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1 Introduction

This paper presents a new method for identifying the effect of an endogenous regressor

in linear models of time-series data. The method is applicable in cases where proper instru-

ments are not available. Identi�cation derives from generalized autoregressive conditional

heteroskedasticity (GARCH) in the model's error terms. Relative to the literature basing

identi�cation on the GARCH structure, this paper's methodology both generalizes and sim-

pli�es the existing work. Regarding the former, the need for a constant covariance between

errors is relaxed to allow for time variation. Concerning the latter, identi�cation does not

depend on all of the structural parameters from the GARCH model, rather, on only two com-

posite nuisance parameters. Given the reliance on GARCH errors, potential applications for

this identi�cation method are found in the asset pricing literature. This paper focuses on

testing the capital asset pricing model (CAPM) of Sharpe (1964) and Lintner (1965). An

updated version of the test statistic proposed by Shanken (1987) is derived to recognize not

only the latent nature of the true market return as argued by Roll (1977), but also the likely

endogeneity of any observable proxy.

The proposed identi�cation method is implemented using either OLS and standard uni-

variate GARCH and autoregressive moving average (ARMA) models, or generalized method

of moments (GMM). A Monte Carlo study of the GMM estimator is provided. An empir-

ical investigation considers the premise that observable proxies of the true market return

are endogenous regressors and provides supporting evidence for this assertion. This paper's

methodology is then used to test a conditional version of the CAPM in the spirit of Shanken

(1987) and Kandel and Stambaugh (1987). The result is that the CAPM is rejected if the cor-

relation between innovations to an equal-weighted NYSE/AMEX proxy and the true market

return exceeds 0:62.3 The maximum correlation drops to 0:49 if a value-weighted proxy is
3The general intuition behind this test is that if the statistical inef�ciency of a given proxy to the true market
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used instead.

Let Yt =
h
Y1;t Y2;t

i0
be a vector of endogenous variables, �t =

h
�1;t �2;t

i0
a vector of

unobservable shocks, andXt a vector of predetermined covariates that can include lags of the

endogenous variables. De�ne St�1 to be the sigma �eld generated by Xt and its past values,

as well as past values of �t.4 Consider the following model:

Y1;t = X
0

t�1 + Y2;t
 + �1;t; (1)

Y2;t = X
0

t�2 + �2;t: (2)

Equations (1) and (2) de�ne a triangular system. Assume that E
�
�t j St�1

�
= 0. The mo-

ments E
�
Xt�2;t

�
= 0 identify equation (2). The moments E

�
Xt�1;t

�
= 0 alone, however,

do not identify equation (1). If, in addition to these moments, E
�
�1;t�2;t j St�1

�
= 0, then

equation (1) is identi�ed and can be estimated by OLS. Alternatively, if some element of

the vector �1 is zero while the corresponding element in �2 is nonzero, then equation (1) is

identi�ed by instrumental variables (IV).

This paper considers identifying equation (1) by restricting the conditional second mo-

ments of �t. Assume E
�
�t�

0
t j St�1

�
= Ht, where Ht is parameterized according to the

diagonal BEKK model of Engle and Kroner (1995).5 As a vector generalization of the mul-

tivariate GARCH model, this parameterization offers a discrete approximation to a diffusion

process without jumps, thus linking the identi�cation result in this paper to modern �nance

theory.6 Provided additional conditions hold, the zero restrictions imposed by the diagonal

return is gauged to be suf�ciently strong, then the inef�ciency of the true market return may be correctly inferred
and, as a result, the CAPM rejected.

4The vectorXt can be assumed to also contain weakly exogenous elements (see Engle, Hendry, and Richard,
1983, for a de�nition of weak exogeneity). Such an assumption requires St�1 to be rede�ned so as not to include
these elements. Furthermore, any weakly exogenous elements of Xt must be uncorrelated with �t.

5The BEKK model guarantees positive de�niteness of Ht under very mild conditions.
6See Nelson (1992).
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BEKK model grant identi�cation. Examples of these additional conditions include a covari-

ance stationary process for Ht and a �nite fourth moment for �2;t.

The problem in identifying equation (1) arises because there are too few moment condi-

tions relative to the number of structural parameters. Assuming E
�
�t�

0
t j St�1

�
to be a fully

general GARCH process fails to remedy this problem because such an assumption does not

deliver additional moment conditions without additional structural parameters.7 However,

restricting some of these structural parameters to be zero via the diagonal model results in

additional moment conditions suf�cient for identi�cation in an analogous fashion to restrict-

ing certain elements of the vector �1 to be zero in equation (1). Furthermore, the diagonality

imposed on Ht, which represents the key identifying assumption of this paper, is testable.

When the estimator for the triangular system is GMM, the J statistic provides a joint test of

whether �t is conditionally mean zero and whetherHt is properly speci�ed. The �2 difference

test of Newey and West (1987) applied to the moments de�ning Ht tests the �t of Ht alone.

A rejection from either test speaks directly against the assumptions identifying equation (1).

This paper is organized into six sections. Section 1.1 shows how the triangular system

relates to the CAPM, while section 1.2 provides an overview of the identi�cation method and

how this method extends the current literature. Section 2 discusses the necessary conditions

for identi�cation and justi�es the GARCH structure. Section 3 describes two possible esti-

mation techniques. Section 4 conducts a Monte Carlo study of the proposed GMM estimator.

Section 5.1 develops a test statistic for the CAPM that recognizes the possible endogeneity

of observable market proxies. Using the identi�cation and estimation techniques developed

in sections 2 and 3, section 5.2 provides empirical evidence supporting this endogeneity.

Section 5.3 presents the results of the CAPM test, and section 6 concludes.
7See Proposition 2.3 of Engle and Kroner (1995) for a description of the most general (where generality is

determined by the number of cross-equation restrictions being imposed) BEKK model. For a bivariate model,
full generality speci�es Ht with 18 structural parameters.
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1.1 The CAPM

This section motivates the triangular system in �nancial economics. The application is a

conditional test of the CAPM. Assume there exists an observable risk-free rate. De�ne Y1;t as

the excess return on an arbitrarily chosen security, and let Y2;t be an observable proxy of the

true excess market return.8 Finally, de�neXt as a vector of instruments that forecast security

returns.9 Consider the model

Y1;t = X
0

t� + �2;t
 + �1;t; (3)

where �2;t is the shock to equation (2).10 Continue to assume that E
�
�t j St�1

�
= 0.

The model of equation (3) has two salient features. First, it decomposes security returns

into predictable and unpredictable components. Second, it prices the �rst security return

relative to a single factor, the unpredictable component of the excess market return proxy.

This latter feature relates equation (3) to a conditional version of the CAPM. Substituting

equation (2) into (3) and simplifying yields equation (1), with �1 = � � �2
.

Under the CAPM, the true market return is mean variance ef�cient (MVE). As �rst noted

by Roll (1977), any observable proxy for the true market return may or may not be MVE.

Suppose the given proxy is not MVE.11 In this case, shocks affecting the proxy could be

correlated with shocks affecting other security returns through, for example, unanticipated

changes to either international liquidity or investor preferences for nontraded assets.12 This
8Excess returns are measured relative to the risk-free rate.
9As might be expected, the literature on predicting asset returns is long. See Ferson, Sarkissian, and Simin

(2003) for a review of the proposed instruments and a discussion of the potential shortcomings these instruments
face.
10Ferson (1990) considers models in the general form of equation (3).
11Works by such authors as Roll (1980), Gibbons (1982), Jobson and Korkie (1982), Shanken (1987), Kandel

and Stambaugh (1987), Gibbons, Ross, and Shanken (1987), Zhou (1991), and MacKinlay and Richardson
(1991) reject the ef�ciency of various market index proxies.
12Miller and Scholes (1972) note the possibility of a nonzero covariance between shocks affecting individual
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correlation renders the proxy an endogenous regressor in equation (1) and OLS unsuitable

for estimating 
. Furthermore, IV is complicated by the dif�culty of �nding an instrument

correlated with the proxy but not the security.

If E
�
�t�

0
t j St�1

�
= Ht, where Ht is parameterized by the diagonal BEKK model, then

equation (1) is identi�ed. Such a parameterization merely allows the individual elements

of the conditional covariance matrix to display ARMA properties. While these properties

do not arise from any economic theory, they do offer a "parsimonious approximation to the

form of heteroskedasticity typically encountered with economic [and �nancial] time-series

data" (Bollerslev, Engle, and Wooldridge, 1988, p. 119). Bollerslev, Engle, and Wooldridge

(1988), in their study of a CAPM with time-varying covariances, �nd the conditional covari-

ance matrix of asset returns to be strongly autoregressive. They further note that any "cor-

rectly speci�ed intertemporal asset pricing model ought to take this observed heteroskedastic

nature of asset returns into account" (p. 123). Ferson (1985), Ferson, Kandel, and Stambaugh

(1987), and Bodurtha and Mark (1991) make similar assertions. This paper extends these au-

thors' argument by demonstrating how the GARCH structure relates to consistent estimation

of an individual security's sensitivity to a chosen market proxy.

Of course, devising a means for consistently estimating the relationship between individ-

ual security returns and a chosen market proxy does nothing to avoid Roll's (1977) statement

that "the [CAPM] theory is not testable unless the exact composition of the true market

portfolio is known and used in the tests." Fortunately, as demonstrated by Shanken (1987),

estimates of the relationship between individual security and proxy still play a role in testing

the CAPM, conditional on a prior belief about the correlation between the true market return

and the proxy. The empirical application in this paper is dedicated to performing such a test.

Kandel and Stambaugh (1987) discuss a similar testing strategy. Their results serve as an

returns and the market proxy. Fama, Fisher, Jensen, and Roll (1969) �nd empirical support for a nonzero
covariance between the market proxy and shocks to individual returns in the months preceding a split.

6



additional means of comparison.

1.2 Overview

This paper explores the conditions that identify equation (1) in the case where �t j St�1 �

id (0; Ht).13 The individual elements of the conditional covariance matrixHt are parameter-

ized as

h11;t =
�
c21 + c22

�
+
�
a211;2

�
�21;t�1 +

�
b211;2

�
h11;t�1; (4)

h12;t = (c2c3) +
�
a11;2a22;2

�
�1;t�1�2;t�1 +

�
b11;2b22;2

�
h12;t�1; (5)

and

h22;t =
�
c23
�
+
�
a222;1 + a222;2

�
�22;t�1 +

�
b222;1 + b222;2

�
h22;t�1: (6)

Equations (4)�(6) illustrate the restrictions a diagonal BEKKmodel imposes onHt. Focusing

attention on equation (5), the conditional covariance of �1;t�1 and �2;t�1 does not depend on

any of the predetermined covariates from either equation (4) or (6). For example, �21;t�1,

�22;t�1, h11;t�1, and h22;t�1are all excluded as possible explanatory variables. In equation (6),

the conditional variance of �2;t does not depend on any of the predetermined covariates from

either equation (4) or (5), since the variables �21;t�1, �1;t�1�2;t�1, h11;t�1, and h12;t�1 are all

omitted. These zero restrictions imposed on the set of possible explanatory variables for

h12;t and h22;t are what identify 
 in equation (1) of the triangular system. Speci�cally, these

restrictions identify periods of heightened volatility in �2;t relative to its unconditional mean,

and these periods serve as an instrument for Y2;t.

Notice the parallel between the identi�cation approach described above and the common

method of imposing zero restrictions on individual elements of the vector �1 in equation (1).

The identi�cation approach in this paper transfers the necessary zero restrictions away from
13id means identically distributed.
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the conditional mean equations (the �rst moments) and onto the conditional covariance ma-

trix (the second moments). Justifying these restrictions are the empirical �ndings that support

the univariate GARCH(1,1) model among the best predictors of stock market volatility and

the link between GARCH and continuous time diffusion processes.14 In constrast to identi�-

cation through zero restrictions imposed on �1, basing identi�cation on the zero restrictions

in equations (4)�(6) has the bene�t of being testable. Equations (4)�(6) de�ne an entire auto-

covariance process for vech (�t�0t).15 The �t of that process can be tested at lags t� l, where

l > 1.

The role second-moment restrictions play in identi�cation has a long and established

history. Early works by Philip Wright (1928) and Sewall Wright (1921) recognize that in-

creases in the variance reduce the bias inherent in simultaneous equations estimated by OLS.

More recent contributions include Klein and Vella (2003), who show that a speci�c semipara-

metric functional form of multiplicative heteroskedasticity identi�es the triangular system.

Works by King, Sentana, and Wadhwani (1994), Sentana and Fiorentini (2001), and Lew-

bel (2004) discuss identi�cation methods that require h12;t = c.16 Given equation (5), this

paper's methodology generalizes these works by allowing the conditional covariance to be

time-varying. In addition, identi�cation in this paper does not require a speci�c distributional

assumption for �t j St�1, as in King et al. (1994) and Sentana and Fiorentini (2001).

The current literature that bases identi�cation on the GARCH structure also requires full

identi�cation of that structure. King et al. (1994), Engle and Kroner (1995), Sentana and

Fiorentini (2001) and Rigobon (2002), all serve as examples. In contrast, the method de-
14A diagonal bivariate GARCH model treats each conditional variance and the conditional covariance as a

univariate GARCH(1,1) process�see equations (4)�(6).
15The vech (�) operator stacks the lower triangle of an (n� n) matrix into an ([n (n+ 1) =2]� 1) column

vector.
16King et al. (1994) consider a dynamic version of Ross' (1976) arbitrage pricing theory (APT) as a general-

ization of the single-factor model discussed in section 1.1.
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scribed in this paper requires identi�cation of only two nuisance parameters

�12 = a11;2a22;2 + b11;2b22;2

and

�22 = a222;1 + a222;2 + b222;1 + b222;2;

both composite functions of the parameters governing the ARCH and GARCH effects in

equations (5) and (6), respectively. This paper's identi�cation result, therefore, economizes

on the number of parameters that need to be considered from the GARCH process.

2 Identi�cation

Consider the triangular system

Y1;t = X
0

t�10 + Y2;t
0 + �1;t; (7)

and

Y2;t = X
0

t�20 + �2;t: (8)

Let �10 refer to the true value of �1 and similarly for all other parameters. Assume that the

regressors in Xt are ordinary random variables with �nite second moments.17

Equation (8) is identi�ed by OLS. If �1;t and �2;t are uncorrelated, then equation (7) is

also identi�ed by OLS. If, instead, at least one element of �10 is zero while the corresponding

element in �20 is nonzero, then equation (7) is identi�ed by instrumental variables (IV). This

section provides identi�cation conditions that require neither uncorrelated errors nor zero
17The inclusion of time trends or deterministic regressors is easily accommodated by replacing the relevant

moments with probability limits of sample moments and sample projections.
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restrictions on �10. Instead, identi�cation hinges on the parameterization of E [�t�0t j St�1].

Partial identi�cation of this parameterization is demonstrated.

Assumption 1: E [XtX
0
t] and E [XtY

0
t ] are �nite and identi�ed from the data. E [XtX

0
t] is

nonsingular.

Assumption 2: �t j St�1 � id (0; Ht), where �t =
h
�1;t �2;t

i0
and

Ht = C 00C0 +
2P

k=1

A0k0�t�1�
0
t�1Ak0 +

2P
k=1

B0
k0Ht�1Bk0: (9)

Assumption 3: C0 =

24 c10 0

c20 c30

35. Let aij;k0 and bij;k0 be the element in the ith row and
jth column of the matrices Ak0 and Bk0, respectively. A10 =

240 0

0 a22;10

35, A20 =24a11;20 0

0 a22;20

35, B10 =
240 0

0 b22;10

35, and B20 =
24b11;20 0

0 b22;20

35. c1, c3, a22;1, a11;2,
b22;1, and b11;2 are strictly positive.

Assumptions 1 and 2 identify the structural innovations to equation (8) and the reduced

form innovations to equation (7) as

�2;t = Y2;t �X 0
tE [XtX

0
t]
�1
E
�
XtY2;t

�
(10)

and

R1;t = Y1;t �X 0
tE [XtX

0
t]
�1
E
�
XtY1;t

�
; (11)

10



respectively. Assumptions 2 and 3 describe a fully general diagonal BEKK model with no

equivalent representations.18 By inspection, equation (9) will be positive de�nite under very

mild conditions, thus illustrating the principal advantage of the BEKKmodel over alternative

multivariate GARCH speci�cations. The fact that all nonzero elements in the matrices Ak0
and Bk0 occur along the diagonals evidences why the model of equation (9) and Assumption

3 is termed diagonal. The reduced-form of equation (9) is solved using equations (10) and

(11). This reduced-form is shown to identify 
0.

Assumption 4:
2P

k=1

�
a2ii;k0 + b2ii;k0

�
< 1; i = 1; 2:

Assumption 5: a22;20 and b22;20 are nonzero.

Assumption 4 de�nes the model in equation (9) to be covariance stationary and follows

from Proposition 2.7 of Engle and Kroner (1995). Assumption 5 ascribes a time-varying

covariance to the innovations �1;t and �2;t and echoes the theme of King, Sentana, and Wad-

hwani (1994), Sentana and Fiorentini (2001), Rigobon (2002), and Lewbel (2004) in the

sense that identi�cation relates to a property of the conditional covariance. Unlike these au-

thors, however, who demonstrate this property to be time-invariance, Assumption 5 takes

a different tack and links identi�cation explicitly to time-variation. The special case of a

constant conditional covariance is treated later in this section.

Assumption 6: cov
�
et; et�1

�
is nonsingular, where et =

h
�1;t�2;t �22;t

i0
.

Assumption 6 imposes higher moment restrictions on the structural innovations to equa-

tions (7) and (8) and is similar in scope to Assumption A3 of Lewbel (2004). Principal among
18See Proposition 2.3 of Engle and Kroner (1995) for a complete discussion of BEKK model identi�cation

and Proposition 2.6 for a speci�c treatment of the diagonal model.
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these restrictions is a �nite fourth moment for �2;t, which implies additional constraints on

the permissible values of the individual ARCH and GARCH effects de�ned in Assumption

3. The precise form of these additional constraints depends on the distribution of �t (see

Hamilton (1994) for an example related to the univariate ARCH model with normal errors).

Assumption 7: �120 6= �220, where �120 = a11;20a22;20 + b11;20b22;20 and �220 = a222;10 +

a222;20 + b222;10 + b222;20.

Assumption 7 distinguishes the structural parameters governing time-variation in h12;t
and h22;t. This restriction, together with Assumption 6, can be likened to the linear indepen-

dence among time-varying portions of the factor variances in Sentana and Fiorentini (2001).

Finally, given Assumptions 3 and 4, �1 < �12 < 1 and 0 < �22 < 1.

Proposition 1. Let Assumptions 1�7 hold for the model of equations (7) and (8). The struc-

tural parameters of the triangular system together with c20, c30, �120, and �220 are

identi�ed.

Proof. All proofs, unless otherwise stated, are given in the Appendix.

Proposition 1 treats the structural parameters of Ht in equation (9) and Assumption 3 as

nuisance parameters and demonstrates that identi�cation of 
0 follows from the identi�cation

of two composite functions of those parameters, �120 and �220. As a result, identi�cation of


0 only depends upon partial identi�cation of Ht.

Lemma 1: The strict positivity of a11;2 and b11;2 in Assumption 3 and the nonzero restric-

tions on a22;20 and b22;20 in Assumption 5 are both necessary conditions for Assumption

6.
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Proposition 1 extends the identi�cation results of King, Sentana, and Wadhwani (1994),

Sentana and Fiorentini (2001), and Lewbel (2004) by allowing for a time-varying conditional

covariance between �1;t and �2;t. Lemma 1 highlights this time-varying covariance as a nec-

essary condition for identi�cation. Relaxing this condition is the subject of the following

assumptions and proposition.

Assumption 5a: a22;20 = b22;20 = 0.

Assumption 6a: cov
�
et; et�1

�
has rank one.

Given Assumption 5a, the maximum possible rank of cov
�
et; et�1

�
is one. Assumption

6a, therefore, adjusts for the time-invariance of h12;t while maintaining the higher moment

restrictions imposed in Assumption 6. Note that Assumption 6a is violated if �2;t is ho-

moskedastic.

Proposition 2. Let Assumptions 1�4, 5a, and 6a hold for the model of equations (7) and

(8). De�ne �220 = a222;10 + a222;20 + b222;10 + b222;20. The structural parameters of the

triangular system together with c20, c30, and �220 are identi�ed.

Given Lemma 1 and equation (9), Proposition 1 requires both �1;t and �2;t to follow

GARCH(1,1) processes. Proposition 2, on the other hand, continues to hold if Assump-

tion 3 de�nes a11;2 and b11;2 as nonnegative or, more generally, if some alternative form of

conditional heteroskedasticity is assumed for �1;t besides that given in equation (9). Identi�-

cation under Proposition 2 depends upon a constant conditional covariance between �1;t and

�2;t and a GARCH(1,1) process for �2;t. The second-moment dynamics of �1;t do not play a

substantative role. Theorem 1 of Lewbel (2004) reaches this same conclusion.
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Since identi�cation under either Proposition 1 or 2 depends critically on the GARCH

structure, rationalizing this structure is an important aspect of the discussion. The empirical

asset pricing literature supports the univariate GARCH(1,1) model of Bollerslev (1986) as a

reasonable parameterization of the conditional heteroskedasticity in stock returns.19 Equation

(9) is a natural extension of this model.

From a more theoretical standpoint, Nelson (1992) examines the ability of misspeci�ed

ARCH models to consistently estimate the conditional covariance matrix of certain stochas-

tic processes. He �nds that for processes well approximated by a diffusion without jumps,

the multivariate GARCH(1,1) model provides consistent conditional covariance estimates.

Nelson and Foster (1994) build upon this result by formulating the conditions under which

the univariate GARCH(1,1) model provides asymptotically optimal conditional variance es-

timates.

In this paper, identi�cation follows from a consistent treatment of the conditional co-

variance matrix. The consistency results of Nelson (1992) link Proposition 1 to a class of

continuous time processes commonly employed in modern �nance theory. The asymptotic

optimality results of Nelson and Foster (1994) apply directly to Proposition 2.

3 Estimation

This section discusses estimation of equations (7) and (8) and partial estimation of equa-

tion (9). Two estimation routines are considered. The �rst is a three-step procedure involving

simple OLS regression and standard univariate GARCH and ARMA models. The second is

full GMM. The �rst routine can be used to obtain starting values for the second. For the �rst

routine, de�ne

�1;t = Y1;t �X
0

t�1 � Y2;t
;

19See, for example, Akgiray (1989) and Kim and Kon (1994).
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�2;t = Y2;t �X
0

t�2;

and

R1;t = �1;t + �2;t
:

Consider the following composite parameters from the BEKK model of equation (9) and

Assumption 3:

�12;1 =
�
a11;2a22;2

�
; �12;4 =

�
b11;2b22;2

�
;

�22;1 =
�
a222;1 + a222;2

�
; �22;2 =

�
b222;1 + b222;2

�
:

Let  be the set of parameters f�1; �2; 
; c2; c3; �12;1; �22;1; �22;2; �12;4g. Finally, de�ne

h22;t =
�
c23
�
+
�
�22;1

�
�22;t�1 +

�
�22;2

�
h22;t�1:

Corollary 1. Let Assumptions 1�7 or 1�4, 5a, and 6a hold for the model of equations (7)

and (8). De�ne �1;t, �2;t, R1;t,  , and h22;t as above. The following steps consistently

estimate the structural parameters of the triangular system together with c20, c30, �120,

and �220: (1) Regress Y1;t on Xt, (2) Apply maximum likelihood (ML) to equation (8),

specifying a univariate GARCH(1,1) model for �2;t, (3) Apply ML to an ARMA(1,1)

model of bR1;tb�2;t with weakly exogenous covariates b�22;t�1 and bh22;t�1.
Corollary 1 nests the results of Propositions 1 and 2. The advantage of Corollary 1 is

that it can be implemented with conventional time-series software. The disadvantage is that

convergence could be an issue, since the composite parameters governing the ARMA com-

ponents in step 3 are likely to be of very similar magnitudes.20 In addition, standard errors
20From equation (40) of A.4,

�
�12;1 + �12;4

�
is the AR component, and �12;4 is the MA component. The

parameters �12;1 and �12;4 are, respectively, the ARCH and GARCH components of h12;t. Typically, the
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are not available for step 3 due to the inclusion of generated regressors from step 2. If steps

1 and 2 are estimated simultaneously, then robust standard errors for step 3 can be calculated

using the theory of two-step estimators.21 Alternatively, bootstrapped standard errors can be

estimated for step 3. Separately, if �2;t is asymmetrically distributed (skewed), a "location

parameter" needs to be added to the GARCH speci�cation in step 2, following Newey and

Steigerwald (1997).

For the second routine, let �t =
h
�1;t �2;t

i0
and et =

h
�1;t�2;t �22;t

i0
. Rede�ne  as

the set of parameters f�1; �2; 
; c2; c3; �12; �22g. In addition, let �e =
h
�12 �22

i0
,

where

�12 =
c2c3
1� �12

and

�22 =
c23

1� �22
:

Finally, let � =

24 �12 0

0 �22

35. Consider the following set of vector functions:
U1
�
 ; Yt; St�1

�
= Xt 
 �t;

U2
�
 ; Yt; St�1

�
= et � �e;

U3
�
 ; Yt; St�1

�
= vec

h
(et � �e)

�
et�2 � �e

�0 � � (et � �e)
�
et�1 � �e

�0i
:22

Stack U1, U2, and U3 into a single vector U .

ARCH component tends to be small, rendering
�
�12;1 + �12;4

�
and �12;4 comparable. In addition, the GARCH

component tends to be large, placing
�
�12;1 + �12;4

�
and �12;4 near one.

21See Newey and McFadden (1994).
22The matrix operator 
 is the kronecker product. The vec [�] operator stacks the columns of an (m� n)

matrix into an (mn� 1) vector.
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Corollary 2. Let either Assumptions 1�7 or 1�4, 5a, and 6a hold for the model of equations

(7) and (8). De�ne �t, et, �e,  and U
�
 ; Yt; St�1

�
as above. Denote the set of all

possible values that  might take on as 	, and de�ne  0 to be the true value of  . The

only value of  2 	 that satis�es E [U ( ; Yt; St�1)] = 0 is  =  0.

Corollary 2 nests the results of Propositions 1 and 2 into a single set of moment con-

ditions. E [U1] = 0 relates to the conditional means of equations (7) and (8). E [U2] = 0

de�nes the unconditional covariance of �1;t and �2;t as well as the unconditional variance

of �2;t. E [U3] = 0 describes the time-variation of h12;t, nesting a constant covariance as a

special case, and of the GARCH(1,1) process of �2;t.

Given Corollary 2, Hansen's (1982) GMM is a natural choice for estimating  . The

standard GMM estimator is

b = argmin
 2	

�
1

T

TP
t=1

U ( ; Yt; St�1)

�0cW�1
�
1

T

TP
t=1

U ( ; Yt; St�1)

�
;

for some positive de�nite cW . Let W0 = E
�
U ( ; Yt; St�1)U ( ; Yt; St�1)

0�. If the ele-
ments of St�1 are stationary and ergodic, and ifcW p! W0, then the resulting GMM estimator

is consistent with

p
T
�b �  0

�
d! N

 
0;

�
E

�
@U ( ; Yt; St�1)

@ 

�0
W�1
0 E

�
@U ( ; Yt; St�1)

@ 

���1!
:

Ef�ciency gains result if the set of vector functions

U3+p
�
 ; Yt; St�1

�
= vec

h
(et � �e)

�
et�p � �e

�0 � �p�1 (et � �e)
�
et�1 � �e

�0i
; p = 3; : : : ; Q;

is appended to U (West (2002) discusses this result in the context of AR processes with

GARCH errors). These functions involve higher-order autocovariances from the GARCH
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process. Their addition provides two tests for the �t of h12;t and h22;t. First, a joint test of

whether �t is mean zero conditional on St�1 and whether h12;t and h22;t are properly speci�ed

is afforded by Hansen's J statistic. Second, testing whetherE
�
U3+p

�
= 0with a �2 difference

test judges the �t of h12;t and h22;t alone.

Apparent from the above discussion, there are a large number of potential moment con-

ditions available for estimating equations (7)�(9). While ef�ciency involves more moments,

the use of additional moments can degrade the small-sample properties of the GMM esti-

mator, as shown by Newey and Smith (2001). Donald, Imbens, and Newey (2002) provide

mean-squared error (MSE) based criteria for selecting Q. If Corollary 1 is used to obtainbh12;rt and bh22;t, then lags of these estimates together with lags of bR1;tb�2;t andb�22;t may be used
as the instruments in those criteria. Optimal lag selection follows, since the reduced form

inherits the lag-order of its structural counterpart. The downside to this procedure is that

the effects of generated regressors on the asymptotics of these criteria are unclear. Future

research may look to �ll this gap.

Moments-based estimators with better small-sample properties (for example, Generalized

Empirical Likelihood) can be used instead of GMM to estimate the result of Corollary 1.23 If

the moment conditions are weak, then the alternative distribution theory of Stock and Wright

(2000) is applicable. The model and moment selection criteria (MMSC) of Andrews and Lu

(1999) can be used to investigate the possibility of structural breaks in the conditional mean

equations and the conditional covariance matrix.24 Finally, the GARCH speci�cation for �2;t
can be evaluated using the tests developed by Lundbergh and Teräsvirta (2002).
23See Newey and Smith (2004) as a reference on Generalized Empirical Likelihood (GEL).
24See Rigobon (2002) for an example related to sovereign debt.
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4 Monte Carlo

The Monte Carlo simulations draw data from the structural model

Y1;t = X1;t (�1 � �1
) +X2;t (�2 � �2
) + Y2;t
 + �1;t; (12)

Y2;t = X1;t�1 +X2;t�2 + �2;t; (13)

which corresponds to the single-factor model of section 1.1 with two forecasting instruments.

The scalarsX1;t andX2;t are scaled standard normal draws with a correlation of 0:28 and �rst-

order autocorrelations of 0:35 and 0:13, respectively. Let �t =
h
�1;t �2;t

i0
. The vector �t is

constructed so that �t j St�1 � N (0; Ht), where Ht is parameterized according to equation

(9) and Assumption 3. Let

� =
h
�1 �2 �1 �2 


i
;

the vector of parameters from equations (12) and (13), and

� =
h
c2 c3 �12 �22

i
;

a vector of parameters from Assumption 3. Simulations consider two sets of values for �

and �. The �rst selects

� =
h
2:50 8:90 6:60 7:30 1:20

i
and

� =
h
�0:004 0:01 0:75 0:90

i
;
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while the second selects

� =
h
5:50 6:70 6:60 7:30 0:80

i
and

� =
h
0:006 0:01 0:75 0:90

i
:

For each of the two sets, simulations are conducted with Q = 6; 12; 24, for a total of six

Monte Carlo experiments.

The Monte Carlo design attempts to replicate the data environment that is encountered

in the empirical exercise of section 5.2. All parameter values and correlations are estimated

from the data set described in that section. Values for � and � are the product of Corol-

lary 1. The �rst set of values for � and � consider Y1;t as the return on a portfolio of

the smallest capitalization-based decile of NYSE/AMEX stocks and Y2;t as the return on an

equal-weighted portfolio of all NYSE/AMEX stocks. The second set considers Y1;t as the

return on a portfolio of the largest capitalization-based decile of NYSE/AMEX stocks; Y2;t
receives identical treatment as before. Across both sets,X1;t andX2;t are single lagged values

of the return spread between two- and one-month Treasury bills as well as the return spread

between the lagged two-month and current one-month Treasury bills.25

Tables 1 and 2 show results fromMonte Carlo simulations of the GMM estimator applied

to Corollary 2. In these simulations, the �rst 200 observations of each series are discarded

to avoid initialization effects. Simulations are conducted with T = 370 observations across

1000 trials. The number of observations conforms with the sample size used to test the CAPM

in section 5. The maximum lag length,Q, used in de�ning the moment conditions is varied to

investigate both the ef�ciency gains discussed in West (2002) and the size of the bias studied
25The scaling of X1;t and X2;t in the simulation exercises adjusts the variances of each to match what is

found in the data.
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by Newey and Smith (2001). The parameter values for the simulations satisfy Assumptions

3�5, and 7. For each simulation trial, the estimates for those values are not restricted to

ensure that the same assumptions hold. The starting values for each trial, however, are the

true values of the parameters.

In general, the simulation results provide an encouraging assessment of the proposed esti-

mator. The reported biases are of comparable magnitudes to those found by other researchers

for standard GMM when applied to data sets of a similar size (see, e.g., Donald, Imbens, and

Newey, 2002). The simulation results also support the �ndings of West (2002). Higher val-

ues of Q tend to be associated with lower root mean-squared errors (RMSEs) and tighter

interquartile ranges. For all parameter estimates, the mean absolute and median absolute

errors tend to decrease with Q, implying that, net of outliers, precision in those estimates

depends positively on lag length. In addition, for the parameters in �, the biases (both mean

and median) diminish as the lag length increases. For the parameters in�, on the other hand,

longer lag lengths tend to be associated with higher biases, evidencing the results of Newey

and Smith (2001). For the estimates of 
, the sign of these biases follows the sign of the

unconditional covariance between �1;t and �2;t. The relative size of these biases, however,

tends to be small.

5 Testing the CAPM
This section is divided into three parts. By stating a lemma upon which two corollaries

to Propositions 1 and 2 in Shanken (1987) are based, section 5.1 develops a test statistic

for the CAPM that recognizes the possible endogeneity of market proxies and relies upon a

prior belief about the correlation between innovations to a given proxy and the true market

return. Using Corollary 2, section 5.2 estimates the CAPM-style model of section 1.1 with

10 capitalization-based portfolios of stock returns and shows that the resulting market sen-

sitivities can differ signi�cantly from those estimated by OLS. Finally, using the estimates
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from section 5.2, section 5.3 bootstraps the test statistic developed in section 5.1 to determine

what values of �, the correlation between innovations to the given proxy and the true market

return, reject the CAPM.

5.1 Methodology

For expository convenience, all time subscripts are suppressed. Variable labels follow

Shanken (1987), to facilitate comparison. As in section 1.1, assume there exists an observable

risk-free rate. Let r�m be the true market return, Rp an L-vector of observable proxies to the

market return, X a K-vector of predetermined instruments that forecast security returns, R

an N -vector of security returns, and E =
h
m P 0 e0

i0
, an (L+N + 1)-vector of shocks.

The sigma �eld S is de�ned byX and its past values, as well as past values of Rp, R, and E.

Consider the following models for the true market return and its observable proxies:

r�m = am� + bm�X +m; (14)

Rp = ap +BpX + P: (15)

Assume that E [m j S] = E [P j S] = 0. Equations (14) and (15) decompose the true market

return and its observable proxies into predictable and unpredictable components. Consider a

linear regression ofm on P ,

m = am + b0mP + em; (16)

and the following model of security returns:

R = a+BRX + �P + e; (17)

where E [e j S] = 0. Equation (17), expressed in excess returns, is a vector statement of

equation (3).
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Lemma 2: Consider equations (14)�(17) and their accompanying assumptions. Then,

cov (e; em)
0��1e cov (e; em) � �2 (m) (1� �2); (18)

where �e is the N � N unconditional covariance matrix of e, �2 (m) the variance of

m, and � the correlation between m and P . Equation (18) holds as an equality if and

only if em is an exact linear combination of e.

Proof. See the proof of Lemma 1 in Shanken (1987).

The two differences between Lemma 2 and Lemma 1 of Shanken (1987) are that, for the

former, security returns are allowed a predictable component, and cov (e; P ) is not assumed

to be a zero matrix. Neither of these differences affects the proof. Shanken (1987) interprets

cov (e; em) "as a vector of deviations from an exact multibeta expected return relation" (p.

93). Equation (18) sets an upper bound for these deviations.

Corollary 3. Assume

E [R] = r1N + cov (R; m) ; (19)

where 1N is an N -vector of ones. Let r be the observable risk-free rate. Then, there

exists an L-vector of "prices of risk" that satis�es

d0��1e d � �2 (m) (1� �2); (20)

where

d � E [R]� r1N � (� +Be) �; (21)

Be is the vector of slope parameters from a multivariate linear regression of e on P .

� = cov (P; m) satis�es equation (20).
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Corollary 3 generalizes Proposition 1 of Shanken (1987) to recognize the possible endo-

geneity of market proxies. The risk-return relation of equation (19) holds with a constant of

proportionality equal to E[r�m�r]
V ar[m]

. In addition, if � = 1 in equation (20), then d = 0, meaning

that E [R] is exactly linear in the columns of (� +Be).

The next corollary takes the pricing relation of equation (19) and applies it to the vector

of market proxies. For use in this corollary, let

�2p =
�
E
�
Rp

�
� r1L

�0
��1p

�
E
�
Rp

�
� r1L

�
; (22)

where �p is the unconditional covariance matrix of P . Equation (22) describes a Sharpe

performance measure in terms of the covariance matrix of proxy innovations P , not proxy

returns Rp, as in the usual case. The separating of returns into predictable and unpredictable

components establishes this distinction.

Corollary 4. Assume

E
�
Rp

�
= r1L + cov (R; m) : (23)

Then,

�2 =
�2p

�2 (m)
;

and the result of Corollary 3 reduces to

d0��1e d � �2p(�
�2 � 1); (24)

where

d � E [R]� r1N � (� +Be)
�
E
�
Rp

�
� r1L

�
: (25)

Corollary 4 applies the same modi�cation introduced in Corollary 3 to Proposition 2 of
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Shanken (1987). As is the case for Proposition 2, the power of Corollary 4 resides in the fact

that, except for �, every parameter in equation (24) can be estimated from observable data.

Given Corollary 4, a conditional form of the CAPM prices security returns. The presence

of X in equation (17) designates expected returns as time-varying. According to Corollary

4, these time-varying expected returns are a linear function of the market risk premium.

As a result, Corollary 4 is a stronger statement about security returns than its counterpart,

Proposition 2 in Shanken (1987).

5.2 Gamma Estimates

This section considers estimation of � in equation (17) using the result of Corollary 2. Let

Rp be the return on either the equal-weighted or value-weighted NYSE/AMEX stock index.26

The security returns are 10 capitalization-based portfolios, with the �rst portfolio containing

the smallest decile of stocks on the NYSE/AMEX, and the last containing the largest. The

forecasting instruments are the return spread between two- and one-month Treasury bills as

well as the return spread between the lagged two-month and current one-month Treasury

bills.27 All stock return data are from the Center for Research in Security Prices (CRSP). The

forecasting instruments are from Fama's six-month bill �les. The data set covers the period

February 1953 through November 1983, the same period considered by Shanken (1987).

As mentioned in section 5.1, equation (17), expressed in excess returns, is a vector state-

ment of equation (3). Therefore, sequentially estimating the model

Yi;t = X
0

t (�i � �m
i) + Ym;t
i + �i;t; i = 1; : : : ; 10; (26)

26The ensuing empirical tests consider only the case where L = 1 (see the general de�nition of Rp in section
5.1), so Rp is a scalar random variable.
27These instruments, taken from Campbell (1987), are considered because they survive the spurious regres-

sion critique of Ferson, Sarkissian, and Simin (2003).
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and

Ym;t = X
0

t�m + �m;t; (27)

where Yi;t is the excess return on the ith capitalization-based portfolio; Ym;t is the excess

return on either the equal-weighted or value-weighted NYSE/AMEX stock index, andXt is a

vector of predetermined covariates including a constant, the two aforementioned forecasting

instruments, and a dummy variable for the January effect, produces consistent estimates of

the market sensitivities (
i).

Tables 3 and 4 summarize the results of estimating equations (26) and (27) under Corol-

lary 2, in the case where the market proxy is, respectively, the equal-weighted and value-

weighted NYSE/AMEX stock index. Starting values for the GMM estimators were derived

using Corollary 1. Estimation sets Q = 24. Though the simulation study (section 4) does

document some bias in the estimation of 
 using higher lag orders, the relative size of that

bias is small. In addition, the simulation study also measures some rather sizable ef�ciency

gains across higher lag orders for parameters from the GARCH process. Since the parame-

ters describing the conditional covariance of �i;t and �m;t speak directly for or against the

consistency of alternative estimators (see the literature review of section 1.2), the higher lag

order was chosen.

All gamma estimates are highly signi�cant and of plausible magnitudes. For many of the

portfolios, signi�cant values of c2 evidence a nonzero covariance between �i;t and �m;t. In

general, the sign of that covariance tends to be negative for smaller-capitalization and positive

for larger-capitalization stocks. A nontrivial subset of these covariances also appears to be

time-varying, as evidenced by signi�cant values for b�12. This time variation seems to be a
characteristic of larger-capitalization stocks; however, there is an isolated instance of time

variation in the smaller-capitalization issues. The values of b�22 for either proxy reinforce the
numerous �ndings of strong GARCH effects in the innovations to security returns. Finally,

26



none of the time-series models for portfolio returns are rejected according to their J statistics.

Tables 5 and 6 compare the estimates of individual market sensitivities obtained under

GMM using the moments from Corollary 2 with those obtained under OLS by simply re-

gressing Yi;t onXt and Ym;t, ignoring any possible endogeneity. The comparison is based on

95-percent con�dence intervals constructed from the GMM estimates.28 As a whole, the re-

sults support the endogeneity of the two market proxies. For the equal-weighted proxy, only

the OLS estimate for decile portfolio 3 (CAP3) lies inside the associated con�dence interval.

For the value-weighted proxy, decile portfolios 1, 2, and 4�7 have OLS estimates inside the

associated con�dence intervals. The result for decile portfolio 4 should be viewed with cau-

tion, however, since the hypothesis of a zero covariance is rejected. For all the portfolios for

which the GMM estimates differ signi�cantly from their OLS counterparts, the direction of

the difference follows the sign of the unconditional covariance between �i;t and �m;t. Given

the properties of the OLS estimator, this result is not surprising.

The implications of the results summarized in Tables 5 and 6 extend beyond tests of

the CAPM. For instance, let Yi;t be the return on any portfolio of securities, and interpret


i to be the risk-minimizing hedge ratio for the market risk of that portfolio. Traditional

practice estimates 
i from a regression of Yi;t onXt and Ym;t. This section demonstrates that

such a practice is likely to result in an inconsistent estimate of the desired hedge ratio. The

identi�cation results in this paper, therefore, bear signi�cance on the hedging of portfolio

risks.

5.3 Test Results

Let N = 10 and �t =
h
�1;t : : : �N;t

i0
, the vector of innovations from equation

(26). Equation (25) represents the pricing errors from a cross-sectional GLS regression of
28Given Proposition 2, the GMM estimates are consistent if E [�i;t�m;t j St�1] = 0.
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(E [R]� r1N) on (� +Be), using �e as the error covariance matrix. Consider bd to be the
estimated errors from such a regression, with b� estimated as in section 5.2, bBe equal to

the vector of slope estimates from N separate regressions of b�i;t on b�2;t, i = 1; : : : ; N , andb�e = 1
T

TP
t=1

b�tb�0t. Likewise, consider b�p to be an estimator of the proxy performance measure
in equation (22).

The pricing theory of Corollary 4 involves two cases. If � = 1, meaning the given

proxy is the true market portfolio, then d0��1e d = 0. If, on the other hand, 0 < � < 1,

then ��2p d0��1e d � ��2 � 1. Shanken (1987) tests a special case of Corollary 4, by using

a noncentral F distribution.29 In general, such a distribution will not hold for Corollary 4.

As a result, consider testing Corollary 4 for � = 1 by bootstrapping a standard error forbd0b��1e bd, using b�t. Table 7 summarizes the results of this test for both the equal-weighted and
value-weighted proxies. In both cases, the null of d0��1e d = 0 is rejected, meaning that if the

pricing theory of Corollary 4 holds, then neither proxy is the true market portfolio.

Next, consider �nding the maximum value of � 2 (0; 1) that supports Corollary 4 by

bootstrapping b��2p bd0b��1e bd, again using b�t. Table 8 summarizes the results of this test for
both the equal-weighted and value-weighted proxies. Under Corollary 4, ��2 � 1 is the

upper bound for ��2p d0��1e d. Table 8 reports the mass of b��2p bd0b��1e bd lying above ��2 � 1,
for different values of �. Five percent of the bootstrapped distribution of b��2p bd0b��1e bd lies
above � = 0:62 for the equal-weighted, and � = 0:49 for the value-weighted market proxy.

When interpreted in terms of a standard 5-percent signi�cance level, these results reject the

hypothesis that the true correlation between innovations to the equal-weighted proxy and the

true market return exceeds 0:62. In terms of the relation between innovations to the value-
29Shanken's special case assumes:

1. bm� = 0K

2. Bp, BR, and Be are all zero matrices.
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weighted proxy and the true market return, these results reject the correlation's being higher

than 0:49. Therefore, if Corollary 4, and, hence, the CAPM, is a valid pricing relation, then

innovations to the CRSP equal-weighted index account for only 38 percent (0:622 = 0:38)

of the variation in the innovations to the true market return. The explained variation of

innovations to the true market return drops to 24 percent (0:492 = 0:24) if the CRSP value-

weighted index is used as the proxy. Given that correlations between market proxies and

the true market portfolio are assumed to be quite high, in the range of 0:80 and 0:90, and

that forecasting instruments explain a very small percentage of the total variation in security

returns, with R2 values ranging from 0:02 to 0:08, these results do not speak favorably for

the CAPM.30

The test results presented here are similar to, though uniformly more negative than, what

Shanken (1987) and Kandel and Stambaugh (1987) report. Shanken, for instance, �nds that

the CAPM can be rejected if the "multiple correlation between the true market portfolio and

proxy assets exceeds 0:70" (p. 91). Kandel and Stambaugh reach substantially the same

conclusion. The signi�cantly lower maximum correlation for the value-weighted proxy re-

ported here is somewhat surprising, despite the fact that a conditional version of the CAPM

is being tested. Kandel and Stambaugh do, however, report slightly lower correlations for the

value-weighted versus the equal-weighted proxy.

6 Conclusion

This paper presents a new method for identifying triangular systems of time-series data.

Identi�cation is the product of a diagonal GARCH process. Relative to the literature on

GARCH-based identi�cation, the method discussed in this paper distinguishes itself by both

allowing for a time-varying conditional covariance and by not requiring complete estimation
30See Roll (1977) as supporting a high correlation between market proxies and the true market return. See

Ferson, Sarkissian, and Simin (2003) for a summary of the R2 values for different forecasting instruments.
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of the GARCH parameters. Regarding this latter distinction, only two nuisance parameters

from the GARCHmodel need to be considered. AMonte Carlo study veri�es the consistency

of the identi�cation method. The method is then applied in testing a conditional version of

the CAPM to �nd that the model of Sharpe (1964) and Lintner (1965) does not seem to

adequately describe the cross-sectional variation of expected returns. These results provide a

harsher critique of the CAPM than either Shanken (1987) or Kandel and Stambaugh (1987).

Section 5.1 develops a statistic for testing the CAPM that recognizes both the true market

return as a latent variable and the potential for observable proxies to be endogenous regres-

sors. Section 5.2 presents empirical evidence supporting the endogeneity of market proxies.

As discussed in section 5.3, the test statistic derived in section 5.1 does not deliver favorable

news for the CAPM. A key question is whether additional factors can be incorporated into the

CAPM framework to avoid having to discard the CAPM theory completely. The intertem-

poral CAPM of Merton (1973) provides a potential answer. So, too, does the three-moment

CAPM of Kraus and Litzenberger (1976), which includes skewness in the market return as

a second factor. An interesting investigation would be whether a test statistic in the spirit of

section 5.1 can be developed for testing Kraus and Litzenberger's version of the CAPM. The

identi�cation method discussed in this paper could be used to estimate such a statistic. The

remaining details are left to future research.
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Appendix

A.1. Proof of Proposition 1: Given Assumptions 2 and 3, write the equations for h12;t and

h22;t in vector-form as

ht = C + Aet�1 +Bht�1; (28)

where

ht =
h
h12;t h22;t

i0
; et =

h
�1;t�2;t �22;t

i0
;

C =
h
c20c30 c230

i0
;

A =

24 a11;20a22;20 0

0 a222;10 + a222;20

35 ; B =

24 b11;20b22;20 0

0 b222;10 + b222;20

35 :
From Assumptions 1 and 2, the structural innovations to equation (8) are identi�ed

by equation (10), and the reduced form innovations to equation (7) are identi�ed by

equation (11). Using equations (10) and (11) to solve the reduced form of (28) yields

hr;t = Cr + Arrt�1 +Brhr;t�1; (29)

where

hr;t =
h
E
�
R1;t�2;t j St�1

�
h22;t

i0
; rt =

h
R1;t�2;t �22;t

i0
;

Cr = �
�1C, Ar = ��1A�, Br = �

�1B�, and � =

24 1 �
0
0 1

35. Given Assumption
4, recursive substitution into (29) reveals

hr;t = (I �Br)
�1Cr +

1X
j=1

Bj�1
r Arrt�j; (30)
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where I is the (2� 2) identity matrix. Equation (29) implies that rt = hr;t+wr;t, with

E
�
wr;t j St�1

�
= 0. As a result,

cov
�
rt; rt�k

�
= cov

�
hr;t; rt�k

�
; (31)

for k = 1; : : : ;1. Substituting (30) into (31) and simplifying for k = 1; 2 shows that

cov
�
rt; rt�2

�
= (Ar +Br) cov

�
rt; rt�1

�
:

Since

cov
�
rt; rt�1

�
= ��1cov

�
et; et�1

� �
��1
�0
;

(Ar +Br) is identi�ed by Assumption 6. Let �ij;r be the element in the ith row and

jth column of

� = (Ar +Br) =

24 �120 
0 (�220 � �120)

0 �220

35 : (32)

Given Assumption 7, 
0 is identi�ed by 
0 =
�12;r

�22;r��11;r
. As a result, �10 is identi�ed by

�10 = E [XtX
0
t]
�1E

�
Xt

�
Y1;t � Y2;t
0

��
. �20 is identi�ed by �20 = E [XtX

0
t]
�1E

�
XtY2;t

�
.

The structural innovations �1;t are identi�ed by �1;t = Y1;t�X 0
t�10� Y2;t
0. The com-

posite parameters �120 and �220 are identi�ed from the matrix (A+B) = cov
�
et; et�2

�
cov
�
et; et�1

��1.
The vector of constants C is identi�ed by C = (I � (A+B))E [et]. Given Assump-

tion 3, c30 is identi�ed. Finally, c20 is identi�ed given the identi�cation of c30 and the

fact that c30 is strictly positive.

A.2. Proof of Lemma 1: Suppose a11;20 = b11;20 = 0. Then, h12;t = c20c30, and cov
�
�21;t; �i;t�1�j;t�1

�
=

cov
�
�1;t�2;t; �i;t�1�j;t�1

�
= 0 8 i; j = 1; 2. As a result,

��cov �et; et�1��� = 0. The same
result holds if a22;20 = b22;20 = 0.
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A.3. Proof of Proposition 2: Given Assumption 5a, h12;t = c20c30. As a result,

cov(�1;t�2;t; Zt�1) = 0; (33)

where Zt�1 =
h
�22;t�1 � � � �22;t�l

i0
for some �nite l � 1. Assumptions 1 and 2

identify �2;t and R1;t as equations (10) and (11), respectively. From equation (11),

write �1;t as

�1;t = R1;t � �2;t
0: (34)

Substituting equation (34) into equation (33) yields

cov(R1;t�2;t; Zt�1) = cov(�22;t; Zt�1)
0;

where the individual row entries of cov(�22;t; Zt�1) are �nite and nonzero given As-

sumptions 2, 3, and 6a. Let � = cov(�22;t; Zt�1). 
0 is identi�ed as


0 = (�
0�)

�1
�0cov(R1;t�2;t; Zt�1):

�10 is identi�ed by �10 = E [XtX
0
t]
�1E

�
Xt

�
Y1;t � Y2;t
0

��
, and �20 is identi�ed by

�20 = E [XtX
0
t]
�1E

�
XtY2;t

�
. The structural innovations �1;t are identi�ed by �1;t =

Y1;t �X 0
t�10 � Y2;t
0. From equation (9), recursive substitution into h22;t reveals that

h22;t =
c230

1�
�
b222;10 + b222;20

� + �a222;10 + a222;20
� 1X
j=1

�
b222;10 + b222;20

�j�1
�22;t�j: (35)

Since

cov(�22;t; �
2
2;t�k) = cov(h22;t; �

2
2;t�k); (36)

for k = 1; : : : ;1 (see the derivation of equation (31) in A.1.), substituting equa-
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tion (35) into equation (36) and simplifying for k = 1; 2 grants identi�cation of

�220 as �220 =
cov(�22;t; �

2
2;t�2)

cov(�22;t; �
2
2;t�1)

. Given Assumption 3, c30 is then identi�ed as c30 =q
(1� �220)E

�
�22;t
�
. Finally, c20 is identi�ed by c20 =

E[�1;t�2;t]

c30
.

A.4. Proof of Corollary 1: Given equation (9) and Assumption 3,

h12;t = (c20c30) +
�
�12;10

�
�1;t�1�2;t�1 +

�
�12;40

�
h12;t�1 (37)

and

h22;t =
�
c230
�
+
�
�22;10

�
�22;t�1 +

�
�22;20

�
h22;t�1: (38)

The structural innovations to equation (8) are identi�ed by equation (10), while the

reduced-form innovations to equation (7) are identi�ed by equation (11). Using equa-

tions (10) and (11) to solve the reduced-form of equation (37) yields

h12;rt = (c120)+
�
�12;10

�
R1;t�1�2;t�1+

�
�12;20

�
�22;t�1+

�
�12;30

�
h22;t�1+

�
�12;40

�
h12;rt�1;

(39)

where

h12;rt = E
�
R1;t�2;t j St�1

�
; c120 =

�
c20c30 + 
0c

2
30

�
;

�12;20 = 
0
�
�22;10 � �12;10

�
;

and

�12;30 = 
0
�
�22;20 � �12;40

�
:

Equation (39) implies that

R1;t�2;t = (c120)+
�
�12;10 + �12;40

�
R1;t�1�2;t�1+f

�
St�1;  0

�
�
�
�12;40

�
w12;rt�1+w12;rt;

(40)

34



where

f
�
St�1;  0

�
=
�
�12;20

�
�22;t�1 +

�
�12;30

�
h22;t�1;

and

w12;rt = R1;t�2;t � h12;rt:

From equations (38) and (40), 
0 is identi�ed by


0 =
�12;20 + �12;30�

�22;10 + �22;20
�
�
�
�12;10 + �12;40

� :
�10 and �20 are then identi�ed from A.1. �120 and �220 are identi�ed as �120 = �12;10+

�12;40 and �220 = �22;10+�22;20. Identi�cation of C0 follows from A.1. R1;t in equation

(11) are the residuals from an OLS regression of Y1;t on Xt. Equations (8) and (38)

are consistently estimated by joint ML. Given bR1;t,b�2;t, and bh22;t, equation (40) is also
consistently estimated by ML.

A.5. Proof of Corollary 2: By equations (7)�(9), U1 = Xt 
 �t and

U3
�
 ; Yt; St�1

�
= vec

h
(et � �e)

�
et�2 � �e

�0 � � (et � �e)
�
et�1 � �e

�0i
:

E [U2] = 0 means that E [et] = �e, so E [U ] = 0 is equivalent to E [Xt 
 �t] = 0 and

cov
�
et; et�2

�
= (A+B) cov

�
et; et�1

�
, where (A+B) is de�ned in A.1. Following,

then, from either A.1 or A.3, the only ' 2 	 that satis�es E [U ( ; Yt; St�1)] = 0 is

' = '0.

A.6. Proof of Corollary 3: From equations (17),

cov (R; m) = �cov (P; m) + cov (e; m) : (41)
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Given equation (16),

cov (e; m) = cov (e; P ) ��1p cov (P; m) + cov (e; em) ; (42)

where bm = ��1p cov (P; m), and �p is the unconditional covariance matrix of P .

Combining (41) and (42) yields

cov (R; m) = (� +Be) cov (P; m) + cov (e; em) ; (43)

where Be = cov (e; P ) ��1p . Substitution of (43) into equation (19) and the result into

equation (18) of Lemma 2 produces equation (20), with � = cov (P; m).

A.7. Proof of Corollary 4: From equation (15),

cov
�
Rp; m

�
= cov (P; m) ;

and, therefore,

E
�
Rp

�
� r1L = cov (P; m) : (44)

From equation (16),

�2 (m) = b0m�pbm + �2 (em) : (45)

Given the de�nition of bm in A.6. and equation (44), (45) simpli�es to

�2 (m) = �2p + �2 (em) :

Hence, the coef�cient of determination from equation (16) is �2 = �2p
�2(m)

, and equation

(20) in Corollary 2 reduces to (24) and (25).
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Table 1
Small-Cap Simulations

�1 �2 
 �1 �2 c2 c3 �12 �22
TRUE 2:50 8:90 1:20 6:60 7:30 �0:004 0:01 0:75 0:90

Q = 6
MEAN 2:69 8:67 1:17 6:71 7:17 �0:007 0:014 0:46 0:71
SD 4:90 2:96 0:28 2:55 1:67 0:020 0:007 0:50 0:27
LQ �0:41 6:74 1:01 4:96 6:10 �0:011 0:009 0:26 0:61
MED 2:64 8:64 1:18 6:74 7:21 �0:003 0:013 0:57 0:79
UQ 5:86 10:74 1:33 8:28 8:19 0:000 0:018 0:76 0:89
RMSE 4:90 2:97 0:28 2:55 1:68 0:020 0:008 0:58 0:33
MAE 3:83 2:32 0:21 2:00 1:30 0:011 0:006 0:39 0:22
MDAE 3:12 1:99 0:16 1:67 1:06 0:005 0:005 0:23 0:11

Q = 12
MEAN 2:66 8:64 1:16 6:74 7:15 �0:006 0:011 0:48 0:80
SD 4:90 3:02 0:19 2:55 1:69 0:015 0:005 0:42 0:19
LQ �0:44 6:58 1:04 4:97 6:00 �0:009 0:008 0:31 0:79
MED 2:57 8:61 1:16 6:80 7:16 �0:003 0:010 0:61 0:86
UQ 5:75 10:64 1:27 8:44 8:27 0:000 0:013 0:75 0:90
RMSE 4:90 3:03 0:19 2:55 1:70 0:015 0:005 0:50 0:22
MAE 3:85 2:37 0:15 2:02 1:33 0:008 0:003 0:33 0:12
MDAE 3:11 1:99 0:12 1:75 1:13 0:004 0:002 0:18 0:05

Q = 24
MEAN 2:73 8:62 1:15 6:71 7:13 �0:006 0:009 0:52 0:85
SD 4:79 3:00 0:13 2:47 1:63 0:010 0:004 0:40 0:16
LQ �0:60 6:78 1:08 5:14 6:15 �0:008 0:007 0:42 0:85
MED 2:67 8:53 1:15 6:80 7:18 �0:003 0:009 0:65 0:90
UQ 5:90 10:50 1:23 8:23 8:17 �0:001 0:010 0:77 0:93
RMSE 4:79 3:01 0:13 2:47 1:63 0:011 0:004 0:46 0:17
MAE 3:81 2:32 0:10 1:89 1:24 0:006 0:003 0:28 0:08
MDAE 3:27 1:96 0:08 1:56 1:02 0:003 0:002 0:14 0:03

Notes: TRUE refers to the true parameter value. Q is the number of lagged terms
used to de�ne the moment conditions. MEAN and SD are the mean and standard devia-
tion of the parameter estimates across the simulations. LQ is the lower quartile (bottom
25 percent); MED is the median, and UQ is the upper quartile (the top 25 percent).
RMSE, MAE, and MDAE are the root mean-squared error, the mean absolute error, and
the median absolute error of the estimates, respectively. Source: Author's calculations.
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Table 2
Large-Cap Simulations

�1 �2 
 �1 �2 c2 c3 �12 �22
TRUE 5:50 6:70 0:80 6:60 7:30 0:006 0:01 0:75 0:90

Q = 6
MEAN 5:69 6:56 0:84 6:73 7:18 0:009 0:014 0:46 0:74
SD 3:52 2:15 0:16 2:65 1:71 0:015 0:007 0:50 0:25
LQ 3:43 5:14 0:76 5:08 6:12 0:001 0:009 0:21 0:68
MED 5:63 6:50 0:83 6:63 7:24 0:006 0:013 0:56 0:82
UQ 7:90 7:96 0:93 8:45 8:27 0:012 0:017 0:77 0:91
RMSE 3:52 2:15 0:16 2:66 1:71 0:016 0:008 0:58 0:29
MAE 2:73 1:67 0:12 2:04 1:31 0:009 0:006 0:39 0:19
MDAE 2:22 1:41 0:08 1:72 1:08 0:005 0:005 0:25 0:09

Q = 12
MEAN 5:67 6:48 0:86 6:76 7:11 0:009 0:011 0:49 0:83
SD 3:51 2:19 0:10 2:71 1:74 0:017 0:005 0:44 0:16
LQ 3:32 5:05 0:79 4:93 6:00 0:002 0:008 0:29 0:81
MED 5:63 6:49 0:85 6:72 7:09 0:005 0:010 0:63 0:88
UQ 7:96 7:90 0:91 8:51 8:31 0:010 0:013 0:79 0:92
RMSE 3:51 2:20 0:11 2:71 1:75 0:017 0:005 0:51 0:18
MAE 2:77 1:71 0:09 2:12 1:36 0:007 0:003 0:33 0:10
MDAE 2:30 1:45 0:07 1:77 1:14 0:004 0:002 0:18 0:04

Q = 24
MEAN 5:65 6:52 0:87 6:74 7:14 0:008 0:009 0:53 0:87
SD 3:33 2:09 0:08 2:59 1:68 0:010 0:004 0:39 0:14
LQ 3:57 5:27 0:82 5:06 6:12 0:003 0:007 0:39 0:87
MED 5:50 6:58 0:86 6:75 7:13 0:005 0:008 0:65 0:91
UQ 7:81 7:84 0:91 8:37 8:21 0:010 0:010 0:79 0:94
RMSE 3:34 2:10 0:10 2:60 1:68 0:010 0:004 0:45 0:15
MAE 2:57 1:60 0:08 1:99 1:27 0:006 0:003 0:29 0:07
MDAE 2:14 1:30 0:07 1:67 1:03 0:004 0:002 0:15 0:03

Notes: TRUE refers to the true parameter value. Q is the number of lagged terms
used to de�ne the moment conditions. MEAN and SD are the mean and standard devia-
tion of the parameter estimates across the simulations. LQ is the lower quartile (bottom
25 percent); MED is the median, and UQ is the upper quartile (the top 25 percent).
RMSE, MAE, and MDAE are the root mean-squared error, the mean absolute error, and
the median absolute error of the estimates, respectively. Source: Author's calculations.
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Table 3
Equal-Weighted Proxy


 c2 �12 �22 J stat p-value
CAP1 1:36 �0:032 0:237 0:972 73:5 0:88

(0:015) (0:010) (0:171) (0:010)
CAP2 1:24 �0:019 0:184 0:976 85:4 0:59

(0:008) (0:007) (0:195) (0:010)
CAP3 1:10 0:001 0:071 0:950 75:5 0:84

(0:007) (0:002) (0:341) (0:012)
CAP4 1:03 0:011 0:079 0:975 103:4 0:14

(0:004) (0:004) (0:175) (0:009)
CAP5 0:95 0:024 �0:004 0:956 87:8 0:52

(0:005) (0:012) (0:359) (0:023)
CAP6 0:97 0:001 0:945 0:972 84:2 0:63

(0:005) (0:000) (0:012) (0:008)
CAP7 0:87 0:0097 0:404 0:978 73:7 0:88

(0:006) (0:0047) (0:233) (0:008)
CAP8 0:63 0:118 �0:821 0:966 94:8 0:32

(0:006) (0:010) (0:071) (0:004)
CAP9 0:47 0:097 �0:134 0:968 104:1 0:13

(0:009) (0:037) (0:388) (0:009)
CAP10 0:41 0:014 0:815 0:979 87:6 0:52

(0:009) (0:004) (0:038) (0:008)

Notes: CAPi refers to the value-weighted portfolio of common stocks in the ith size
decile. Standard errors of the selected parameter estimates are reported in parentheses.
J stat refers to Hansen's (1982) speci�cation test chi-square statistic. The degrees of
freedom for all reported J statistics are 89. The p-values for these J statistics are also
reported. Source: Author's calculations.
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Table 4
Value-Weighted Proxy


 c2 �12 �22 J stat p-value
CAP1 1:27 �0:018 �0:269 0:913 82:2 0:68

(0:044) (0:011) (0:180) (0:026)
CAP2 1:26 �0:014 �0:271 0:907 78:0 0:79

(0:034) (0:008) (0:135) (0:029)
CAP3 1:33 �0:010 0:022 0:843 91:1 0:42

(0:032) (0:004) (0:109) (0:040)
CAP4 1:27 �0:008 �0:028 0:860 95:4 0:30

(0:028) (0:004) (0:129) (0:040)
CAP5 1:21 �0:001 �0:069 0:871 84:9 0:60

(0:026) (0:003) (0:098) (0:034)
CAP6 1:17 0:000 �0:02 0:899 74:4 0:87

(0:021) (0:003) (0:096) (0:027)
CAP7 1:13 0:001 0:33 0:914 82:2 0:68

(0:018) (0:002) (0:101) (0:024)
CAP8 1:06 0:004 0:098 0:886 89:5 0:47

(0:014) (0:002) (0:096) (0:027)
CAP9 1:11 �0:002 0:447 0:863 96:1 0:29

(0:010) (0:001) (0:097) (0:026)
CAP10 0:88 0:005 0:469 0:853 106:7 0:10

(0:008) (0:002) (0:128) (0:046)

Notes: CAPi refers to the value-weighted portfolio of common stocks in the ith size
decile. Standard errors of the selected parameter estimates are reported in parentheses.
J stat refers to Hansen's (1982) speci�cation test chi-square statistic. The degrees of
freedom for all reported J statistics are 89. The p-values for these J statistics are also
reported. Source: Author's calculations.
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Table 5
Equal-Weighted Proxy


 95% C.I.
Decile GMM OLS GMM
CAP1 1:36 1:24 1:33 1:39
CAP2 1:24 1:17 1:22 1:25
CAP3 1:10 1:12 1:09 1:11
CAP4 1:03 1:08 1:02 1:04
CAP5 0:95 1:07 0:94 0:95
CAP6 0:97 1:01 0:96 0:98
CAP7 0:87 0:93 0:85 0:88
CAP8 0:63 0:87 0:62 0:64
CAP9 0:47 0:78 0:46 0:49
CAP10 0:41 0:61 0:40 0:43

Table 6
Value-Weighted Proxy


 95% C.I.
Decile GMM OLS GMM
CAP1 1:27 1:23 1:19 1:36
CAP2 1:26 1:23 1:20 1:33
CAP3 1:33 1:22 1:26 1:39
CAP4 1:27 1:22 1:21 1:32
CAP5 1:21 1:23 1:16 1:26
CAP6 1:17 1:20 1:13 1:21
CAP7 1:13 1:14 1:09 1:16
CAP8 1:06 1:11 1:03 1:09
CAP9 1:11 1:06 1:09 1:13
CAP10 0:88 0:96 0:87 0:90

Notes: CAPi refers to the value-weighted portfolio of common stocks in the ith
size decile. OLS estimates are obtained by regressing Yi;t on Xt and Ym;t. GMM
estimates use the moments from Corollary 1. Con�dence Intervals are based on the
GMM estimates. Source: Author's calculations.
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Table 7
(A test of whether the equal-weighted or value-weighted stock index is the true market portfolio,

given that the CAPM holds.)
Bias-Correctedbd0b��1e bd Std. Error 95% C.I.

EW 0:034 0:005 0:025 0:042
VW 0:043 0:005 0:034 0:052

Notes: EW is the equal-weighted stock index, VW the value-weighted stock index.
The biased-corrected 95% con�dence interval is adjusted for the fact that the estimated
test statistic does not represent the median of the bootstrapped distribution. Source:
Author's calculations.

Table 8
(A test of whether the correlation between innovations to the equal-weighted or value-weighted stock

index and the true market portfolio exceeds �, given that the CAPM holds.)
Mass> ��2 �1

� ��2�1 EW VW
0:90 0:23 100:0% 100:0%
0:80 0:56 100:0% 100:0%
0:70 1:04 90:4% 100:0%
0:62 1:44 5:0% 100:0%
0:60 1:52 1:0% 100:0%
0:50 3:00 0:0% 11:7%
0:49 3:16 0:0% 5:0%
0:40 5:25 0:0% 0:0%

Notes: EW is the equal-weighted stock index, VW the value-weighted stock index.
The �nal two columns report the mass of the bootstrapped distribution that lies above
(��2�1) for the test statistic estimated with the equal-weighted and value-weighted
stock index, respectively. Source: Author's calculations.
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