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I. Introduction 

 

This paper addresses the intersection of two lines of debate in monetary policy. The first of these is the 

degree to which central banks have the ability to influence the real economy in the short run. Perspectives 

on this topic are well-known. For discursive and illustrative purposes, and acknowledging recent 

advances, we use a particularly extreme position, complete rational expectations. Since our conclusions 

can be extended logically into less strict formulations, the use of the monetarist framework is appropriate. 

Under such conditions, Taylor’s (1975) well known conclusion is that the monetary authority can impact 

the real economy only during an expectations formation period at the onset of a new policy regime. At all 

other times, monetary policy has well-understood limited effects on the real economy. 

 

The second debate is the appropriate monetary policy framework or mechanism to use in transition 

environments. Such transitions are clearly important in both persistently high and persistently low 

inflation environments. Case examples of these include Latin America in the 1980s, Japan in the late 

1990s, and Zimbabwe today. Current conclusions are that an inflation targeting regime can contribute to a 

relatively rapid inflation decline in conditions of hyperinflation (see, for example, Bernanke et al. 1999). 

The practice involves ever bolder declarations of inflation targets, and more highly skilled central bankers 

to implement the plans. In each of these cases, credibility plays a crucial role in determining the efficacy 

of the monetary policy regime—and arguably the appropriate method of monetary policy action. In high 

inflation environments, the population will be unlikely to believe announcements of low-inflation policy. 

Even under the assumption of fully rational expectations, if the central bank’s promise is not credible, it 

will take time until the population’s expectations converge to the actual central bank target. Similarly, 

given the Japanese populace’s expectations of the central bank’s low-inflation prejudice, they are unlikely 

to believe the bank’s desire to raise inflation (see, for example, Krugman 1998). In practice, this 
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“transitional expectations” period is a common occurrence in countries undergoing regime changes and/or 

in countries with “sticky” expectations (see Sachs 1990).  

 

In our model, we find that randomization of monetary policy in transition cases provides a better response 

mechanism to the population’s behavior, because it eliminates a portion of the information asymmetry 

problem.  Through such a policy, the monetary authority can “encourage” rapid convergence without an 

increase in credibility or reputation. Consider the following example. Suppose a new government takes 

over monetary policy in a developing country with a “traditional” inflation rate of 40-50 percent a year. 

The new government “knows” that the optimal inflation level is 5 percent. However, since a 5 percent 

target would not be credible, the government would potentially have to announce a higher target or to 

implement a relatively slow convergence plan in an inflation targeting framework.1 We show that if the 

government commits to a so-called “random target,” the situation can change.  The government would 

enact a policy whereby it commits to implement the targeting decisions of a computer run by some 

independent third party.2  The computer in each period would generate a random number based on a 

target around 5 percent, with some small variance.3 Notice that the government’s commitment to a 

randomized policy is credible, because there is no a priori reason why the government is better off under 

the fixed target. Notice as well the distinction here from inflation targeting in that the stated commitment 

of the central bank is to a target that is itself moving, not to a band around a fixed target.  Thus, the 

remaining credibility question is the ability of the bank to implement the computer-generated policy. We 

will show that this mechanism allows for faster expectations convergence than a fixed target. 

 

Monetary policy randomization has potential application in at least three cases. Two of these cover the  

                                                 
1 We argue below that with non-zero discounting, the optimal inflation level is greater in an economy without government 
credibility. 
2 The third party is used to illustrate the feasibility of a trustworthy random draw.  The computer could even be placed within the 
offices of a “trusted” institution outside the country. 
3 In fact, the model will specify that the computer generate a random walk target, though for the sake of explanation, random is 
sufficient at this stage.  
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“high” inflation situation, hyperinflation and persistent inflation. In situations of hyperinflation, a faster 

convergence rate is clearly desirable, especially since most “losses” occur in the short run. The Japanese 

deflation-cum-liquidity trap case is also an example in which expectations are too sticky (this time 

downwards) and in which, for structural and credibility reasons a change in inflationary expectations is 

needed where traditional monetary policy has failed. 

 

We have focused our discussion on such “extreme” cases because we believe lack of credibility to be an 

important limitation in the availability of monetary policy options for such countries. While credibility 

can be built over time, these countries may find themselves too often in a “transitional” period, in which 

credibility building is impractical. Our solution prescribing inflation targeting with a random target rate 

seems to provide at least some improvement in the efficacy of monetary policy in such cases. 

 

The existing literature on gradual vs. “shock” approaches to transition draws either on credibility, or on 

trend or targeting approaches.  Guillermo Calvo’s (1983) model of stochastic price adjustments suggests 

that immediate disinflation can be costless, and Laurence Ball (1994) suggests that a credible and rapid 

disinflation can even prompt a boom.  Thomas Sargent (1994) has suggested that four historic cases of 

hyperinflation were halted through credible institutional change.  While these go some distance in 

resolving new Keynesian concerns of wage and price friction in economic adjustment, they don’t capture 

the credibility constraints at hand in transition environments.  The practical constraints implied in 

targeting approaches are briefly discussed above.   

 

At the intersection of the two debates above, we discuss the interaction between central banks and the 

population under the framework of economic conditions of very high or very low inflation. As alluded to 

above, these cases are reasonably considered to have a set of characteristics dissimilar to “normal” times, 

and consequently a set of monetary policy actions that may reasonably be different as well. Of these, we 

point to two in particular. First, use of credibility as a monetary-policy enhancement tool can potentially 
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result in the two cases mentioned above. In addition to being a successful mechanism for the direction of 

expectations, it can also fail (as in Latin America in the 1980s), or be too successful (Japan in the late 

1990s).  In each of these cases, the actual actions of the central bank take on the central role in the 

formation of expectations; thus, a monetarist style adjustment through intent announcement may be sub-

optimal.  Similarly, gradualist approaches that rely on perfect credibility will be constrained.  Second, the 

use by the monetary authorities of a loss function that ignores the real cost of inflation can be 

inappropriate in some contexts.4  See Woodford (1999) for a derivation of monetary policy loss functions 

from microeconomic foundations.  See also Walsh (2003) and Clarida et al. (1999), where using the 

squared-deviation from optimal inflation as a determinant of social losses may not capture the importance 

of the expected inflation’s deviation from the socially optimal level.  This particular issue is not a new 

debate; see Rogoff (1985), for example, for discussion of anticipated and unanticipated inflation.  This 

can be seen easily in the limiting case of hyperinflation, where the real costs to the economy of high 

inflation cannot be measured solely by the deviation from expected or target inflation.  There is some real 

cost to the inflation itself. 

 

With such a real cost, the government must optimize some social loss function that includes not only the 

cost of deviation from normal inflation, but also the cost of “sticky” inflationary expectations, that is, the 

cost of its own lack of credibility. It must do so in a manner that is consistent with the population’s 

continued attempts to predict inflation. In what follows, we will construct a governmental loss function 

through which the government targets the population’s inflationary expectations.5 Such a social loss 

function seems more appropriate to situations of hyperinflation or chronic deflation than to “normal” 

                                                 
)* 24 The most common generalization of this is, , where n is some macro-variable (real GDP, 

unemployment, etc.), n
Λ t t t tn n= − + −( ) (* 2 χ π π

t
* is the target level of the variable at time t, π is a measure of inflation, and π* is the target level of 

inflation (Svensson, 1999).   
5 By targeting public inflationary expectations, we simply mean that these expectations become part of the government’s loss 
function in a way to be described in more detail below. We do not mean, as do Bernanke and Woodford (1997), that the 
government uses public expectations as a signal for some disturbance in the economy that the public alone can observe; in our 
framework the government has full information. 
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times. We then solve for the government’s optimal inflation target in light of a population with rational 

expectations, but with incomplete information. 

 

Two situations are discussed: a “classic” one in which the government commits to a particular inflation 

target; and our proposal for a “randomized” target, in which the government pre-commits to a particular 

randomization of its inflation target.  In either case, the target inflation rate is unknown to the public.  We 

cover in Section II the rationale behind the ability of the government to obtain real gains through 

monetary policy, even under rational expectations, and we address the effect on expectations formation of 

increased uncertainly in inflation policy.  In order to achieve this increased uncertainty, we use a “random 

target.”  Specifically, this refers to a periodic change in the target inflation rate of the country’s monetary 

authority.  In each time period the target is moved up or down a “notch.”  These “notches” are normally 

distributed.  The result is a random walk in the target inflation rate.  Section III describes our model of 

monetary policy equilibrium in the case of a fixed monetary target. Subsequently, Section IV explains 

optimal monetary policy when the government chooses a random walk inflation target.  The benefits of 

the randomized policy are discussed. We show simulated results in Section V and conclude in Section VI. 

 

II. A transitional expectations framework 

 

In a world of full information and fully rational expectations, monetary policy has limited effect. Indeed, 

economic agents, given full information, can rationally determine the inflation that the government wants 

to achieve, and adjust their prices and wages accordingly. This is clearly not the case in what Taylor 

(1975) describes as a transitional period towards rational expectations, a period during which the central 

bank’s target inflation rate is either not known or not credible. Under such conditions of asymmetric 

information, Taylor shows that monetary policy has a significant impact in the short run, that is, until 

expectations fully adjust to reflect the actual chosen rate. 

 

 6 
 



Taylor uses an output-inflation targeting loss function (that is, the loss is measured in squared deviations 

from some target output level and some target inflation rate, both of which are held constant across time). 

In particular, Taylor is concerned with the potential gains from generating some extra “unexpected” 

inflation. Indeed, suppose that for some reason (fiscal policy distortions, etc.) the current rate of inflation 

(which is fully known by the public and thus also expected by the public) is below the optimal rate. If the 

central bank unexpectedly moves to target the optimal rate, it will obtain some output gains in the 

transitional period until the population learns the new rate. The central bank can capitalize on creating 

“confusion” about the true inflation rate. 

 

At the outset of this project, our hypothesis about the benefits of a random target was the opposite of our 

current conclusion.  Consider the following logic: if an unexpected change in the inflation target generates 

some social gains (or reduce losses due to transition), then increasing the transition period should increase 

those gains (decrease losses). Indeed, if the central bank could “confuse” the public for a longer period, it 

would be better off than under the Taylor model. One might expect, as we did, that randomization would 

create this additional confusion. In fact, further randomization of the monetary rule led to an increased 

ability of the population to discover the target rate, and thus decreased the ability of the central bank to 

generate output gains during the period of transitional expectations.6 Before illustrating this point, let us 

walk through Taylor’s construction. 

 

First, we explain, as Taylor has, the logic behind the inefficacy of monetary policy under rational 

expectations. Suppose the relationship between inflation and unemployment can be shown as7

 
 π φ( ) ( ( )) ( )t u t x t= + 0(.), ′ <φ ,  ,  u0)( * =uφ * > 0.  (1) 

 

                                                 
6 The surprising result led to the formulation of the remainder of this paper: increased randomization can facilitate convergence 
to the government target rate—a particularly useful property in some situations.   
7 For notational convenience and comparability purposes, we have generally adopted Taylor’s notation. 
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Here π(t) and x(t) are the actual and expected rates of inflation, respectively, at each time t.  Taylor further 

assumes that the monetary authority has direct control over the inflation rate through control of the money 

supply,8 so that π(t) is effectively a choice variable. Long-run effects on employment are not possible in 

(1), but short-run effects are. This is a well-known argument made by Phelps, who considers that 

inflationary expectations adapt according to the linear rule: 

 
 dttxttdx )]()([)( −= πβ .  (2) 

 
The government chooses an inflation target that maximizes: 

 

 ,  (3) e−ρtW(x,u)dt
0

∞

∫
 
where W(x,u) is the instantaneous social utility rate, u is the unemployment rate, and β and ρ are discount 

rates. The short-run effects mentioned above are obtained when π(t) is systematically greater than x(t). 

Rational expectations theory suggests that over a period of time, agents understand that their expectations 

based on (2) are biased and modify accordingly. Taylor explains that under rational expectations the 

formulation appears as: 

 
 x t t E t I t( | ) [ ( )| ( )]0 0= π .   (4) 

 
Here I(t0) represents information available at time t0. This explains that under a deterministic policy with 

no uncertainty, φ[u(t)]=0 and u(t)=u* for all t (Taylor 1975).   

                                                 
8 We later relax this assumption in order to add reality and as the mechanism for further uncertainty. 
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III. Monetary policy commitment to a fixed target 

 

From the above argument, it follows that some information asymmetry is necessary in order for the short-

run Phillips curve to have an effect on output. We will thus model the monetary policy effects of central 

bank policies as an incomplete information game between the central bank and the public. The game is set 

in continuous time, so that stochastic random variables are used to model random disturbances.9 The 

public does not have knowledge of the government’s methods or desires, but is able to learn from the 

government’s prior actions.  This is an abstraction that seems appropriate in a situation of low 

government credibility.  Essentially it assumes zero credibility – any announcement is equivalent to none 

at all. The public derives all new information from the actions themselves. Taylor illustrates such a 

system: during the time period when old beliefs mix with new information, the rational expectations 

hypothesis no longer holds, and monetary policy has real and significant effects.  

 

THE MODEL 

 

A. The Government (and Central Bank) 

 

The government commits itself at time t = 0 to a target inflation rate for the economy, which we denote 

by μ. Once the target inflation rate is set, the economy generates an actual inflation rate π(t). We assume 

that the government does not have perfect control over the actual value of the inflation rate that is 

generated. More precisely, π(t) is modeled as a normally distributed random variable, where E[π(t)] = μ 

(thus, the government can control the average inflation rate it generates, but not the actual value). 

                                                 
9 Taylor models the information asymmetry by having the government cum central bank follow an inflation target that is 
unknown to the public.  We consider this construction to be a particularly realistic one. 
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Furthermore, we assume that var[π(t)]=σ, where σ is a known constant depending on the characteristics 

of the interaction between the central bank and the economy.10  

 

To translate these ideas into stochastic calculus equations that can be solved, let us define price level at 

each time t as p(t), and then let z(t) = log[p(t)].  When σ = 0, the government has complete control over 

inflation, and by definition )()( tt μπ = .  With σ > 0, inflation is generated through the diffusion process:   

 
 dvdttdz σμ +=)( ,        (5) 

 
where v(t) is a standard Wiener process with a zero mean and unit variance (that is, at each time t, dv(t) is 

randomly chosen from a normal distribution with mean zero and unit variance). 

 

Once inflation is generated, the public observes it and (as discussed below) forms some inflationary 

expectations x(t) = Epublic[π(t)]. We assume that the government knows the process through which these 

expectations are formed, so the government can infer x(t).  

 

The government also has a negative payoff function or loss function L(t) (see Svensson 1999).11 At this 

point, we will not specify L; suffice it to say that L depends on two arguments, actual inflation π(t) and 

some other target variable (unemployment, or real GDP, etc.) which depends again on inflation and on 

public inflationary expectations, x(t). Since by choosing μ(t) the government determines both π(t) and 

x(t), the government's goal is to choose a target μ that minimizes the expected value of the loss function. 

Indeed, both π(t) and x(t) are stochastic, and the government can control only their distribution, not the 

                                                 
10 A lower σ implies a more precise monetary policy. In particular, we assume that σ is the minimum possible variance; that is, 
the government cannot improve the precision with which it generates inflation beyond this point. 
11 As discussed above, Taylor uses a social welfare function instead of a loss function. We use the loss function because the 
terminology is compatible with more recent papers on monetary policy targeting.  
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actual realized values. In a full commitment regime, the government chooses a value μ that minimizes the 

(discounted) expected future losses, . e E L t dtt−
∞

∫ δ [ ( )]
0

 

B. The Public 

 

At each time t, the public observes the inflation rate π(t) generated in the economy. The public, however, 

does not have a full knowledge of the government's target inflation rate μ. More precisely, consider that at 

time zero the public expects the government's inflation target to be μ(0) = μ0, different from μ. In other 

words, Epublic[μ(0)] = x(0) = μ0. Also, the public belief about the accuracy of this initial guess is such that 

varpublic(μ(0)) = σ0 . We assume throughout that the government knows both μ0 and σ0. The fact that the 

initial public expectations are different from the actual government target may result, as Taylor 

emphasizes, from the fact that the initial basis for expectations of inflation setting is a combination of 

expectations from a new regime and information from an old regime.12 Moreover, the same situation can 

result from a lack of credibility of the “new” government. Such a construction captures the reality that an 

emerging market government’s open commitment to a particularly “low” inflation level, μ, may not be 

entirely credible.  

 

The public is assumed (as in Bernanke and Woodford 1997) to have a quadratic loss function, depending 

on the square of the difference between its inflationary expectations x(t) and the true inflation π(t). It 

follows that the public's goal is to generate at each time t > 0 the most appropriate inflationary 

expectations. The public observes the actual inflation generated at each time t, and based on it and on its 

current inflationary expectations "infers" the most likely inflation target chosen by the government and 

                                                 
12 Under complete rational expectations, the population would be able to calculate the government’s initial action perfectly. 
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adjusts its own expectations. Note that this method assumes that the public knows σ, but not μ.13 Under 

these conditions, it can be shown that the population's inflationary expectations are given by the following 

stochastic differential equation: 

 

 dx t
t

dz t x t dt( )
/

[ ( ) ( ) ]=
+

−
1
2

0
2σ σ

.  (6) 

 
Note that since the above is a stochastic differential equation, the solution will also be stochastic. This 

implies that even under perfect information, the government will not be able to have deterministic 

knowledge of the expectations path x(t). However, as it will become apparent shortly, the government 

only needs to know the mean and the variance of the populations' expectations. 14  

If we define: 

 

 
2

( ) [ ( )]

( ) var [ ( )] [ ( ) ] ( ) ,
government

government government

x t E x t
2x t x t E x t

=

= = x t−
  (7) 

 
then, from the theory of linear stochastic differential equations (Arnold 1974) it follows that these 

deterministic variables are given by the following deterministic differential equations: 

 

 dx t
t

x t
t

dt( ) [
/

( )
/

]= −
+

+
+

1
2

0
2 2

0
2σ σ

μ
σ σ

, with x( )0 0= μ  , and   (8) 

 

 dx t
t

x t
t

dt~( ) [
/

~( )
( / )

]= −
+

+
+

2
2

0
2

2

2
0
2 2σ σ

σ
σ σ

, with ~( )x 0 0
2= σ .   (9) 

 
Solving the above equations for the mean and variance of the inflation expectations we get: 

 

                                                 
13 In particular, it follows that σ0 ≥ σ, because σ imposes a natural limit on the precision of the public’s “guess.” 
14 This is the case because the loss functions that are currently used are quadratic forms. 
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 x t
t

( )
/

= +
−

+
μ

μ μ
σ σ
0

2
0
2 , and        (10) 

     

 ~( )
/

x t
t

=
+

σ
σ σ

2

2
0
2 .         (11)  

 
From this knowledge of the expected path of people’s expectations, the government can set μ 

appropriately to minimize some given loss function (which we outline below).  The population, as 

implied above, simply attempts to have full understanding of the inflation rate in order to set prices and 

wages to match. 

 

 

C. The loss function and the resulting Bayesian equilibrium 

 

The loss function suggested by Taylor in order to derive the government’s optimal policy is a traditional 

one (See Kydland and Prescott (1977) and Barro and Gordon (1983)), associated with a target output 

level (as well as inflation):  

 
 .        (12)  2*2* )()( yyL ttt −+−= λππ

 
However, such a function does not necessarily suggest that rapid transition is optimal; on the contrary, the 

government can benefit if the transition is delayed. To the extent that unanticipated inflation impacts 

unemployment, and thus output, the benefits of a rapid convergence to π* depend on the magnitude of 

output loss and λ. 

 

Such logic, however, seems to reflect poorly the conditions of emerging markets with systemically high 

inflation or the case of Japanese deflation. Clearly the output losses sustained by continued deflation in 
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Japan are not captured by the squared deviation term in the loss function. More precisely, by following 

the Rogoff (1985) reasoning, we use a loss function given by: 

 
 .       (13)  L t A x t B t( ) [ ( ) ] [ ( ) ]*= − + −μ π π2 2

 
Indeed, the Rogoff loss function is constructed as follows. The first term of Rogoff’s loss function is the 

squared deviation from optimal unemployment. This deviation enters the function as a result of the loss 

created from "wrong" wage setting (this affects unemployment and thus output). Firms in his model set 

wages to equal expected inflation in the next period (in our model this corresponds to x(t)). However, the 

ideal wage that would generate the ideal unemployment is the wage firms would choose if they had 

perfect knowledge about future inflation. But in our model, if firms had perfect information they would 

choose a wage μ, as this is the true expected inflation. Since the firms do not know (or do not believe) μ, 

they wrongly set wages to x(t) instead. We thus suggest the introduction in the loss function of a term that 

measures the cost of “sticky” expectations. This term is weighted by a constant factor, A. See Williams 

(1999) and Rudebusch and Svensson (1999) for further discussion.15 Rogoff’s second term is the 

deviation from an "optimal" inflation level, π*. We have included this term as well, weighted by a 

constant B. 

 

Thus, the expected loss, EL(t) is given by: 

 
EL t A E x t B E t A x t B t( ) [ ( ( )) ] [ ( ( )) ] var( ( )) var( ( ))*= − + − + +μ π π π2 2 ,  (14) 

 
but E x t x t E t x t x t t( ( )) ( ) ( ( )) var( ( )) ~( ) var( ( ))= = = ;   ;   and π μ π 2= σ

                                                

. Thus, the expected loss 

function can be re-written as: 

 

 
15 Under the general targeting framework described by Svensson (1999), such a loss function corresponds to a combination of 
inflation targeting and inflationary expectations targeting, where the target inflation rate is π*, and the target expectation is the 
actual policy choice μ.   
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 EL t A x t B Ax t B( ) [ ( ) ] [ ] ~( )*= − + − + +μ μ π2 2 σ 2 .  (15) 

 

In equilibrium, the government thus chooses μ so that 0)/( =∂∂ μTL , where .  dttELeTL t )(
0
∫
∞

= δ

Solving for the optimal μ, we get: 

 

 μ
μ π δ

δ σ

δ
*

*( ) ( / )
/ (

=
+
+

=
+

−∞

∫0
2

0
2 2

0

AI B
AI B

I
e

t
dt

t

 ,  where 
σ/ )

.  (16)  

 
A Bayesian Nash Equilibrium exists in which the government chooses a target inflation rate as described 

above. The population does not know this rate, but its inflationary expectations converge to the above 

rate. Note that with discounting, the equilibrium target rate is not the socially optimal inflation rate. In 

particular, in a hyperinflationary situation, the government will choose a target rate that is higher than 

optimal (a lower rate would not be credible and would generate losses due to sticky expectations). With 

no discounting, the optimal policy is to choose the ideal inflation rate, and this is the same result as 

Taylor's similar model. 

 

 

IV. Monetary policy commitment to a random target 

 

We have seen from the above discussion that the government is constrained to choosing a sub-optimal 

target inflation rate in a situation in which its commitment is not credible. However, if we could manage 

to accelerate the rate at which the public changes its expectations, we would be able to draw closer to the 

socially optimal level of inflation. We model such a possibility below. 
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A. The Government (and Central Bank) 

 

As before, the government chooses at time t = 0 some target inflation rate μ. However, at each time, the 

government “randomizes” its target around μ. More precisely, the government chooses the target rate μ(t) 

to follow a random walk with drift μ,16 and with a variance ω2. Now, inflation is generated according to 

the same rule as before, but it is more volatile, because both the government and the state of the economy 

add uncertainty regarding the final observed inflation rate level. We now have: 

 
 d t dwμ ω( ) = , and μ(0)= μ , and       (17)  

 
 dz t t dt dv( ) ( )= +μ σ .         (18) 

 
Here, v(t) and w(t) are standard Wiener processes with a zero mean and unit variance, independent of 

each other. 

 

B. The public 

 

The public again attempts to “guess” the full-information expected inflation rate μ, based on its initial 

assumptions and on the observed inflation rate, which is an imperfect signal of the true target rate. The 

public’s information set at time t consists of the actual inflation rate, and of the parameters σ and ω.  

 

One can show that the population's inflationary expectations are given by the following stochastic 

differential equation: 

 

                                                 
16 Note that the inclusion of a drift parameter here does not alter the key conclusion that convergence is faster under 
the random targeting framework.  It however provides a potentially more reasonable parameterization of a 
government policy. 
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 dx t
Ce
Ce

dz t x t dt
t

t( ) [ ( ) ( ) ]=
−
+

−α
α

α

2

2

1
1

, where α ω σ
ωσ σ
ωσ σ

= =
+
−

/  and C 0
2

0
2 .  (19) 

 
Again, since this equation will generate stochastic solutions, we look for the (deterministic) paths of the 

mean and variance of the inflationary expectations:  

 

 dx t
Ce
Ce

x t
Ce
Ce

dt
t

t

t

t( ) ( )= −
−
+

+
−
+

⎡

⎣
⎢

⎤

⎦
⎥α μα

α

α

α

α

2

2

2

2

1
1

1
1

, with x( )0 0= μ , and   (20) 

 

 dx t
Ce
Ce

x t
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Solving the above equations for the mean and variance of the inflation expectations we get: 

 

x t
e et t( ) ( )

( ) ( )
= + −

+ + −
= =−μ μ μ

α
α β α β

α
ω
σ

β
σ
σα α0

0
2

2

2
 ,  where  and ; and  (22) 
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x t
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e e

t

t t= + +
− − + − + − + −

+ + −

−

−

α
α

α α β α α α β α α α α β
α β α β

α

α α2
1

2 1 1 1 2 12
2 2 2 2 2 2 2 2

2 . (23) 

 
 

C. The loss function and the Bayesian equilibrium 

 

Again, intuitively, a fast convergence without the benefit of the monetary authority’s full credibility is 

particularly useful in emerging market transition situations. The loss function is described by (13): 

, and the expected loss function by (14): 

 

L t A x t B t( ) [ ( ) ] [ ( ) ]*= − + −μ π π2 2

EL t A E x t B E t A x t B t( ) [ ( ( )) ] [ ( ( )) ] var( ( )) var( ( ))*= − + − + +μ π π π2 2
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Here, E x t x t E t x t x t t( ( )) ( ) ( ( )) var( ( )) ~( ) var( ( ))= = = = ;   ;   and π μ π ω 2 2+ σ .17

 

It follows that the expected loss function can be re-written as: 

 
 EL t A x t B Ax t B( ) [ ( ) ] [ ] ~( ) ( )*= − + − + + +μ μ π ω σ2 2 2 2 .  (24) 

 
Now, both μ and ω are choice variables, and the government thus chooses them so that 

 

 
∂
∂μ

∂
∂ω

δTL TL
TL e EL t dtt= = = −

∞

∫0
0

 ,  where ( ) .   (25)  

 
For simplicity, let’s denote the ratio of ω/σ by α.. Since σ is a constant, choosing ω is the same as 

choosing α. Solving (25) for μ  while holding ω (and thus α.) temporarily constant we get: 

 

μ
μ π

δ
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+
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δ
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e e
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4 2

2
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α
α β α β

α
ω
σ

β
σ
σ

δ

α α[( ) ( ) ]
, .  and  (26) 

 
At this point, μ is a function of α. To solve the problem completely, we would need to determine the 

value of  α  > 0 for which the value of the total loss function is minimized. Unfortunately, the equation is 

too complex to allow for a closed solution; instead some intuitive properties of the optimal policy will be 

derived. 

 

First, let us note that expectations converge faster under the randomized target policy (it is apparent by 

inspection of equations (10) and (22) that the convergence under the fixed target is hyperbolic, while 

under the random target it is exponential). This result is apparently counterintuitive: by randomizing 

monetary policy, that is, creating further uncertainty for the public, the central bank actually makes the 

                                                 
17 It has been suggested that a more appropriate formulation would have .  The authors have tested 
this formulation and the findings are consistent under both.   

22))(var( σωπ += tt
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public converge faster to its true target rate. The key to this apparent contradiction is that by randomizing 

the target, the central bank conveys more rather then less information about its true mean target rate.  

 

Our best understanding of this effect is that the public is more capable of adapting to a band around some 

unknown mean than to the unknown mean itself. Intuitively, in the long-run, the public can assume that 

the mean of any distribution lies at the “center” of accumulated observations, a known band size, despite 

adding to uncertainty of the realization of the mean itself, allows observers to converge more quickly. 

Imagine giving the public knowledge that a band of width X = 3σ must capture over 99 percent of all 

observations. Observations that are separated by some distance close to X will permit close 

approximation of the mean. Under a system where a fixed mean has to be derived, two such observations 

allow less information. 

 

We have thus shown that convergence is faster in the random target case, indicating that the method may 

be useful in a context in which the central bank needs to overcome sticky expectations. On the same 

grounds, it can be shown that I J( , , ) ( , , , ), .σ σ δ ω σ σ δ ω0 0 0≥ ∀ > If we now define the optimal target 

described in (26) as μ*(α) and the optimal commitment target defined in (16) by μ*
F, we notice that both 

μ*(α) and μ*
F  are weighted averages of μ0 and π*, with J and I as weights on the side of μ0. But since J is 

lower than I, it follows that under random targeting a lower weight is put on the public’s initial inflation 

guess. Consequently, the resulting optimal target is closer to the socially optimal π* under random 

targeting than under fixed targeting.18

 

The final question is whether or not the total loss associated with implementing the optimal random target  

                                                 
18 Note, incidentally, that this conclusion does not apply if there is no discounting of the future. If δ = 0, both policies imply 
setting the target inflation rate to the optimal level π*. It is easy to see why this is so: with no discounting of the future, the speed 
with which the convergence takes place is irrelevant compared with the level at which expectations converge. Thus, in order to 
prevent losses from some point t to infinity, expectations have to become arbitrarily close to π*. This can only be achieved if the 
target inflation rate is set to π* as well in both the fixed and the random scenarios. 
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policy is lower than the loss under a fixed target, that is, whether or not 

. Since we cannot solve directly for ωTL TLRandom Fixed F( ( )) ( )* * *μ ω μ≤ *, we cannot check directly 

whether this inequality holds in general (or for particular values of the parameters A, B, σ, σ0, δ). 

However, the inequality seems intuitively possible. Indeed, consider that we start with a fixed target 

policy μ*
F. If at this point we introduce some randomization of the policy (say a small ω), we can reduce 

the target rate to μ*(ω). What are the effects of this small change on the total loss function? First, there is 

the negative effect of generating more volatile inflation; and this effect is weighted by the factor B. There 

exist, however, two positive effects. On the one hand, we have brought the inflationary policy closer to 

the social optimum, which decreases the value of the loss (again scaled by the factor B). On the other 

hand, because randomization leads to faster convergence of the inflationary expectations, we have a 

second improvement in the loss function, scaled by the factor A. Whether the two positive effects 

dominate the negative effect or not will most likely depend on the parameters of the problem, but it is 

conceivable that in the case of “mild” randomization (when α ω σ= ≅/ 0

                                                

), the negative effect on the 

volatility of inflation will not be dominant. 

 

Indeed, it is possible to show mathematically that this is the case under fairly un-restrictive conditions on 

the parameters of the problem. If the initial guess of the public is not accurate, so that σ0 > σ (with strict 

inequality), it can be shown that there exists a continuous range of small values of α (and thus ω) for 

which the total loss associated with an optimal randomized  policy is strictly  lower than the total loss 

associated with an optimal fixed target. This finding suggests that for situations characterized by a high 

degree of uncertainty, randomized targeting both decreases social losses and moves the economy closer to 

the optimal inflation rate.19

 
19 The case σ0 = σ is more difficult to treat mathematically. For this case, we have constructed total loss curves, graphing the 
total loss in the random targeting scenario as a function of the choice of α. The optimal α should be chosen as the point where 
these curves bottom; however, the shape of the curves depends highly on the other parameters of the problem. As a result, 
depending on the particular values of the parameters, there may or may not exist values of α for which the total loss in random 
targeting is lower than the total loss in fixed targeting. 
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V. Some simulations and results 

In this section we provide some basic illustrations of the theoretical results contained above.  We simulate 

a policy game as described above with a 200 period path of inflation.  In each period, given a set of initial 

parameters, we calculate expected inflation, mean squared error and total loss from both the Taylor 

baseline and the random policy.  Our parameters are set as follows.  Recall that σ is the variance of the 

inflation rate, σ0 is the public’s initial expectation of inflation variance, σ* is the government’s choice of a 

variance rate, μ* is defined in equation (26), and μ0 is the public’s initial guess of the government 

inflation target.  We choose parameters as follows: 

 

TABLE I. Parameter set and their values. 
Parameter Value 

    
*σ  0.1 

σ  0.1 

0σ  0.01 
*μ  3% 

0μ  15% 
 

 

Chart 1, below, shows a sample case that might be relevant for a high inflation country.  In this 

circumstance, a change in government policy or other structural shift might lead the population 

to believe that the government has a target of about 15 percent. Note that the exercise is not 

sensitive to this choice. The chart shows a sample time path of inflation under the two cases, 

with a target inflation rate of 3 percent and an initial public guess of the target of 15 percent.  

One can see that under this parameterization, the random policy leads to a more rapid 

convergence to the target rate than the Taylor version.  Chart 2 repeats the exercise given a 
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government in a deflationary environment.  Consider a public that expects an optimal inflation 

rate of -1 percent. 

 

We can also consider the squared error and mean squared error for each of these cases.  Charts 3 

and 4 show the squared error and mean squared error respectively for the high inflation case.  

Charts 5 and 6 show the same for the deflationary case. 

 

VI. Policy implications and conclusions 

 

Under rational expectations theory, central banks automatically achieve rapid convergence of 

public inflation beliefs to the actual rate of inflation. In many cases, this is not plausible 

monetary policy, given credibility constraints. If the public is ignorant of the parameters of the 

government’s optimization problem, then the announcement of a new target will not be 

automatically credible. This may be particularly true in developing countries where, because of 

political instability, the central banks and/or government may minimize a private loss function 

that does not reflect the societal optimization. We find that in such situations, a government can 

achieve faster expectations convergence to an economy’s optimal inflation rate through the use of a 

randomized inflation target. 
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Appendix I: 

Determination of the public's expected inflation path under a fixed inflation target 

As indicated, the public wants to determine the true government inflation target μ. The public cannot 

observe μ directly, but instead observes a noisy signal (inflation) that is based on μ. The equation of the 

signal is: d p dz t dt d[log( )] ( )= = + vμ σ . 

The public thus observes z(t), and must infer the value of μ. This is known as a filtering problem; it was 

solved in continuous time by Kalman and Bucy (Fleming and Rishel 1975, pp. 133-140). The public is 

assumed to start with an initial guess μ0, and then to develop conditional expectations based on current 

knowledge and the observed signal. The expectations value for μ, which we denote by x(t) follows the 

stochastic differential equation: 

 
  , where dx t F t dz t x t dt( ) ( )[ ( ) ( ) ]= − x Epublic( ) [ ( )]0 0 0= =μ μ ,   (A1)  

 
and , where R(t) follows the deterministic differential equation (known as the Ricatti 

equation): 

F t R t( ) ( ) /= σ 2

 

  dR t
R t

dt( )
( )

= −
2

2σ
  with initial condition .     (A2)  R( )0 0

2= σ

 
Solving for R, we get: , and thus . )/1//(1)( 22 σσ += ttR )//(1)( 2

0
2 σσ+= ttF

This implies that the public's expectations follow the stochastic differential equation: 

 

  dx t
t

dz t x t dt( )
/

[ ( ) ( ) ]=
+

−
1
2

0
2σ σ

.      (A3)  

 
Solving for x would generate a solution with a deterministic part and a stochastic part, because x must be 

a stochastic variable. Such a solution would not be particularly interesting, because the government is 

mostly interested in the expected mean and variance of the population's expectations. Let us define: 
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x t E x t

x t x t E x t x t
government

government government

( ) [ ( )]
~( ) var [ ( )] [ ( ) ] ( )

=

= = 2 − 2 .    (A4) 

 
The government also knows μ, so it can rewrite (A3) as: 
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Based on Arnold (1973, pp. 130), we know that the mean and variance of x follow the deterministic 

differential equations: 
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Solving the above equations for the mean and variance of the inflation expectations we get: 

  x t
t

( )
/

= +
−

+
μ

μ μ
σ σ
0

2
0
2 : the mean inflationary expectations; and  (A9) 

 

  ~( )
/

x t
t

=
+

σ
σ σ

2

2
0
2 : the variance of the inflationary expectations.  (A10) 

 
In equilibrium, the population forms rational expectations based on a Bayesian rule. These expectations 

are described by (A3). The government knows (A3), and thus derives the deterministic paths of the 
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expectations’ mean and variance, (A9) and (A10), respectively. Based on these paths, and on its own loss 

function, the government finally chooses the optimal commitment level μ*.  

Appendix II: 

Determination of the optimal government commitment with a fixed target 

 

As justified in the text, the expected loss associated with monetary policy is given by: 

 
 EL t A x t B Ax t B( ) [ ( ) ] [ ] ~( )*= − + − + +μ μ π2 2 σ 2 .  (A11)  

 
The total loss is the integral of the (discounted) losses from the introduction of the policy to infinity:  
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The government then chooses μ to minimize the total loss, by setting the first derivative of the total loss 

with respect to μ to zero. (It is clear from the below expression that the second derivative is positive, so 

this is indeed a minimum). 
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Let us define: , which is a function of δ, σ, and σdtteI t )]//([ 2
00

2 σσδ∫
∞ − += 0, but not μ. Now, setting 

the first derivative of the total loss with respect to the target rate to zero, we get: 

δπμδμδπμμμμ /)/(0/][2)(2/ *
0

*
0 BAIBAIBIATL +=+→=−+−=∂∂ . 

Finally, we obtain: 
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.    (A14)  
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Appendix III: 

Determination of the public's expected inflation path under random targeting 

 

As indicated in the text, the public wants to determine the true government inflation target μ. The public 

knows that μ is generated randomly so that d t dwμ ω( ) = , but cannot observe μ directly. The public 

instead observes a noisy signal (inflation), which is based on μ. The equation of the signal is: 

 
  d p dz t t dt dv[log( )] ( ) ( )= = +μ σ .      (A15)  

 
The public thus observes z(t), and must infer the value of μ(t). The Kalman-Bucy solution for the filtering 

problem is described by the stochastic differential equation: 

 
  dx , where t F t dz t x t dt( ) ( )[ ( ) ( ) ]= − x Epublic( ) [ ( )]0 0 0= =μ μ .  (A16)  

 
As before, , and R(t) follows the deterministic Ricatti equation: F t R t( ) ( ) /= σ 2
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Solving for R, we get: 
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This implies that the public's expectations follow the stochastic differential equation: 
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Let us define as before:  
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Rewriting (A20) based on (A15) and the definition of μ(t), we obtain: 
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Based on Arnold (1973) the mean and variance of x follow the deterministic differential equations: 
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Solving the above equations for the mean and variance of the inflation expectations we get: 
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Appendix IV: 

Determination of the optimal government commitment with a random target 

As before, the expected loss at each time t is given by: 

 
 EL t A x t B Ax t B( ) [ ( ) ] [ ] ~( ) ( )*= − + − + + +μ μ π σ ω2 2 2 2 .  (A28) 

It follows that the total loss is  
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To optimize governmental policy, let us first determine the best monetary target under the temporary 

assumption that ω is constant (that is, not a choice variable). This is achieved by setting the derivative of 

the total loss function with respect to the target rate to zero: 
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Let us define: , which again does not 

depend on μ. Now, setting the first derivative of the total loss with respect to the target rate to zero, we 

get: 
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Finally, we obtain  
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In equilibrium, the government should choose a target inflation rate described by (A31) for any particular 

(predetermined) level of randomization ω. Subsequently, the government should choose the particular 

level of randomization ω* that minimizes the total loss function (A29). Due to the complexities of the 

equations involved, a closed solution for ω* is not available. 

 

Appendix V 

Comparison of expectations convergence speed under fixed and random targets 

 

We attempt to show that the (expected) convergence of the expectations towards the true target rate is 

faster under random targeting (A26) than under fixed targeting (A9). 

Let be an exponential function, with α = ω/σ  as above. Since f is convex, we have 

from Jensen's inequality: 

f t e tt( ) ,= ∈α ℜ
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In particular, let us set: t1 = t; t2 = - t , and . σωσϖω 2/)( 2

0+=s

From the above inequality (A32), we get: 
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But for any value q, we know that . In particular: eq ≥ +1 q
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Based on the fact that σ corresponds to the maximum inflation generation precision, it follows that:  

 

 σ σ
σ
σ

≤ 0 1,  and so we also have: 0
2

2 ≥ .       (A35) 

 
Combining (A33), (A34) and (A35), we get: 

 

  
σω σ

σω
σω σ

σω
σ
σ

α α+
+

−
≥ +−0

2
0
2 2

0
22 2

e e tt t  .     (A36) 

 
Inverting, we obtain: 
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Multiplying by μ0 - μ we obtain: 
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The above equations, together with the equations (A26) and (A9), show that the convergence of 

x towards μ is always faster under random targeting than under fixed rate targeting.  
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Moreover, if we compare (A14) and (A31), with (A37), we find that the weighting factor I that appears in 

the fixed rate optimization problem is always higher than the factor J that appears in the random rate 

optimization. Indeed, squaring (A37) and using the definitions of I and J, we obtain that 

I J≥ ∀ >( ), .ω ω 0  In particular, this implies that the optimal target under randomization will be always 

closer to the socially desired level π* than will the optimal rate under a fixed target policy. 

 

Appendix VI 

Comparison of total losses under fixed and random targets 

We have shown that optimality in the fixed and randomized targeting cases requires the government  to 

choose μF
* and α*, μ R

* (α*) respectively. These choices generate respective values of the loss function of 

TL*
F =TL(μF

*) and TL*
R = TL(μ R

* (α*)). Below, we establish a sufficient (but not necessary) condition  

for TL*
R to be lower than TL*

F. 

For simplicity, calculations below are carried out using the symbols σωα /= and . 22
0 /σσβ =

Lemma 1: Under random targeting, 2 2

0
lim ( ) [ (1 )) /(1 ) ], 0x t t t
α

σ β β
→

t= + + ∀ > . 

Proof of Lemma 1: Starting with the formula for ~( )x t in (A27), we apply the L’Hospital rule 

twice, since α is the only variable factor. The fact that the resulting limit exists and is finite proves the 

lemma (for clarity of exposition, actual calculations are skipped here). 

Lemma 2: Let μF
* be the optimal inflation target chosen under fixed targeting, and TL*

F =TL(μF
*) the 

total loss associated with it. Also, for a given α > 0, let  μ R
* (α) be the optimal inflation target 

chosen under random targeting, and TLR(α) = TL(μ R
* (α)). Then, the following relation 

holds: , with equality iff **

0
))((lim FRR TLTL ≤

→
αμ

α
.1=β   

 Proof of Lemma 2: We know that 
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In the above equality, let us take α ω→ 0,  which also implies 0.→ First of all, from the derivation in 

Appendix V (or simply applying the l’Hospital rule twice) we have that: 
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Second, it is trivial to see that: 

 

      (A40)  2 2 2 2 2

0 0
0 0

lim ( ) ( lim ) .t tB e dt B e dt B e dtδ δ

α α
σ ω σ ω σ

∞ ∞
− −

→ →
+ = + =∫ ∫

0

tδ
∞

−∫
 
Using the above (A39) and (A40) results, we obtain: 
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Based on Lemma 1, we can simplify further: 
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Since by construction β ≥ 1,  it follows that , with equality iff ∫
∞ − ≥+−

0

22 0)1/())1([( dttteA t βββσ δ

β = 1.  

Combining this with (A42), we reach the desired conclusion, namely, that: 

 
  , with equality iff **

0
))((lim FRR TLTL ≤

→
αμ

α
.1=β     (A43) 

 
Lemma 3: With the same notation as above, . lim ( ( ))*

α
μ α

→∞
= ∞TLR R

Proof of Lemma 3: The result is derived trivially by passing α to infinity in (A28) and noticing that the 

first three terms are all positive and that the last one is infinite. 

Theorem 1: If 0σ σ>  , that is, if  1β > , then ∃ > =ω α ω σ0 (and thus / ) , such that  

    TL TLR R F( ( )) ( , )*μ α α α< ∀ ∈ 0 . 

Proof of Theorem 1: Since β > 1, we know from Lemma 2 that , This 

implies that there exists a neighborhood of zero, say, N = (0, 2ε) with ε >  0,  such  that: 

**

0
))((lim FRR TLTL <

→
αμ
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       (A44) ).2,0(,))(( ** εεαμ =∈∀< NTLTL FRR

 
In particular, it follows that: 

 
          (A44a) *0 ( ( ))R R FTL TLε μ ε∃ > ∴ < * .

 
From Lemma 3, we know that  This implies that there exists a neighborhood of 

infinity, say N’ = (δ/2,∝) with δ > ε  > 0,  such  that: 
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In particular, it follows that: 

 
         (A45a) ** ))(( FRR TLTL >∴>∃ δμεδ

 
The expressions (A44a) and (A45a) show that the function takes values both below and 

above TL*

TLR R( ( ))*μ ⋅

F. But TL is a continuous function of α, and thus (A44a) and (A45a) guarantee that: R R( ( ))*μ α

 
    ∃ ∈       (A46) ∴ =( , ) ( ( )) .*α ε δ μ αTL TLR R F

 
Let us now define the set A as follows: . Expression (A46) guarantees 

that the set A is non-empty. Let  

** ))((|0{ FRR TLxTLxA =>= μ

α = inf
x

A . We can easily see that α > 0 . Indeed, if this were not the 

case, there would exist points x arbitrarily close to zero such that TL But this contradicts 

(A45), which says that there exists an entire neighborhood of zero with points for which the relation 

above is not true. 

x TLR R F( ( ))*μ = .

 

We contend now that the α > 0  as defined above has the desired property: 

),0())(( ** αεαμ ∈∀< FRR TLTL . 

Indeed, suppose by contradiction that this were not the case, that is, 

 
 ∃ ∈ ∴ >θ α μ θ( , ) ( ( ))*0 TL TLR R F       (A47) 

 
From (A45) we know that  must take a value lower than TL*TLR R( ( ))*μ ⋅ F in ( , )0 α . If (A47) were true, 

then the function would also take a value greater than TL*F.  By reason of continuity of the function 

, we conclude that TLR R( ( ))*μ ⋅ ** ))((),0( FRR TLTL =∴∈∃ γμαγ .  It follows that γ ∈ A and thus, by 

construction, γ α≥ = inf .
x

A  But this contradicts the fact that by construction  γ α∈ ( , )0 . It follows that 

(A47) cannot be true, and thus we conclude that: 
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  ),0())((0 ** ααμα ∈∀<∴>∃ FRR TLTL      (A48). 

Figures: 

 

 

 

Figure 1: Inflation Vs. Time: High Inflation Case 
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Plot of inflation vs. time with a government target inflation rate of 3 percent and a public guess of 

the target at 15 percent. The parameters for the calculation are as follows: *σ  = 0.1, σ  = 0.1, 

0σ  = 0.01, 
*μ  = 3, and 0μ  = 15.  
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Figure 2:  Inflation Vs. Time: Deflation Case 
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Plot of inflation vs. time for the deflationary case of a government target inflation rate of 3 percent 
and a public expectation of the optimal inflation rate at -1 percent. The parameters for the calculation 

are as follows: *σ  = 0.1, σ  = 0.1, 0σ  = 0.01, 
*μ  = 3, and 0μ  = -1. 
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Figure 3: Squared Error for High Inflation Case. 
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Plot of the squared error for Figure 1, with a government target inflation rate of 3 percent and a 
public guess of the target at 15 percent. 
 

 39 
 



 
 
 
 
 
 
 

Figure 4:  Mean Squared Error for High Inflation Case. 
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Plot of the mean squared error for Figure 1, with a government target inflation rate of 3 percent and a 
public guess of the target at 15 percent. 
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Figure 5:  Squared Error for Deflation Case. 
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Plot of the squared error for Figure 2, with a government target inflation rate of 3 percent and a 
public guess of the target at -1 percent. 
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Figure 6:  Mean Squared Error for Deflation Case. 

0

2

4

6

8

10

12

14

16

18

1 21 41 61 81 101 121 141 161 181 201

Mean Squared Error under Randomness
Mean Squared Error under Taylor

 

Plot of the mean squared error for Figure 2, with a government target inflation rate of 3 percent and a 
public guess of the target at -1 percent. 
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