), mining (n), manufacturing (m), construction (c), utilities (u), wholesale

trade (w), and retail trade (r). Thus, to construct model-consistent inventories, we rede�ne the goods sector as the

holder of all inventories: ffV g = V g + V t + V s .

As discussed in the main text, by assumption the services sector holds no inventories (ffV s = 0).38

We further divide total inventories into two types,

ffV g =M + F ,

where M denotes input and F denotes output. Economic theory provides no clear categorical de�nition of input and

output inventories in general equilibrium. We view goods as being produced and distributed along a supply and

distribution chain, so for our model one logical de�nition of output inventories is the last link in the chain, which is

the retail industry: ffM = V sr .

In this case, input inventories are expressed as

eF = V ga + V gn + V gm + V tc + V su + V sw .

In general, all non-retail inventory stocks can be considered inputs into production along the supply chain. According

to the Census of Construction, V tc (inventories in the construction industry of the structures sector) are raw materials

and do not include unsold �nished structures, thus they can be viewed as input inventories. In actuality, some fraction

of the remaining stocks may be sold directly to consumers, and hence should be classi�ed as output inventories, but

we assume this fraction is small.

To obtain a long time series of inventory data, we combine non-farm stocks constructed under two di¤erent

industry classi�cations: SIC (1947�1997) and NAICS (1987�present).39 At this high level of industry de�nition, the

manufacturing, wholesale, and retail inventory data are generally consistent across industry classi�cation schemes, so

we splice these data series without further manipulation. The inventories for all remaining industries (�), however, are

de�ned as follows:

V �
SIC = V o

SIC

V �
NAICS = VMUC + V o

NAICS + V CW ,

where o denotes �other�industries in each classi�cation system; MUC denotes mining, utilities, and construction. CW

38The NIPA make this same assumption, setting output equal to �nal sales in the structures and services sectors and
classifying all inventory investment in the goods sector.
39Farm, or agricultural, inventory stocks on a consistent industry classi�cation are already available for the full

sample period (1947�present).
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denotes the chain-weighted residual for real data (real data on an SIC basis are expressed in �xed-weight 1996 dollars,

and thus have no residual). In splicing the data, we use the SIC stocks through 1997, and then use the growth rates

of the NAICS from 1997 on to extend the SIC data.

Consumption Prices

The prices of goods and services consumption are constructed analogously to the respective quantities of consumption.

Let wse be the nominal expenditure weight for energy services, and wes = (1�wse) be the nominal expenditure weight
for model-consistent (non-energy) services. Then, having calculated the appropriate Tornquist index on the data, the

model-consistent price of services consumption is

ffP s = (1=wes) [P s � wseP se] .

Likewise, let wes be the nominal expenditure weight for model-consistent services, and wg = (1� wes) be the nominal
expenditure weight for model-consistent goods. Then the model-consistent price of goods consumption is

ffP g = (1=wg)

�
P � w

eesffP s

�
.

The ratio of the consumption prices, ffP gffP s

=
�

!
,

equals the ratio of Lagrange multipliers from the model�s �rst-order conditions.

39



References

[1] Ahmed, Shaghil, Andrew Levin, and Beth Anne Wilson. (2004) �Recent U.S. Macroeconomic Stability: Good

Policies, Good Practices, or Good Luck?�Review of Economics and Statistics, 86(3), August, 824�832.

[2] Arias, Andres, Gary D. Hansen, and Lee E. Ohanian. (2006) �Why Have Business Cycle Fluctuations Become

Less Volatile?�National Bureau of Economic Research (Cambridge, MA), Working Paper No. 12079, March.

[3] Baxter, Marianne. (1996) �Are Consumer Durables Important for Business Cycles?�Review of Economics and

Statistics, 78 (1), February, 147�155.

[4] Baxter, Marianne and Robert G. King. (1999) �Measuring Business Cycles: Approximate Band-Pass Filters for

Economic Time Series.�Review of Economics and Statistics, 81 (4), November, 575�593.

[5] Bils, Mark and James A. Kahn. (2000) �What Inventory Behavior Tells Us about Business Cycles.�American

Economic Review, 90 (3), June, 458�481.

[6] Bivin, David. (1988) �The Behavior of Manufacturers�Inventories: 1967�1986.�Journal of Macroeconomics, 10 (1),

Winter, 63�81.

[7] Bivin, David. (1993) �The In�uence of Inventories on Output and Prices: A Stage of Fabrication Approach.�

Journal of Macroeconomics, 15 (4), Fall, 627�651.

[8] Blanchard, Olivier and John Simon. (2001) �The Long and Large Decline in U.S. Output Volatility.�Brookings

Papers on Economic Activity, 2001:1, 135�164.

[9] Blinder, Alan S. and Louis J. Maccini. (1991) �Taking Stock: A Critical Assessment of Recent Research on

Inventories.�Journal of Economic Perspectives, 5 (1), Winter, 73�96.

[10] Boileau, Martin and Marc-Andre Letendre. (2004) �Inventory, Sticky Prices and the Propagation of Nominal

Shocks.�McMaster University (Hamilton, Ontario), Department of Economics Working Paper, April.

[11] Canova, Fabio. (2007) Methods for Applied Macroeconomic Research. Princeton, N.J.: Princeton University Press.

[12] Chang, Yongsung, Andreas Hornstein, and Pierre-Daniel G. Sarte. (2006) �Understanding How Employment

Responds to Productivity Shocks in a Model with Inventories.� Federal Reserve Bank of Richmond Working

Paper No. 06-06, August.

[13] Chirinko, Robert S. (1993) �Business Fixed Investment Spending: Modeling Strategies, Empirical Results, and

Policy Implications.�Journal of Economic Literature, 31 (4), December, 1875�1911.

[14] Christiano, Lawrence J. (1988) �Why Does Inventory Investment Fluctuate So Much?� Journal of Monetary

Economics, 21 (2/3), March�May, 247�280.

[15] Christiano, Lawrence J. (2004) �Lecture Notes.�Advanced Workshop for Central Bankers (Northwestern Univer-

sity).

[16] Christiano, Lawrence J. and Terry J. Fitzgerald. (1989) �The Magnitude of the Speculative Motive for Holding

Inventories in a Real Business Cycle Model.� Federal Reserve Bank of Minneapolis Discussion Paper No. 10,

January.

[17] Coen-Pirani, Daniele. (2004) �Markups, Aggregation, and Inventory Adjustment.�American Economic Review,

94 (5), December, 1328�1353.

40



[18] Cooper, Russell and John C. Haltiwanger. (1990) �Inventories and the Propagation of Sectoral Shocks.� The

American Economic Review, 80 (1), March, 170�190.

[19] Feldstein, Martin S. and Alan Auerbach. (1976) �Inventory Behavior in Durable-Goods Manufacturing: The

Target-Adjustment Model.�Brookings Papers on Economic Activity, 1976 :2, 351�396.

[20] Feroli, Michael. (2002) �An Equilibrium Model of Inventories with Investment-Speci�c Technical Change.�Prince-

ton University, unpublished working paper, September.

[21] Fisher, Jonas D. M. and Andreas Hornstein. (2000) �(S,s) Inventory Policies in General Equilibrium.�Review of

Economic Studies, 67 (1), January, 117�145.

[22] Greenwood, Jeremy, Zvi Hercowitz, and Per Krusell. (1997) �Long-Run Implications of Investment-Speci�c Tech-

nological Change.�American Economic Review, 87 (3), June, 342�362.

[23] Greenwood, Jeremy, Zvi Hercowitz, and Per Krusell. (2000) �The Role of Investment-Speci�c Technological Change

in the Business Cycle.�European Economic Review, 44 (1), January, 91�115.

[24] Hansen, Gary D. (1985) �Indivisible Labor and the Business Cycle.� Journal of Monetary Economics, 16 (3),

November, 309�327.

[25] Herrera, Ana Maria and Elena Pesavento. (2005) �The Decline in U.S. Output Volatility: Structural Changes and

Inventory Investment.�Journal of Business and Economic Statistics, 23(4), October, 462�472.

[26] Hornstein, Andreas and Pierre-Daniel Sarte. (2001) �Sticky Prices and Inventories: Production Smoothing Re-

considered.�Federal Reserve Bank of Richmond Working Paper No. 01-6, March.

[27] Huang, Kevin X. D. and Zheng Liu. (2001) �Production Chains and General Equilibrium Aggregate Dynamics.�

Journal of Monetary Economics, 48 (2), October, 437�462.

[28] Humphreys, Brad R., Louis J. Maccini, and Scott Schuh. (2001) �Input and Output Inventories.� Journal of

Monetary Economics, 47 (2), April, 347�375.

[29] Husted, Steven and Tryphon Kollintzas. (1987) �Linear Rational Expectations Equilibrium Laws of Motion for

Selected U.S. Raw Material Imports.� International Economic Review, October, 28 (3), 651�70.

[30] Ireland, Peter N. (2004) �Technology Shocks in the New Keynesian Model.�Review of Economics and Statistics,

86 (4), November, 923�936.

[31] Irvine, F. Owen. (2005) �Trend Breaks in U.S. Inventory to Sales Ratios.� International Journal of Production

Economics, 93�94 (0), January, Special Issue, 13�23.

[32] Irvine, F. Owen and Scott Schuh. (2005a) �The Roles of Comovement and Inventory Investment in the Reduction

of Output Volatility.�Federal Reserve Bank of Boston Working Paper No. 05-09, July.

[33] Irvine, F. Owen and Scott Schuh. (2005b) �Inventory Investment and Output Volatility.� International Journal

of Production Economics, 93-94 (0), January, Special Issue, 75�86.

[34] Jung, Yongseung and Tack Yun. (2006) �Monetary Policy Shocks, Inventory Dynamics, and Price-Setting Behav-

ior.�Federal Reserve Bank of San Francisco Working Paper 2006-02, August.

[35] Kahn, James A. (1987) �Inventories and the Volatility of Production.�The American Economic Review, 77 (4),

September, 667�679.

41



[36] Kahn, James A. and Margaret M. McConnell. (2002) �Has Inventory Volatility Returned? A Look at the Current

Cycle.�Current Issues in Economics and Finance, 8 (5), Federal Reserve Bank of New York, May.

[37] Kahn, James A. and Margaret M. McConnell. (2003) �Inventories and the Stabilization of the U.S. Economy.�

Unpublished working paper, Federal Reserve Bank of New York, December.

[38] Kahn, James A. and Mararet M. McConnell. (2005) �Making Sense of Inventory-Sales Ratios.� Unpublished

working paper, Federal Reserve Bank of New York, August.

[39] Kahn, James A., Margaret M. McConnell, and Gabriel Perez-Quiros. (2002) "On the Causes of the Increased

Stability of the U.S. Economy." Economic Policy Review, 8 (1), Federal Reserve Bank of New York, May, 183�202.

[40] Khan, Aubhik, and Julia K. Thomas. (2007) �Inventories and the Business Cycle: An Equilibrium Analysis of (S,

s) Policies.�The American Economic Review, 97 (4), September, 1165�88.

[41] Kimball, Miles S. (1994) �Proof of Consumption Sector Neutrality.� Unpublished working paper, University of

Michigan, August.

[42] Kydland, Finn E. and Edward C. Prescott. (1982) �Time to Build and Aggregate Fluctuations.�Econometrica,

50 (6), November, 1345�1370.

[43] Leduc, Sylvain and Keith Sill. (2006) �Monetary Policy, Oil Shocks, and TFP: Accounting for the Decline in U.S.

Volatility.�Board of Governors of the Federal Reserve System, International Finance Discussion Paper No. 873.

[44] Lee, Donghoon and Kenneth I. Wolpin. (2006) �Intersectoral Labor Mobility and the Growth of the Service

Sector.�Econometrica, 74 (1), January, 1�46.

[45] Lovell, Michael C. (1961) �Manufacturers�Inventories, Sales Expectations, and the Acceleration Principle.�Econo-

metrica, 29 (3), July, 293�314.

[46] Maccini, Louis J. and Adrian Pagan. (2007) �Exploring the Role of Inventories in Business Cycles.�Unpublished

working paper, John Hopkins University.

[47] Marquis, Milton and Bharat Trehan. (2005a) �Accounting for the Secular �Decline�of U.S. Manufacturing.�Federal

Reserve Bank of San Francisco Working Papers in Applied Economic Theory and Econometrics No. 2005-18,

September.

[48] Marquis, Milton and Bharat Trehan. (2005b) �On Using Relative Prices to Measure Capital-speci�c Technological

Progress.�Federal Reserve Bank of San Francisco Working Papers in Applied Economic Theory and Econometrics

No. 2005-02.

[49] McCallum, Bennett T. and Marvin T. Goodfriend. (1987) �Demand for Money: Theoretical Studies.�In The New

Palgrave Dictionary of Economics, edited by P. Newman, M. Milgate, and J. Eatwell, 775-781. Houndmills, UK:

Palgrave Macmillan Publishers.

[50] McConnell, Margaret M. and Gabriel Perez-Quiros. (2000) �Output Fluctuations in the United States: What Has

Changed Since the Early 1980s?�The American Economic Review, 90 (5), December, 1464�1476.

[51] Pindyck, Robert S. (1994) �Inventories and the Short-Run Dynamics of Commodity Prices.�RAND Journal of

Economics, 25 (1), Spring, 141�159.

[52] Ramey, Valerie A. (1989) �Inventories as Factors of Production and Economic Fluctuations.�The American Eco-

nomic Review, 79 (3), June, 338�354.

42



[53] Ramey, Valerie A. and Daniel J. Vine. (2004) �Why Do Real and Nominal Inventory-Sales Ratios Have Di¤erent

Trends?�Journal of Money, Credit, and Banking, 36 (5), October, 959�963.

[54] Ramey, Valerie A. and Daniel J. Vine. �Declining Volatility in the U.S. Automobile Industry,� The American

Economic Review, 96 (4), December, 1876�1889.

[55] Ramey, Valerie A. and Kenneth D. West. (1999) �Inventories.� In Handbook of Macroeconomics, Volume 1B,

edited by John B. Taylor and Michael Woodford, 863�923. Amsterdam: Elsevier Science.

[56] Rogerson, Richard. (1988) �Indivisible Labor, Lotteries and Equilibrium.�Journal of Monetary Economics, 21 (1),

January, 3�16.

[57] Rossana, Robert J. (1990) �Interrelated Demands for Bu¤er Stocks and Productive Inputs: Estimates for Two-

Digit Manufacturing Industries.�Review of Economics and Statistics, 72 (1), February, 19�29.

[58] Stock, James H. and Mark W. Watson. (2003) �Has the Business Cycle Changed and Why?� In NBER Macro-

economics Annual 2002, edited by Mark Gertler and Kenneth Rogo¤, 159�218. Cambridge and London: MIT

Press.

[59] Smets, Frank and Raf Wouters. (2003) �An Estimated Dynamic Stochastic General Equilibrium Model of the

Euro Area.�Journal of the European Economic Association, 1 (5), September, 1123�1175.

[60] Wen, Yi. (2005a) �The Multiplier: A General equilibrium Analysis of Multi-Stage-Fabrication Economy with

Inventories.�Federal Reserve Bank of St. Louis Working Paper No. 2005-046A, June.

[61] Wen, Yi. (2005b) �Durable Good Inventories and the Volatility of Production: Explaining the Less Volatile U.S.

Economy.�Federal Reserve Bank of St. Louis Working Paper No. 2005-047A, June.

[62] Wen, Yi. (2005c) �Understanding the Inventory Cycle.�Journal of Monetary Economics, 52 (8), November, 1533�

1555.

[63] Whelan, Karl. (2002) �A Guide to U.S. Chain Aggregated NIPA Data.�Review of Income and Wealth, 48 (2),

June, 217�233.

[64] Whelan, Karl. (2003) �A Two-Sector Approach to Modeling U.S. NIPA Data.� Journal of Money, Credit, and

Banking, 35 (4), August, 627�656.

43



Table 1: Sector De�nitions and Output Shares

Model Sectors NIPA Sectors and Industries (NAICS) 2000 GDP Share
Sector Industry (in percent)

Agriculture 1.0
Goods (35.1%) Mining 1.2

Manufacturing 14.5
Goods (59.3%) Structures (9.6%) Construction 4.4
[67.6% of private sector] Utilities 1.9

Wholesale Trade 6.0
Retail Trade 6.7
Transportation 3.1

Services (55.3%) Information 4.7
Services (28.4%) FIREL 19.7
[32.4% of private sector] Services 11.6

Education & Health 6.9
Leisure 3.6

Public (excluded) (12.3%) Government 12.3

Notes: FIREL denotes Finance, Insurance, Real Estate, and Leasing.

Table 2: Inventory Stock De�nitions and Shares

Model Inventories NIPA Inventories (NAICS) 2000 Share
Input & Output Stage-of-Fabrication Industry (in percent)

Agriculture 8.6
Mining, utilities, construction (MUC) 2.9

Raw Materials (18.9%) Mining n.a.
Utilities n.a.

Input (73.4%) Construction n.a.
Other 7.4
Manufacturing 31.1
Materials and supplies 11.0

Work-in-process (54.5%) Work-in-process 8.9
Finished goods 11.1

Wholesale trade 23.4
Output (26.6%) Finished goods (26.6%) Retail trade 26.6
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Table 3: Target Steady-State Ratios of the Model

Full sample 1960�1983 1984�2004
F=Yg 0.32 0.29 0.34
M=Yg 1.12 1.34 1.01
Kg=Yg 6.89 7.73 6.54
Ks=Yg 8.36 6.74 9.32
Y 0s=Yg 0.75 0.53 0.81

Notes: Output is expressed in quarterly units. The last row is the ratio of nominal output of
services over nominal output of the goods sector. The capital output ratios are calculated from the

investment-to-output ratios, assuming depreciation rates of �Kg = :02 and �Ks = :02.

Table 4: Prior Distributions and Parameter Estimates, Full Sample

Prior Full Sample
Mean Distribution St.dev. Mean 5% 95%

�F 0.020 beta 0.01 0.0784 0.0505 0.1088
�M 0.020 beta 0.01 0.0204 0.0114 0.0316
1 + � 1.500 norm 0.5 1.0691 0.6290 1.5285
1 + � 1.500 norm 0.5 3.3277 2.8768 3.8174
1 + � 1.500 norm 0.5 1.0525 1.0290 1.0915

 F = (1 +  F ) 0.500 beta 0.2 0.0242 0.0143 0.0367
 Kg=

�
1 +  Kg

�
0.500 beta 0.2 0.4722 0.2422 0.8103

 Ks= (1 +  Ks) 0.500 beta 0.2 0.2523 0.1608 0.4180
 M= (1 +  M ) 0.500 beta 0.2 0.0183 0.0101 0.0289
�Kg=

�
1 + �Kg

�
0.500 beta 0.2 0.9133 0.8130 0.9785

�Ks= (1 + �Ks) 0.500 beta 0.2 0.5586 0.3446 0.7653
�g 0.750 beta 0.1 0.8674 0.8287 0.9028
�B 0.750 beta 0.1 0.8839 0.8428 0.9203
�F 0.750 beta 0.1 0.8838 0.7803 0.9576
�
 0.750 beta 0.1 0.8173 0.7556 0.8761
�M 0.750 beta 0.1 0.9381 0.9104 0.9619
�s 0.750 beta 0.1 0.9343 0.9021 0.9611

�g 0.02 invg Inf 0.0175 0.0149 0.0205
�B 0.02 invg Inf 0.0187 0.0142 0.0250
�F 0.01 invg Inf 0.0032 0.0025 0.0039
�
 0.01 invg Inf 0.0056 0.0047 0.0066
�M 0.10 invg Inf 0.0944 0.0740 0.1193
�s 0.01 invg Inf 0.0142 0.0114 0.0178
�g;s 0.50 norm 0.25 0.7115 0.6352 0.7771

45



Table 5: Values of the Share Parameters Implied by the Estimation Results

Full sample 1960�1983 1984�2004
� 0.9625 0.9716 0.9776

 0.4939 0.5562 0.4837
� 0.9976 0.9958 0.9969
�g 0.2305 0.2602 0.2217
�s 0.3191 0.3653 0.3354

Table 6: Variance Decompositions of the Model, Full Sample

Full Sample
�g �� �F �
 �M �scYg 78.9 16.1 1.5 1.0 2.5 0.0bYs 58.3 4.0 0.0 11.5 0.4 25.7eI 51.1 42.1 0.1 0.7 6.0 0.0g�F 11.9 4.2 81.7 0.2 2.1 0.0g�M 16.5 16.0 0.2 0.0 67.3 0.0cCg 77.5 3.1 4.9 9.8 4.7 0.0

\GDP 84.3 11.3 0.4 0.1 1.2 2.8

Notes: For each variable, the columns indicate the fractions of the total variance explained by each
shock. Variables with a hat are scaled by their steady state value. Variables with a tilde are scaled

by steady state goods output.
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Table 7: Parameter Estimates, Subsamples

Prior 1960:1�1983:4 1984:1�2004:4
Mean 5% 95% Mean 5% 95%

�F 0.020 beta 0.01 0.0604 0.0351 0.0883 0.0426 0.0207 0.0688
�M 0.020 beta 0.01 0.0187 0.0105 0.0285 0.0224 0.0124 0.0362
1 + � 1.500 norm 0.5 0.9783 0.5163 1.4586 1.1940 0.5364 1.8500
1 + � 1.500 norm 0.5 3.0918 2.6475 3.5884 3.1426 2.8101 3.6231
1 + � 1.500 norm 0.5 0.9626 0.9309 0.9855 1.1809 1.0910 1.2863

 F = (1 +  F ) 0.500 beta 0.2 0.0214 0.0113 0.0347 0.0397 0.0214 0.0610
 Kg=

�
1 +  Kg

�
0.500 beta 0.2 0.4199 0.2149 0.8257 0.4956 0.2852 0.8160

 Ks= (1 +  Ks) 0.500 beta 0.2 0.3335 0.1530 0.5936 0.3631 0.2165 0.5396
 M= (1 +  M ) 0.500 beta 0.2 0.0278 0.0145 0.0440 0.0161 0.0073 0.0278
�Kg=

�
1 + �Kg

�
0.500 beta 0.2 0.8734 0.7396 0.9653 0.8680 0.7153 0.9673

�Ks= (1 + �Ks) 0.500 beta 0.2 0.3047 0.1168 0.5120 0.8002 0.5960 0.9463
�g 0.750 beta 0.1 0.8496 0.8035 0.8943 0.9034 0.8551 0.9461
�B 0.750 beta 0.1 0.8780 0.8270 0.9210 0.9004 0.8577 0.9379
�F 0.750 beta 0.1 0.9244 0.8306 0.9774 0.9121 0.8439 0.9655
�
 0.750 beta 0.1 0.8314 0.7505 0.9059 0.8181 0.7315 0.8974
�M 0.750 beta 0.1 0.9547 0.9337 0.9714 0.9707 0.9551 0.9835
�s 0.750 beta 0.1 0.9341 0.8956 0.9677 0.9460 0.9123 0.9725

�g 0.02 invg Inf 0.0224 0.0188 0.0269 0.0142 0.0111 0.0183
�B 0.02 invg Inf 0.0207 0.0150 0.0279 0.0235 0.0157 0.0351
�F 0.01 invg Inf 0.0035 0.0026 0.0046 0.0047 0.0033 0.0065
�
 0.01 invg Inf 0.0053 0.0042 0.0069 0.0056 0.0044 0.0074
�M 0.10 invg Inf 0.1340 0.1016 0.1769 0.1071 0.0816 0.1418
�s 0.01 invg Inf 0.0159 0.0123 0.0215 0.0145 0.0111 0.0193
�g;s 0.50 norm 0.25 0.7565 0.6592 0.8345 0.5144 0.3572 0.6497
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Table 8: Variance Decompositions, Subsamples

1960�1983
�g �� �F �
 �M �scYg 82.0 11.3 1.4 0.5 4.8 0.0bYs 62.1 2.4 0.0 15.9 1.1 18.6eI 55.9 30.8 0.1 1.0 12.2 0.0g�F 14.1 5.1 79.1 0.1 1.7 0.0g�M 20.3 14.6 0.2 0.0 64.9 0.0cCg 77.0 3.3 4.2 6.8 8.7 0.0

\GDP 87.3 8.3 0.4 0.2 2.6 1.2

1984�2004
�g �� �F �
 �M �scYg 62.7 25.8 4.0 1.7 5.8 0.0bYs 38.6 7.4 0.1 9.3 0.7 43.9eI 32.0 60.6 0.1 0.3 7.0 0.0g�F 2.3 3.4 93.9 0.0 0.4 0.0g�M 9.4 24.5 0.2 0.0 65.9 0.0cCg 68.9 3.6 12.2 9.4 5.7 0.2

\GDP 69.3 20.7 1.2 0.0 2.7 6.1
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Table 9: Properties of the Estimated Model: Correlations and Standard Deviations

Full sample 1960�1983 1984�2004
Standard deviation Model Data Model Data Model Data

\GDP 0.0167 0.0183 0.0216 0.0216 0.0134 0.0135cYg 0.0228 0.0297 0.0281 0.0349 0.0186 0.0223bYs 0.0132 0.0067 0.0156 0.0076 0.0117 0.0056eI 0.0116 0.0139 0.0135 0.0161 0.0092 0.0108g�F 0.0045 0.0037 0.0051 0.0039 0.0055 0.0032g�M 0.0076 0.0068 0.009 0.0068 0.0068 0.0066

CorrelationscYg;g�F 0.3183 0.4175 0.3396 0.4698 0.2627 0.2798cYg; g�M 0.4517 0.6404 0.427 0.6574 0.4122 0.6199

�\GDP;]�2F 0.4441 0.4163 0.5017 0.4661 0.3408 0.3702

�\GDP; �̂2M 0.5557 0.5324 0.5669 0.5544 0.6016 0.4546

cYg; \Fg=Cg 0.1133 0.104 0.0736 0.1067 -0.0328 0.0348cYg; \Mg=Yg -0.3015 -0.8923 -0.3465 -0.9205 -0.2298 -0.8049

cYg; bYs 0.5573 0.6849 0.6215 0.7566 0.4675 0.5066
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Table 10: Accounting for the Decline in Volatility

Value Contribution to change (�100)
Parameter 1960-1983 1984-2004 �

�
\GDP

�
�
�cYg� �

� bYs� �
�eI�

�F 0.0604 0.0426 0:00 0:00 0:00 0:00
�M 0.0187 0.0224 0:00 0:02 0:00 0:02
1 + � 0.9783 1.194 0:00 0:00 0:00 0:00
1 + � 3.0918 3.1426 0:00 0:00 0:00 0:00
1 + � 0.9626 1.1809 0:02 �0:04 0:04 �0:12

 F = (1 +  F ) 0.0214 0.0397 �0:01 �0:02 0:00 0:00
 Kg=

�
1 +  Kg

�
0.4199 0.4956 �0:06 �0:09 0:00 �0:11

 Ks= (1 +  Ks) 0.3335 0.3631 �0:02 �0:03 �0:01 �0:05
 M= (1 +  M ) 0.0278 0.0161 0:04 0:07 0:00 0:00
�Kg=

�
1 + �Kg

�
0.8734 0.868 0:01 0:01 0:00 0:01

�Ks= (1 + �Ks) 0.3047 0.8002 �0:12 �0:09 �0:16 �0:12
All estimated parameters �0:13 �0:17 �0:14 �0:36

F=Yg 0.2881 0.3397 0:01 0:02 0:00 0:00
M=Yg 1.3396 1.0148 �0:03 �0:08 0:00 �0:03

(Kg +Ks) =Yg 14.47 15.86 0:17 0:25 �0:02 0:22
Y 0s=Yg 0.5331 0.8061 �0:15 0:00 �0:03 0:00

All steady state parameters �0:03 0:20 �0:06 0:20

�F 0.0035 0.0047 0:00 0:02 0:00 0:00
�M 0.1340 0.1071 �0:01 �0:02 0:00 �0:03
�g 0.0224 0.0142 �0:59 �0:81 �0:13 �0:25

All shocks �0:70 �0:77 �0:27 �0:16

All parameters and shocks �0:82 �0:94 �0:39 �0:42

Notes: Columns 2 and 3 indicate the estimated value of the parameter in the �rst column in each
sub-sample. In the last four columns, we take the period 1960�1983 as the baseline period and

change each parameter to its 1984�2004 value to account for its contribution to reducing volatility.
The columns indicate, for each variable, the change in the standard deviation (times 100) due to
the change in that parameter. Two important caveats are that: (1) standard deviations are not
additive; (2) the e¤ects of each model parameter are not independent from the values of other

model parameters. For this reason, the values in each column do not add up to the last value listed
in the column.
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Figure 1 
Output and Investment Data, by Sector. 
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Notes: Solid lines: Goods sector; Dashed lines: Services sector. Shaded regions indicate NBER 
recession dates. 
 
 
 

Figure 2 
Input and Output Inventory Data 
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Notes: Shaded regions indicate NBER recession dates. 



Figure 3 
Variables Used in Estimation 
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Notes: Variables with a hat are scaled by their steady-state values. Variables with a tilde are 

scaled by steady-state output in the goods sector.



Figure 4 
Impulse Responses of the Estimated Model  

Sectoral output, inventory and fixed investment (scaled by goods output), consumption. 
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Notes: Each row shows the impulse responses to an estimated one-standard-deviation shock. 
Ordinate: Time horizon. Coordinate: Deviation from baseline, multiplied by one hundred.  
Variable with a hat are scaled by their steady state value. Variables with a tilde are scaled by 
steady state output in the goods sector. 
 



 
Figure 5 

Impulse Responses of the Estimated Model to Selected Shocks  
GDP and inventory-to-target ratios 
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Notes: Each row shows the impulse responses to an estimated one-standard-deviation shock. 
Ordinate: Time horizon. Coordinate: Deviation from baseline, multiplied by one hundred. 
 
 
 



Figure 6 
Orthogonalized Impulse Responses of the Estimated Model, Comparison with VAR. 
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Notes: VAR based on actual data (dashed lines, with two lags and 95% bootstrapped confidence 
bands) and model. Each row represents one shock. Both sets of impulse responses have been 
orthogonalized in the same order. Shocks are one standard deviation. Ordinate: Time horizon. 
Coordinate: Deviation from baseline, multiplied by one hundred. Variables with a hat are scaled 
by their steady-state values. Variables with a tilde are scaled by steady-state output in the 
goods sector. 
 
 



 
Figure 7 

Impulse Responses to a Favorable Technology Shock in the Goods Sector 
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Notes: Responses to an estimated one-standard-deviation technology shock in the goods sector. 
Ordinate: Horizon in quarters. Coordinate: Deviation from baseline, multiplied by one hundred. 
Output is scaled by its steady-state value. Inventory investment and fixed investment are scaled 
by steady-state output in the goods sector, so that their impulse responses measure the growth 
contribution to goods output. 
 

 
 




