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1 Old Ideas, New Models

Inflation has come full circle. Low before 1960, it rose during the 1960s and peaked during

the 1970s. From this peak, it fell during the 1980s, finally stabilizing during the 1990s at

levels very similar to those prevailing before 1960. This same circular pattern appears in

data from virtually all the major industrialized countries–in North America, in Europe, and

in Asia–as shown, for example, by Mussa (2000, Table 1, p.1103).

Monetary economists and central bankers have also come full circle. Concerned mainly

with halting and reversing inflation’s upward trend during the 1970s and 1980s, analysts and

policymakers have more recently rediscovered some of the special problems that can arise

under conditions of price stability. These problems received much attention long ago but

were ignored for more than a generation. Now they have taken center stage once again.

Chief among these problems are those associated with the liquidity trap, which, according

to Hicks (1937), lies at the core of Keynes’s (1936) economics. Krugman (1998) and Svensson

(1999) reconsider the idea of the liquidity trap using state-of-the-art monetary models in

which optimizing agents have rational expectations. In both Krugman’s cash-in-advance

model and Svensson’s money-in-the-utility-function model, households become willing to

hoard any additional money that the government chooses to supply after the nominal interest

rate reaches its lower bound of zero. The central bank then loses control of the price level

and perhaps other key variables as well.

Notably absent from these new models of the liquidity trap, however, is another old idea:

that of the real balance effect. First discussed by de Scitovszky (1941), Haberler (1946),

and Pigou (1943) and developed most extensively by Patinkin (1965), the real balance effect

describes a channel through which a change in real balances, caused either by a change in the

nominal money supply or by a change in the nominal price level, impacts household wealth

and thereby affects consumption and output. The real balance effect allows the central bank

to influence the economy even after the nominal interest rate hits its lower bound. Yet this

effect appears nowhere in Krugman’s and Svensson’s analyses. Why?
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It has been widely appreciated, since the publication of Barro’s (1974) famous paper on

Ricardian equivalence, that government bonds will not be perceived as a source of private-

sector wealth if the households owning those bonds are the same households that must pay

all of the taxes that will eventually be used to retire the government’s debt. Less widely

appreciated, however, is a closely related finding, presented most explicitly by Weil (1991),

but also implicit in earlier work by Sachs (1983) and Cohen (1985). These authors show

that government-issued fiat money will not be perceived as a source of private-sector wealth

if the households owning that money are the same households that, first, receive all of the

transfers or pay all of the taxes associated with future changes in the money supply and that,

second, incur all of the opportunity costs associated with carrying the money stock across

all future periods. In fact, Krugman’s and Svensson’s representative-agent models describe

environments in which money is not net wealth. In these models, therefore, the real balance

effect disappears.

This paper extends Krugman’s cash-in-advance framework by introducing growth in the

number of infinitely lived households as modeled by Weil. The paper shows that with a

growing population, households alive in the present pay only a fraction of the taxes levied

in the future when the government chooses to contract the money supply. Money becomes

net wealth and, consequently, an operative real balance effect gives the central bank control

over the price level even when the nominal interest rate equals zero. Only in the special case

without population growth–the special case in which the more general model developed

here collapses to Krugman’s original specification–does the liquidity trap survive.

Introducing population growth in the manner suggested by Weil also serves to resolve a

second puzzle that emerges out of Krugman’s and Svensson’s earlier analyses. By associating

the case of zero nominal interest rates with the Keynesian liquidity trap, Krugman and

Svensson conjure up images of terrible economic outcomes: the Great Depression in the

United States or the ongoing lengthy and severe recession in Japan. As emphasized by Cole

and Kocherlakota (1998), however, zero nominal interest rates in models such as Krugman’s
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and Svensson’s are actually associated with highly desirable resource allocations. In fact,

zero nominal interest rates in these models are linked more closely to Friedman’s (1969) rule

for the “OptimumQuantity of Money” than to what Hicks (1937, p.155) calls the “Economics

of Depression.” But are zero nominal interest rates always good for the economy?

Weiss (1980), Freeman (1985, 1989, 1993), and Smith (2002) all present examples of

overlapping-generations models in which the Friedman rule fails to maximize private agents’

steady-state utility. Bhattacharya, Haslag, and Russell (2004) unify and explain these results

by tracing them back to distributional effects that are absent in representative-agent models

like Krugman’s and Svensson’s. This paper also shows that distributional effects–the same

distributional effects, as a matter of fact, that give rise to the real balance effect–operate

once population growth is introduced into Krugman’s cash-in-advance model. Here, these

distributional effects can make virtually all households much worse off under zero nominal

interest rates than they are when interest rates are positive.

On the other hand, Bhattacharya, Haslag, and Russell (2004) also demonstrate that in

overlapping-generations models, the Friedman rule’s optimality is typically restored when

offsetting fiscal transfers are used to neutralize the distributional effects that deflationary

policies would otherwise have.1 This result, too, carries over to the model studied here with

growth in the number of infinitely lived households. In the end, therefore, this paper joins

with Bhattacharya, Haslag, and Russell’s by suggesting that the principal dangers posed

by deflationary policies have little to do with zero nominal interest rates per se and even

less to do with the Keynesian liquidity trap. Rather, both the problems and their ultimate

solutions lie in the mechanics through which deflationary policies are implemented.
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2 An Extended Cash-in-Advance Model

2.1 Overview

Here, Weil’s (1991) continuous-time, money-in-the-utility-function model with a growing

number of infinitely lived households is recast as a discrete-time, cash-in-advance model.

Weil’s original specification assigns to each household a utility function that is strictly in-

creasing in two arguments: consumption and real money balances. Since households cannot

be satiated by any finite stock of real balances, equilibria in Weil’s original model exist

only under strictly positive nominal interest rates, ruling out an analysis of the case that

Krugman (1998) associates with the liquidity trap. Of course, one could also modify Weil’s

model in a manner consistent with Svensson (1999), by introducing a satiation point beyond

which the marginal utility of real balances equals zero. The cash-in-advance framework used

here, however, incorporates the satiation point for real balances in a way that is linked more

naturally to the volume of each household’s nominal expenditures.

Whitesell (1988) presents a model that is quite similar to Weil’s and uses that model to

study the effects of money growth on the capital stock and welfare. In fact, bothWeil’s model

and Whitesell’s can be viewed as extensions of Blanchard’s (1985) model of finite horizons.

In Blanchard’s model, each agent faces a constant probability of death; meanwhile, newborn

agents arrive at a rate that keeps the total population constant. Buiter (1988) generalizes

Blanchard’s model so as to break the tight link between birth and mortality rates. Buiter’s

analysis reveals that it is the arrival of newborn agents, rather than the finite horizons of

existing agents, that is essential in overturning Barro’s (1974) Ricardian equivalence result–

a result that, as noted above, relates closely to the presence or absence of monetary wealth

effects. Thus, the model used here, like the models used by Weil and Whitesell, retains the

essential feature of population growth in an environment where all agents are infinitely lived.

And conveniently, this more general model nests, as the special case in which the population

growth rate equals zero, the conventional specification that features a single infinitely lived
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representative agent.

Weil’s model, in which goods are received by each household in the form of a constant

endowment, is also extended here by allowing each household to produce output with labor.

Here, as in Wilson (1979), Cooley and Hansen (1989), Cole and Kocherlakota (1998), and

Ireland (2003), positive nominal interest rates distort households’ labor supply decisions.

Thus, the structure of production and trade gives rise to a mechanism that might make the

central bank want to follow the Friedman (1969) rule, which provides for zero nominal interest

rates. And, indeed, the Friedman rule is optimal in the special case where the population

growth rate equals zero. When the population grows at a positive rate, however, the taxes

that the government must levy to implement the Friedman rule generate distributional effects

that can make zero nominal interest rates quite costly for many agents.

2.2 Demographic Structure

A new cohort of infinitely lived households is born at the beginning of each period t =

0, 1, 2, .... Those households born in a particular period t = s belong to cohort s. The arrival

of new cohorts causes the total number of households to grow at the constant rate n ≥ 0.

Let Nt denote the number of households alive during period t. Then given N0 > 0,

Nt+1 = (1 + n)Nt

for all t = 0, 1, 2, ....

Households of a given cohort are identical, so it is possible to consider a representative

household for each cohort. The representative household of cohort s has preferences described

by the utility function
∞∑

t=s

βt−s ln[cst − (1/γ)(h
s
t)
γ], (1)

where 1 > β > 0, γ > 1, cst denotes the household’s consumption, and hst denotes the

household’s hours worked during period t. This specification for utility implies that the
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marginal rate of substitution between consumption and hours worked depends only on hours

worked, so that in particular there are no wealth effects on labor supply. Here, this special

assumption greatly simplifies the aggregation of quantities chosen by households of different

cohorts having different levels of accumulated financial wealth.2

Thus, during any given period, the economy consists of many infinitely lived agents of

varying ages. As suggested by Weil (1991) and Whitesell (1988), therefore, the population

growth rate n serves as a measure of financial disconnectedness and heterogeneity in the

economy as a whole. In the special case with n = 0, however, the model collapses to the

more familiar one in which there is a single infinitely lived representative agent.

2.3 Timing of Events

The representative household of cohort s enters each period t = s, s+1, s+2, ... with money

Ms
t and bonds B

s
t . Only the initial cohort is endowed with money at birth, and no cohort

is endowed with bonds at birth, so that M0
0 > 0 but Ms

s = 0 for all s = 1, 2, 3, ... and

Bs
s = 0 for all s = 0, 1, 2, .... As emphasized by Weil (1991) and Whitesell (1988), these

initial conditions formalize the idea that newborn households are not linked financially to

previously-existing dynasties.

The representative household of each cohort s receives a lump-sum monetary transfer

T st from the central bank at the beginning of each period t = s, s + 1, s + 2, .... Also at

the beginning of each period, existing bonds mature, providing the representative household

of cohort s with Bs
t additional units of money. The household uses some of its money to

purchase Bs
t+1 new bonds at the price of 1/(1+rt) units of money per bond, where rt denotes

the net nominal interest rate between t and t+1; the household carries the rest of its money

into the goods market.

The description of goods production and trade builds on Lucas’s (1980) interpretation

of the cash-in-advance model. Each household consists of two members: a shopper and a

worker. The shopper from the representative household of cohort s purchases cst units of
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output from workers from other households, subject to the cash-in-advance constraint

Ms
t + T st +Bs

t −Bs
t+1/(1 + rt) ≥ Ptc

s
t , (2)

where Pt denotes the nominal price of goods during period t. Meanwhile, the worker from

the representative household of cohort s uses hst units of labor to produce y
s
t units of output

according to the constant-returns-to-scale technology that yields one unit of output for every

unit of labor input:

yst = hst .

The worker sells this output to shoppers from other households for Pth
s
t units of money. The

representative household’s two members then reunite to consume the shopper’s purchases.

The household carries Ms
t+1 units of money into period t + 1; its choices must satisfy the

budget constraint

Ms
t + T st +Bs

t + Pth
s
t ≥ Ptc

s
t +Bs

t+1/(1 + rt) +Ms
t+1. (3)

In addition to the cash-in-advance and budget constraints (2) and (3), which must hold

for all t = s, s + 1, s + 2, ..., the representative household’s choices must satisfy a set of

nonnegativity constraints:

hst ≥ 0, M
s
t+1 ≥ 0, c

s
t − (1/γ)(h

s
t)
γ > 0 (4)

for all t = s, s+ 1, s+ 2, .... The first two constraints in (4) are standard; the third must be

imposed, given the special form of the utility function (1).

The representative household of cohort s can borrow by choosing negative values for Bs
t+1

but is not allowed to engage in Ponzi schemes through which it borrows more than it can
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ever repay. To formalize the constraints that rule out such Ponzi schemes, let Q0 = 1 and

Qt =
t−1∏

u=0

(
1

1 + ru

)

for all t = 1, 2, 3, .... Then for any T ≥ t ≥ 0, QT/Qt measures the present discounted value

at the beginning of period t of one unit of money received at the beginning period T . The

no-Ponzi-scheme constraints are

W s
t+1 =Ms

t+1 +Bs
t+1 +

∞∑

u=t+1

(Qu/Qt+1)(T
s
u + Puh

s
u) ≥ 0 (5)

for all t = s, s + 1, s + 2, .... Part 1 of the appendix shows that these no-Ponzi-scheme

constraints imply that the infinite-horizon budget constraint

Qt(M
s
t +Bs

t ) +
∞∑

u=t

Qu(T
s
u + Puh

s
u) ≥

∞∑

u=t

Qu

[
Puc

s
u +

(
ru

1 + ru

)
Ms
u+1

]
(6)

applies to the household’s choices from period t forward. This infinite-horizon budget con-

straint includes, as sources of funds, the household’s beginning-of-period nominal balances

Ms
t as well as the present discounted value of the monetary transfers that the household re-

ceives from period t forward. It also includes, as uses of funds, the present discounted value

of the opportunity costs that the household incurs when it carries money instead of bonds

between all future periods. Ultimately, a comparison between the values of these three items

will determine whether or not the real balance effect is operative in general equilibrium.

2.4 Household Optimization

Taking the initial conditions Ms
s and B

s
s as given, the representative household of cohort s

chooses sequences {cst , h
s
t ,M

s
t+1, B

s
t+1}

∞
t=s to maximize the utility function (1) subject to the

constraints (2)-(5), each of which must hold for all t = s, s + 1, s + 2, .... Equivalently, (3)

and (5) can be replaced by (6) in this statement of the household’s problem.
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Define the real variables

ms
t =Ms

t /Pt, b
s
t = Bs

t /Pt, τ
s
t = T st /Pt,

and let πt denote the net inflation rate between t− 1 and t:

1 + πt = Pt/Pt−1.

In addition, let

1 + xt = (1 + rt)/(1 + πt+1) (7)

define the net real interest rate xt during period t, and let

ast = ms
t + bst (8)

summarize the representative household’s real asset position at the beginning of period t.

Part 2 of the appendix demonstrates that in terms of these newly-defined variables, the

conditions

hst =

(
1

1 + rt

)1/(γ−1)
, (9)

(1 + πt+1)m
s
t+1 ≥ hst , rt ≥ 0, rt[(1 + πt+1)m

s
t+1 − hst ] = 0, (10)

cst =
1

γ

(
1

1 + rt

)γ/(γ−1)
(11)

+(1− β)

{

ast +
∞∑

u=t

[
u−1∏

v=t

(
1

1 + xv

)][

τ su +

(
γ − 1

γ

)(
1

1 + ru

)γ/(γ−1)]}

,

and

ast+1 = (1 + xt)

[

ast + τ st +

(
1

1 + rt

)γ/(γ−1)
− cst

]

(12)
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for all t = s, s+ 1, s+ 2, ... and

lim
t→∞

[
t∏

v=s

(
1

1 + xv

)]

ast+1 = 0 (13)

are both necessary and sufficient for a solution to the household’s problem.

Equation (9) confirms that positive nominal interest rates distort the household’s labor

supply decisions, as discussed byWilson (1979), Cooley and Hansen (1989), Cole and Kocher-

lakota (1998), and Ireland (2003). Equation (10) restates the cash-in-advance constraint. It

reveals that when the nominal interest rate hits its lower bound of zero, the cash-in-advance

constraint no longer binds; this is the case that Krugman (1998) associates with the liquidity

trap.

Equation (11) defines the household’s consumption function, which, according to the

permanent income hypothesis, links consumption to total wealth. Embedded in the right-

hand side of (11) are the same three components of monetary wealth identified in (6): the

household’s current money balances, the present discounted value of the future monetary

transfers, and the present discounted value of the opportunity costs associated with carrying

money instead of bonds across future periods. Once again, a comparison among the values of

these three items will determine whether or not the real balance effect appears in equilibrium.

Equation (12) governs the evolution of the household’s financial wealth. It shows that

the household accumulates wealth as it earns interest on its existing assets and as it receives

monetary transfers from the government; the household also accumulates wealth by working

more and consuming less. Finally, (13) is the household’s transversality condition. If the

limit on the left-hand side of (13) were negative, then the household would be violating

the no-Ponzi-scheme constraints in (5); if, on the other hand, the limit were positive, then

the household could achieve a preferred consumption profile, without violating any of its

constraints, by drawing down its stock of financial assets.
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2.5 Aggregation

Define aggregate per-household financial wealth during period t as

at =
N0a

0
t +

∑t
s=1(Ns −Ns−1)a

s
t

Nt
,

and define aggregate per-household real money balances mt, real bond holdings bt, hours

worked ht, and consumption ct similarly. Also, and importantly, let

τ t =
N0τ

0
t +

∑t
s=1(Ns −Ns−1)τ

s
t

Nt

denote aggregate per-household real money transfers made to all agents alive during period

t, and let

τu,t =
N0τ

0
u +

∑t
s=1(Ns −Ns−1)τ

s
u

Nt

denote aggregate per-household real monetary transfers made during period u ≥ t to those

households that were alive during period t. Then, of course, τ t,t = τ t for all t = 0, 1, 2, ....

But for u = t+1, t+2, t+3, ..., τu,t will generally differ from τu, since some of the monetary

transfers made during period u may go to households born during periods t+ 1 through u.

In terms of these aggregates, (8)-(12) become

at = mt + bt, (14)

ht =

(
1

1 + rt

)1/(γ−1)
, (15)

(1 + n)(1 + πt+1)mt+1 ≥ ht, rt ≥ 0, rt[(1 + n)(1 + πt+1)mt+1 − ht] = 0, (16)

ct =
1

γ

(
1

1 + rt

)γ/(γ−1)
(17)

+(1− β)

{

at +
∞∑

u=t

[
u−1∏

v=t

(
1

1 + xv

)][

τu,t +

(
γ − 1

γ

)(
1

1 + ru

)γ/(γ−1)]}

,
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and

at+1 =

(
1 + xt
1 + n

)[

at + τ t +

(
1

1 + rt

)γ/(γ−1)
− ct

]

(18)

for all t = 0, 1, 2, .... While (14)-(16) are straightforward analogs to (8)-(10), a comparison

of (17) with (11) reveals that aggregate per-household consumption during period t depends

on the real value of future monetary transfers, but only to the extent that those transfers

will be made to households that are alive during period t. Similarly, a comparison of (18)

with (12) suggests that aggregate per-household financial wealth tends to grow at a slower

rate than each individual household’s financial wealth, since newborn households start their

lives without money and bonds.

2.6 Equilibrium Conditions

Equations (7) and (14)-(18) form a system of six equations in the ten aggregate variables

xt, rt, πt+1, at, mt, bt, ht, ct, τ t, and τu,t. This system can be closed by imposing the

market-clearing conditions for goods and labor,

ht = ct (19)

for all t = 0, 1, 2, ..., and by making assumptions about the government’s supply of money

and bonds.

Accordingly, suppose first that the government issues no bonds. Then, in equilibrium,

bt = 0 (20)

must also hold for all t = 0, 1, 2, .... Note that (20) only requires that aggregate per-household

bonds equal zero; it does not rule out the possibility that for any individual household, bst

will be nonzero as households of different cohorts borrow and lend among themselves by

trading bonds.
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Suppose next that the government acts to expand the total nominal money supply at

the constant rate σ by making equal lump-sum transfers to all households alive during each

period. Then, in equilibrium,

τ t = σmt (21)

and

τu,t = σmu (22)

will hold for all t = 0, 1, 2, ... and u = t, t+ 1, t+ 2, ....

Under government policies described by (20)-(22), (14) immediately implies that

at = mt, (23)

while (7) and (15)-(18) become

1 + xt = (1 + rt)/(1 + πt+1), (24)

ct =

(
1

1 + rt

)1/(γ−1)
, (25)

(1 + n)(1 + πt+1)mt+1 ≥ ct, rt ≥ 0, rt[(1 + n)(1 + πt+1)mt+1 − ct] = 0, (26)

ct =
1

γ

(
1

1 + rt

)γ/(γ−1)
(27)

+(1− β)

{

mt +
∞∑

u=t

[
u−1∏

v=t

(
1

1 + xv

)][

σmu +

(
γ − 1

γ

)(
1

1 + ru

)γ/(γ−1)]}

,

and

mt+1 =

(
1 + xt
1 + n

)[

(1 + σ)mt +

(
1

1 + rt

)γ/(γ−1)
− ct

]

(28)

for all t = 0, 1, 2, .... Given the government’s choice of the money growth rate σ, (24)-(28)

determine the equilibrium behavior of the five aggregate variables xt, rt, πt+1, mt, and ct;
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paths for the remaining five aggregates at, bt, ht, τ t, and τu,t then follow immediately from

(19)-(23).

2.7 Steady-State Equilibria

Equations (24)-(28) imply that under a policy of constant money growth σ via equal lump-

sum transfers, a steady-state equilibrium exists in which aggregate variables are constant

over time, with xt = x, rt = r, πt+1 = π, mt = m, and ct = c for all t = 0, 1, 2, ....3 Part 3

of the appendix demonstrates that, more specifically, (24)-(28) require the five steady-state

values x, r, π, m, and c to satisfy

1 + x = (1 + r)/(1 + π), (29)

1 + π = (1 + σ)/(1 + n), (30)

c =

(
1

1 + r

)1/(γ−1)
, (31)

(1 + σ)m ≥ c, r ≥ 0, r[(1 + σ)m− c] = 0, (32)

and

c =
1

γ

(
1

1 + r

)γ/(γ−1)
(33)

+(1− β)

{[
1 +

(
1 + x

x

)
σ

]
m+

(
γ − 1

γ

)(
1 + x

x

)(
1

1 + r

)γ/(γ−1)}

.

Equation (29) defines the steady-state real interest rate as the difference between the

nominal interest rate and the inflation rate; similarly, (30) determines the steady-state in-

flation rate as the difference between the money growth rate and the population growth

rate. Equation (31) confirms that, across steady-state equilibria, higher nominal interest

rates reduce consumption and output as well as employment. Equation (32), derived from

the cash-in-advance constraint, describes the aggregate demand for money, while (33) is the

15



aggregate consumption function with the steady-state conditions imposed.

3 The Liquidity Trap and the Real Balance Effect

What do the steady-state conditions (29)-(33) imply about the behavior of the economy and

the efficacy of monetary policy under zero nominal interest rates? To answer this question,

it is helpful to consider two cases. The first case sets n = 0, so that there is no population

growth. This first case is therefore the special case in which the more general model developed

here reduces to the familiar specification, used by Krugman (1998) and many others, in which

there is a single representative agent. And, indeed, Krugman’s liquidity trap appears in this

special case: the central bank loses control over the price level when the nominal interest

rate hits its lower bound of zero. In the second case with n > 0, however, a real balance

effect emerges, enabling the central bank to control the price level even under a zero nominal

interest rate.

3.1 The Liquidity Trap

When r = 0 and n = 0, so that both the nominal interest rate and the population growth

rate equal zero, (29)-(31) and (33) imply that

1 + σ = 1 + π = β, (34)

1 + x = 1/β, (35)

and

c = 1. (36)

In this steady state, the central bank follows the Friedman (1969) rule, contracting the money

stock at the rate of time preference and generating a rate of deflation that is consistent with

the zero nominal interest rate. As in Sidrauski’s (1967) famous model, the steady-state
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real interest rate is pinned down by the rate of time preference; and as discussed below,

consumption, output, and employment are at their Pareto-optimal levels.

But while (34)-(36) provide unique solutions for π, x, and c, the cash-in-advance con-

straint (32) requires only that

m ≥ 1/β. (37)

Since r = 0, the opportunity cost of holding money instead of bonds is zero. Households are

therefore willing to hoard arbitrarily large stocks of real money balances. A continuum of

steady-state equilibria exists, each corresponding to a value of m that satisfies (37).

Thus, in this case without population growth, the model exhibits what McCallum (1986,

p.137) refers to as solution “multiplicity,” as opposed to the less severe problem of price-level

“indeterminacy.” Multiple values of the real balance variable m satisfy (37). Hence, even if

the central bank chooses an initial value M0
0 for the level of the nominal money supply in

addition to the constant money growth rate σ, there are still many distinct time paths for

the price level that are consistent with all of the steady-state conditions.

One can, therefore, follow Krugman (1998) by associating this case with the Keynesian

liquidity trap. Here, variations in the government’s choice ofM0
0 , holding the money growth

rate σ fixed, need not be associated with movements in the price level. With nominal interest

rates frozen at their lower bound of zero, the central bank loses the ability to influence the

behavior of prices.

3.2 The Real Balance Effect

When r = 0 but n > 0, the nominal interest rate continues to equal zero, but the population

grows at a positive rate. Equations (29)-(31) and (33) imply that

1 + π = (1 + σ)/(1 + n), (38)

1 + x = (1 + n)/(1 + σ), (39)
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c = 1, (40)

and

m =
(γ − 1)[β(1 + n)− (1 + σ)]

γ(1− β)(1 + σ)n
, (41)

while (32) requires that the money growth rate satisfy

β(1 + n)− n(1− β)

(
γ

γ − 1

)
≥ 1 + σ. (42)

There is, in addition to (42), a second condition that places restrictions on the money

growth rate when n > 0: the condition cst − (1/γ)(h
s
t)
γ > 0 from the set of nonnegativity

constraints in (4). Part 4 of the appendix shows that in a steady state, this additional

condition holds if and only if

1 + σ > β. (43)

Intuitively, (42) requires the money growth rate to be low enough to be consistent with a zero

nominal interest rate, while (43) guarantees that the lump-sum taxes required to implement

a policy of zero nominal interest rates do not become so large that newborn households

cannot afford to pay them and still consume. So long as β is sufficiently close to one or,

more precisely, so long as β > γ/(2γ − 1), the upper bound in (42) exceeds the lower bound

in (43), and there is a range of values for σ that satisfies both constraints.4

Equation (39) reveals that in this case with population growth, the steady-state real

interest rate is no longer tied to the rate of time preference; instead, a Tobin (1965) effect

arises through which the real interest rate falls when the money growth rate rises. This Tobin

effect also appears under positive nominal interest rates, as discussed by Weil (1991) and,

more extensively, Whitesell (1988). Here, in fact, the presence of the Tobin effect explains

why equilibria with zero nominal interest rates exist over the entire range of money growth

rates σ satisfying (42) and (43): across these equilibria, a decrease in inflation brought about

by a decrease in the money growth rate is accompanied by an offsetting rise in the real interest
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rate, leaving the nominal interest rate constant at zero. Note from (41), however, that each

of these equilibria with zero nominal interest rates features a different level of aggregate

per-household real money balances; moreover, as shown below, patterns of consumption and

asset ownership for each individual household differ greatly across these zero-interest rate

equilibria.

For any given rate of money growth satisfying (42) and (43), however, (41) serves to

uniquely determine the level of steady-state real balances. Thus, by selecting the initial

value M0
0 for the level of the nominal money supply as well as the money growth rate σ,

the central bank can, through its choice of policy, determine a unique path for the nominal

price level. This result–that when n > 0, m is uniquely determined, even when r = 0–

cannot be found in Weil (1991) or Whitesell (1988), since their money-in-the-utility-function

specifications require the nominal interest rate to be positive. But why does Krugman’s

(1998) liquidity trap vanish when n becomes positive?

Sachs (1983), Cohen (1985), and Weil (1991) identify the three components of the private

sector’s monetary wealth that appear explicitly in the infinite-horizon budget constraint (6)

and implicitly in the consumption functions (11), (17), (27), and (33). First, there is the

value of the current period’s money supply. Second, there is the present discounted value of

all future transfers or taxes that households alive today will receive or pay as the government

expands or contracts the money supply over time. Third, there is the present discounted

value of the opportunity costs that households alive today will incur as they carry money

instead of bonds across all future periods. When the nominal interest rate equals zero,

only the first two of these three components remain, so that aggregate per-household real

monetary wealth during period t is measured by

Ωt = mt +
∞∑

u=t

[
u−1∏

v=t

(
1

1 + xv

)]

τu,t.

In a steady state with constant money growth via equal lump-sum transfers, (22) implies
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that Ωt is constant and equal to

Ω =

[
1 +

(
1 + x

x

)
σ

]
m. (44)

In general, this measure of monetary wealth enters into the aggregate consumption func-

tion (33). In the special case with n = 0 and r = 0, however, (34), (35), and (44) imply

that

Ω =

[
1 +

(
1

1− β

)
(β − 1)

]
m = 0. (45)

Without population growth, the households owning the current period’s money stock are

exactly the same households that pay all of the taxes required to implement a policy of

zero nominal interest rates. Thus, as noted by Weil, an argument analogous to the one

underlying Barro’s (1974) Ricardian equivalence theorem implies that government-issued

money, like government-issued bonds, will not be a source of private net wealth.

When n > 0, on the other hand, (39) and (44) imply that

Ω = n

(
1 + σ

n− σ

)
m > 0.

In this case, households alive during any period t pay only a fraction of the future taxes

required to keep the nominal interest rate at zero; households born in later periods share the

total tax burden. Hence, money is a component of private net wealth. Since real balances

enter nontrivially into the aggregate consumption function (33), m is uniquely determined,

even when the cash-in-advance constraint (32) does not bind. The central bank retains

control over the price level, even when the nominal interest rate is zero.

de Scitovszky (1941), Haberler (1946), Pigou (1943), and Patinkin (1965) describe the

real balance effect. According to these authors, real money balances form a component

of private-sector wealth and therefore enter into the aggregate consumption function. As a

result, a change in the level of real balances, brought about either by a change in the nominal
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money supply or a change in the nominal price level, gives rise to changes in consumption

and output. Thus, the real balance effect allows the central bank to influence the economy

even after the nominal interest rate reaches its lower bound. Here, the real balance effect

operates in exactly this way, so long as the population grows at a positive rate. Only in the

special case without population growth, where money is not net wealth, does the liquidity

trap survive.

4 The Welfare Costs of Deflation

The results from above resolve one of the puzzles left over from Krugman’s (1998) and

Svensson’s (1999) analyses of the liquidity trap. These results show that a real balance

effect of the kind described by de Scitovszky (1941), Haberler (1946), Pigou (1943), and

Patinkin (1965) fails to appear in Krugman’s and Svensson’s models because these models,

which feature a single infinitely lived representative agent, depict economic environments

in which government-issued money is not a component of aggregate private-sector wealth.

When population growth is introduced into one of these models in the manner suggested

by Weil (1991) and Whitesell (1988), money becomes net wealth. The real balance effect

reappears, and the central bank regains control over the price level even when the nominal

interest rate equals zero. The real balance effect reappears because monetary policies have

distributional consequences: the households owning money today pay only some of the taxes

or receive some of the transfers associated with future changes in the money supply.

The same distributional consequences help to resolve a second puzzle emerging from

Krugman’s and Svensson’s analyses. By associating the case of zero nominal interest rates

with the Keynesian liquidity trap, Krugman and Svensson conjure up images of economic

depression. But, in fact, Wilson (1979), Cole and Kocherlakota (1998), and Ireland (2003)

derive results associating zero nominal interest rates with Pareto-optimal resource allocations

in representative-agent models such as Krugman’s and Svensson’s. These optimality results
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can be rederived for the cash-in-advance model developed here in the special case without

population growth.

When n = 0 in the model from above, there is a single representative household that lives

from the beginning of period t = 0 forward. In equilibrium, this household’s consumption

and hours worked coincide with the per-household aggregates, so that, by (19) and (25),

h0t = c0t =

(
1

1 + rt

)1/(γ−1)
(46)

for all t = 0, 1, 2, .... Now consider a social planner, who chooses sequences {c0t , h
0
t}
∞
t=0 to

maximize the representative household’s utility

∞∑

t=0

βt ln[c0t − (1/γ)(h
0
t )
γ],

subject only to the aggregate resource constraints

h0t ≥ c0t

for all t = 0, 1, 2, .... The solution to this planning problem, which describes the unique

symmetric Pareto-optimal allocation, sets

h0t = c0t = 1 (47)

for all t = 0, 1, 2, ....

Comparing (46) and (47) reveals that equilibrium and optimal allocations coincide when

monetary policy provides for zero nominal interest rates. Since positive nominal interest

rates serve only to distort the representative household’s labor supply decisions, zero nomi-

nal interest rates are good, not bad. They are more appropriately associated with Friedman’s

(1969) rule for the optimum quantity of money than with Keynes’s (1936) theories of eco-

22



nomic depression.

When n = 0, the representative household can always use its initial stock of real balances

to finance the lump-sum taxes required to contract the money supply; this result follows

from (45), which shows that in the case without population growth, the value of the stock

of real balances exactly offsets the present discounted value of the future taxes needed to

implement a policy of zero nominal interest rates. When n > 0, however, some of the taxes

associated with monetary contraction must be paid by households from cohorts s > 0 that

are born without an initial endowment of financial assets. And as the money growth rate

approaches its lower bound from (43), the tax burden on these households becomes heavier

and heavier relative to their ability to pay.

Thus, when the population grows, monetary policies have distributional consequences

that potentially make deflation quite costly for many agents. On the other hand, even

when n > 0, (19) and (25) associate lower nominal interest rates–brought about through

deflation–with higher levels of aggregate consumption, output, and employment. The ques-

tion becomes: how large are the costs, relative to the benefits?

To answer this question, consider adopting as a welfare criterion for monetary policy the

lifetime utility achieved by a representative household that is born into the model’s steady

state. Woodford (1990) vigorously defends this measure of welfare in models, like the one

used here, in which heterogenous agents are distinguished by their dates of birth. And,

in this particular model, in which there are no predetermined state variables and hence in

which there need not be any transitional dynamics en route to the steady state, this welfare

criterion corresponds to the lifetime utility enjoyed by all households from all cohorts s > 0;

that is, by all households except those from the initial cohort, which, after all, constitute

a smaller and smaller fraction of the economy’s total population as newborn households

continue to arrive over the infinite horizon. Weiss (1980), Freeman (1985, 1989, 1993), and

Smith (2002) all present examples of overlapping-generations models in which the Friedman

rule fails to maximize steady-state utility; Bhattacharya, Haslag, and Russell (2004) unify
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these examples by arguing that, in each case, monetary contraction has distributional effects

of exactly the same kind as occur in the model with infinitely lived agents studied here.

Likewise, Whitesell (1988) finds that steady-state utility is maximized by a positive money

growth rate and, indeed, Whitesell’s result carries over to the variant of his model developed

here.

As an example, suppose that β = 0.99, so that each period in the model can be identified

as one quarter year. Let γ = 1.6, the value used by Greenwood, Hercowitz, and Huffman

(1988) to match estimates of the labor supply elasticity 1/(γ−1), and let n = 0.0025, a small

but positive value corresponding to an annualized rate of population growth of about one

percent. With these parameter settings, numerical analysis reveals that steady-state utility

is maximized when σ = 0.0046, so that the nominal money stock grows at the annualized

rate of 1.87 percent. This optimal policy gives rise to an annualized inflation rate of 0.85

percent and an annualized nominal interest rate of 5.02 percent. The annualized real interest

rate of 4.13 percent exceeds the annualized rate of time preference of 4.10 percent, so that

as in the additional examples discussed below, each household chooses a growing path for

consumption. Aggregate consumption in this preferred steady state is constant at 0.9798,

more than 2 percent below the level c = 1, that, according to (40), is achieved in steady

states with zero nominal interest rates. But despite the reduction in aggregate consumption,

the representative household prefers this steady state with positive money growth.

More generally, the welfare effects of different money growth rates can be summarized as

follows. Let U0 denote the lifetime utility achieved by a representative household that is born

into the model’s steady state when the money supply is held constant or, equivalently, when

the money growth rate equals zero. Next, let {cst(σ)}
∞
t=s and {h

s
t(σ)}

∞
t=s denote the sequences

of consumption and hours worked chosen by this representative household in the alternative

steady state in which the money growth rate equals σ. Finally, let ω(σ) be defined implicitly

by

U0 =
∞∑

t=s

βt−s ln{[1 + ω(σ)/100]cst(σ)− (1/γ)[h
s
t(σ)]

γ}.
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Then ω(σ) measures the permanent percentage increase in consumption that makes the rep-

resentative household as well off under the money growth rate σ as it is under the benchmark

of zero money growth; Cooley and Hansen (1989) and Lucas (2000) use similar measures of

the welfare costs of inflation.

Table 1 summarizes the effects of changes in the steady-state money growth rate σ and

reports the value of ω(σ) for various choices of σ when, as in the example from above,

β = 0.99, γ = 1.6, and n = 0.0025. The function ω takes on negative values for annualized

money growth rates as high as 3.65 percent, indicating that the representative household

prefers small but positive values of σ to the benchmark setting of σ = 0. The function ω

reaches its minimum at the optimal setting of σ = 0.0046.

As σ rises above 0.01, the negative effects of money growth on aggregate output begin to

overwhelm the positive distributional effects, so that ω turns positive. The largest values of

ω, however, occur for negative values of σ that make the nominal interest rate equal to zero.

A representative household born into the steady state with σ = −0.008 needs a permanent

5.25 percent increase in consumption to be as well off as under a constant money supply.

And as the money growth rate approaches −0.01, the lower bound from (43), the tax burden

associated with the zero nominal interest rate becomes so heavy that the household needs

almost 60 percent more consumption to be as well off as under a constant money supply.

To provide deeper insights into the nature of the distributional effects that make zero

nominal interest rates so costly in this model, as well as to confirm Bhattacharya, Haslag,

and Russell’s intuition that these distributional effects underlie newborn agents’ preference

for positive rates of inflation, Figure 1 displays individual households’ patterns of asset

accumulation and consumption in four more examples.5 Once again, these examples set

β = 0.99, γ = 1.6, and n = 0.0025, while allowing the money growth rate σ to vary. In the

first example, illustrated in the figure’s two top panels, σ = −0.0099, very close to the lower

bound for money growth allowed by (43). In the second example, σ = −0.0076, equal to the

upper bound in (42). Thus, each of the first two examples features a zero nominal interest
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rate but, as can be seen from the graphs themselves, very different patterns for individual

asset holdings and consumptions. The remaining two examples increase the rate of money

growth still further, to 0.01 and then to 0.10; both of these cases feature positive nominal

interest rates. The dotted line in each panel traces out quantities for the representative

household from the initial cohort s = 0, while the solid line traces out paths for households

from all other cohorts s > 0 that, by assumption, are born without financial assets.

The same costs and benefits of deflationary policies discussed above manifest themselves

clearly in Figure 1. As the money growth rate rises, the distortionary effects of positive

nominal interest rates reduce aggregate consumption. At the same time, however, an increase

in the rate of money growth reallocates wealth away from households from the initial cohort

s = 0 to households from subsequent cohorts s > 0.

Thus, in one way, the introduction of the real balance effect into an otherwise conven-

tional cash-in-advance model works exactly as promised by Pigou, Patinkin, and others: it

eliminates the liquidity trap, giving the central bank control over the price level even when

the nominal interest rate hits its lower bound of zero. Yet here, the same distributional

effects that allow the real balance effect to operate also make zero nominal interest rates

quite costly for some agents. Paradoxically, a zero nominal interest rate is something to be

achieved in the conventional model, where the liquidity trap survives. With the introduction

of the real balance effect, a zero nominal interest rate becomes something to be avoided.

5 Rehabilitating the Friedman Rule

Bhattacharya, Haslag, and Russell (2004) also highlight the key role played by distributional

effects in more conventional overlapping-generations models by constructing more elaborate

policy regimes that provide additional fiscal transfers to individual agents who might oth-

erwise be harmed by monetary contractions. Bhattacharya, Haslag, and Russell show, in

particular, that once the distributional effects of deflation are neutralized by the appropriate
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set of fiscal transfers, the Friedman rule once again becomes part of an optimal policy mix.

These results generalize earlier examples presented by Abel (1987) and Gahvari (1988), in

which the Friedman rule becomes optimal in an overlapping-generations context, but only

when coupled with a complementary fiscal policy that offsets the distributional consequences.

Here, again, the same results apply. Once the distributional effects of monetary con-

traction are neutralized by additional fiscal transfers, the general model with population

growth behaves exactly like the special case with n = 0: the real balance effect disappears,

the liquidity trap reemerges, and the Friedman rule helps support Pareto-optimal resource

allocations once again.

To fill in the details, suppose as above that the government issues no bonds and acts to

increase the total nominal money supply at the constant rate σ, so that (19)-(21) continue to

depict the aggregate market-clearing conditions for goods, labor, bonds, and money. Suppose

now, however, that in addition to making a common lump-sum transfer of real value τ̄ to

each household alive during each period t = 0, 1, 2, ..., the government also makes a special

lump-sum transfer of real value m̄ to each newborn household at the beginning of each

period t = 1, 2, 3, ..., in an attempt to put those households on a more equal footing with

older households that have already accumulated stocks of financial assets.

Under monetary-fiscal policy combinations of this type, the definitions of τ t and τu,t

imply that

τ t = τ t,t = τ̄ +

(
n

1 + n

)
m̄ (48)

for all t = 0, 1, 2, ..., whereas

τu,t = τ̄

for all t = 0, 1, 2, ... and u = t+1, t+2, t+3, ..., since only the newborns receive the additional

transfer m̄. The government, of course, cannot choose the three settings for σ, τ̄ , and m̄
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independently: (21) and (48) imply that these values must satisfy

τ̄ +

(
n

1 + n

)
m̄ = σm

in any steady-state equilibrium in which aggregate per-household real balances mt are con-

stant and equal to m.

In such a steady state, mt = m measures aggregate per-household real balances held at

the beginning of each period t = 0, 1, 2, ..., before the government makes any transfers to

households alive during that period. And, by assumption, newborn households start their

lives without money. Taken together, these observations imply that at the beginning of each

period, households born during previous periods hold, on average, money balances of real

value (1 + n)m. Hence, the government can put newborn households on exactly the same

footing as older households by setting m̄ = (1+n)m; it can then ensure that the total money

supply grows at the constant σ by setting τ̄ = (σ − n)m. Under this monetary-fiscal policy

regime, therefore, the government taxes older households in order to provide transfers to

newborn households; these transfers help neutralize the distributional effects that simpler

policies of money growth or contraction would otherwise have.

Under this monetary-fiscal policy regime, (7) and (14)-(18) once again imply that xt = x,

rt = r, πt+1 = π, mt = m, and ct = c for all t = 0, 1, 2, ... in any steady-state equilibrium.

Now, however, these steady-state values must satisfy

1 + x = (1 + r)/(1 + π), (49)

1 + π = (1 + σ)/(1 + n), (50)

c =

(
1

1 + r

)1/(γ−1)
, (51)

(1 + σ)m ≥ c, r ≥ 0, r[(1 + σ)m− c] = 0, (52)

28



and

c =
1

γ

(
1

1 + r

)γ/(γ−1)
(53)

+(1− β)

{[
1−

n

x
+

(
1 + x

x

)
σ

]
m+

(
γ − 1

γ

)(
1 + x

x

)(
1

1 + r

)γ/(γ−1)}

.

Equations (49)-(52), describing steady-state equilibria under this modified monetary-fiscal

policy regime, coincide exactly with (29)-(32), describing steady states under policies of con-

stant money growth without the additional fiscal transfers. The consumption function (53)

for the case with fiscal transfers differs from (33) for the case without, however, suggesting

that there may be important differences in consumption patterns across these two types of

policy regimes.

Suppose, finally, that the government sets σ = β(1 + n) − 1: this choice adjusts the

money growth rate associated with the Friedman rule in (34) to account for the possibility

of a positive rate of population growth. Part 5 of the appendix shows that with this setting

for σ, the steady-state values of r, π, x, and c are uniquely determined as

r = 0, (54)

1 + π = β, (55)

1 + x = 1/β, (56)

and

c = 1, (57)

while the steady-state value of m need only satisfy

(1 + n)m ≥ β. (58)
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Part 5 of the appendix also shows that with this setting for σ, individual households from

all cohorts s = 0, 1, 2, ... choose

cst = hst = 1 (59)

for all t = s, s+ 1, s+ 2, ....

Thus, when fiscal transfers undo the distributional effects that would otherwise result

from this policy of monetary contraction, the economy with population growth behaves like

one with a single representative agent. In (54) and (55), the nominal interest rate reaches its

lower bound of zero as the rate of deflation coincides with the rate of time preference; in (56),

meanwhile, the real interest rate is pinned down by the rate of time preference, exactly as

in the standard Sidrauski (1967) model. Equation (58) confirms that without distributional

effects, the real balance effect vanishes, allowing Krugman’s (1998) and Svensson’s (1999)

liquidity trap to reemerge, as the steady-state level of real balances is no longer uniquely

determined. Nevertheless, outcomes in this equilibrium with zero nominal interest rates

are good, not bad: (57) and (59) reveal that when complemented by the appropriate fiscal

transfer scheme, the Friedman rule again supports the unique symmetric Pareto-optimal

allocation. Steady-state utility under this monetary-fiscal policy regime is higher than under

any of the policies of constant money growth via equal-lump-sum transfers.

“Le bon dieu est dans le détail,” or so said Gustave Flaubert. More recently, others have

paraphrased: “the Devil is in the details.”6 Either way–good God or Devil–the proverb

applies here. Zero nominal interest rates can be very good or very bad: which outcome

depends critically on the details of how the policy is actually implemented.
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6 Appendix

6.1 Deriving the Infinite-Horizon Budget Constraint

To derive the infinite-horizon budget constraint (6), multiply the single-period budget con-

straint (3) by Qt and rearrange to obtain

Qt(M
s
t +Bs

t ) +Qt(T
s
t + Pth

s
t) ≥ QtPtc

s
t + (Qt −Qt+1)M

s
t+1 +Qt+1(M

s
t+1 +Bs

t+1).

Sum from t through T ≥ t to obtain

Qt(M
s
t +B

s
t )+

T∑

u=t

Qu(T
s
u+Pth

s
t) ≥

T∑

u=t

Qu

[
Puc

s
u +

(
ru

1 + ru

)
Ms
u+1

]
+QT+1(M

s
T+1+B

s
T+1).

Now use the no-Ponzi-scheme constraint (5) at t = T to obtain

Qt(M
s
t +Bs

t ) +
∞∑

u=t

Qu(T
s
u + Pth

s
t) ≥

T∑

u=t

Qu

[
Puc

s
u +

(
ru

1 + ru

)
Ms
u+1

]
.

Finally, take the limit as T →∞ to arrive at (6).

6.2 Solving the Household’s Problem

Let λst and µ
s
t denote the nonnegative Lagrange multipliers on the household’s budget and

cash-in-advance constraints for period t. Since the household’s utility function is increasing

and concave, necessary conditions for optimality include the usual first-order and comple-

mentary slackness conditions, which are given by

1

cst − (1/γ)(h
s
t)
γ
= λst + µst , (A.1)

(hst)
γ−1

cst − (1/γ)(h
s
t)
γ
= λst , (A.2)
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λst
Pt
=
β(λst+1 + µst+1)

Pt+1
, (A.3)

λst + µst
(1 + rt)Pt

=
β(λst+1 + µst+1)

Pt+1
, (A.4)

Ms
t + T st +Bs

t

Pt
+ hst = cst +

Bs
t+1

(1 + rt)Pt
+
Ms
t+1

Pt
, (A.5)

Ms
t + T st +Bs

t

Pt
−

Bs
t+1

(1 + rt)Pt
≥ cst , (A.6a)

µst ≥ 0, (A.6b)

and

µst

[
Ms
t + T st +Bs

t

Pt
−

Bs
t+1

(1 + rt)Pt
− cst

]
= 0 (A.6c)

for all t = s, s+ 1, s+ 2, ....

Necessary conditions also include the transversality condition

lim
t→∞

Qt+1Wt+1 = lim
t→∞

Qt+1(M
s
t+1 +Bs

t+1) = 0. (A.7)

To derive (A.7), note first that since the net nominal interest rate must always be nonnega-

tive, the sequence {Qt}
∞
t=0 is nonincreasing, with

Qt = (1 + rt)Qt+1 ≥ Qt+1

for all t = 0, 1, 2, .... Note, too, that {Qt+1W
s
t+1}

∞
t=s is also nonincreasing, since for any

t = s+1, s+2, s+3, ..., the definition of W s
t+1, the period t budget constraint, the fact that

Qt ≥ Qt+1, and the nonnegativity constraints from (4) imply

Qt+1W
s
t+1 −QtW

s
t = Qt+1(M

s
t+1 +Bs

t+1)−Qt(M
s
t +Bs

t )−Qt(T
s
t + Pth

s
t)

≤ (Qt+1 −Qt)M
s
t+1 −QtPtc

s
t

≤ 0.
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Next, note that if {cst , h
s
t ,M

s
t+1, B

s
t+1}

∞
t=s are optimal choices for the representative house-

hold of cohort s, the implied sequence {Qt+1W
s
t+1}

∞
t=s must satisfy

inf
t≥s

Qt+1W
s
t+1 = 0.

To see this, suppose to the contrary that there exists an ε > 0 such that Qt+1W
s
t+1 ≥ ε for

all t = s, s+ 1, s+ 2, ... and construct new sequences {c̃st , h̃
s
t , M̃

s
t+1, B̃

s
t+1}

∞
t=s as

c̃ss = css +
ε

QsPs
, c̃st = cst for t = s+ 1, s+ 2, s+ 3, ...,

h̃st = hst for t = s, s+ 1, s+ 2, ...,

M̃s
t+1 =Ms

t+1 for t = s, s+ 1, s+ 2, ...,

B̃s
t+1 = Bs

t+1 −
ε

Qt+1
for t = s, s+ 1, s+ 2, ....

These new sequences satisfy all of the household’s constraints: (2)-(5) for all t = s, s+1, s+

2, .... Moreover, they provide the household with a higher level of utility than the original

sequences. But this contradicts the assumption that the original sequences are optimal.

Hence inft≥sQt+1W
s
t+1 = 0 must hold.

Together, {Qt+1W
s
t+1}

∞
t=s nonincreasing and inft≥sQt+1W

s
t+1 = 0 imply that (A.7) must

hold at the optimum. This establishes that (A.1)-(A.7) are necessary conditions for opti-

mality.

To prove that (A.1)-(A.7) are also sufficient conditions for optimality, suppose that

{cst , h
s
t ,M

s
t+1, B

s
t+1}

∞
t=s satisfy (A.1)-(A.7), but that alternative sequences {ĉ

s
t , ĥ

s
t , M̂

s
t+1, B̂

s
t+1}

∞
t=s

satisfy (2)-(5) for all t = s, s + 1, s + 2, ... and provide the household with a higher level of
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utility. Then

0 < lim
T→∞

T∑

t=s

βt−s{ln[ĉst − (1/γ)(ĥ
s
t)
γ]− ln[cst − (1/γ)(h

s
t)
γ]}

< lim
T→∞

T∑

t=s

βt−s
{[

1

cst − (1/γ)(h
s
t)
γ

]
(ĉst − cst)−

[
(hst)

γ−1

cst − (1/γ)(h
s
t)
γ

]
(ĥst − hst)

}

= lim
T→∞

T∑

t=s

βt−s[λst(ĉ
s
t − cst)− λst(ĥ

s
t − hst) + µst(ĉ

s
t − cst)]

≤ lim
T→∞

T∑

t=s

βt−sλst

[
M̂s
t −Ms

t

Pt
+
B̂s
t −Bs

t

Pt
−
M̂s
t+1 −Ms

t+1

Pt
−
B̂s
t+1 −Bs

t+1

(1 + rt)Pt

]

+ lim
T→∞

T∑

t=s

βt−sµst

[
M̂s
t −Ms

t

Pt
+
B̂s
t −Bs

t

Pt
−
B̂s
t+1 −Bs

t+1

(1 + rt)Pt

]

= lim
T→∞

βT−sλsT (M
s
T+1 − M̂s

T+1)

PT
+
βT−s(λsT + µsT )(B

s
T+1 − B̂s

T+1)

(1 + rT )PT

=

(
λst + µst
QsPs

)
lim
T→∞

[QT+1(M
s
T+1 +Bs

T+1)−QT+1(M̂
s
T+1 + B̂s

T+1)]

= −

(
λst + µst
QsPs

)
lim
T→∞

QT+1(M̂
s
T+1 + B̂s

T+1)

≤ 0

by the concavity of the utility function, by (A.1) and (A.2), by (2), (3), (A.5), and (A.6c), by

(A.3) and (A.4), by (A.3) and (A.4) again, by (A.7), and by (5). But all of this contradicts

the assumption that {ĉst , ĥ
s
t , M̂

s
t+1, B̂

s
t+1}

∞
t=s provide the household with higher utility than

{cst , h
s
t ,M

s
t+1, B

s
t+1}

∞
t=s. Hence, (A.1)-(A.7) are both necessary and sufficient for a solution to

the household’s problem.

Now let ms
t , b

s
t , τ

s
t , πt, xt, and a

s
t be as defined in the text. Substitute (A.4) into (A.3)

to obtain

µst = rtλ
s
t , (A.8)

and combine this result with (A.1) and (A.2) to arrive at (9) from the text. Use (A.5) and

(A.8) to rewrite (A.6a)-(A.6c) as (10) from the text.
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Next, consider (A.4), which can be rewritten using (7) and (A.1) as

cst+1 − (1/γ)(h
s
t+1)

γ = β(1 + xt)[c
s
t − (1/γ)(h

s
t)
γ], (A.9)

the Euler equation linking the household’s intertemporal marginal rate of substitution to the

real interest rate. Multiply (A.5) by PtQt and, as above, sum from t through T ≥ t and take

the limit as T →∞ to obtain

Qt(M
s
t +Bs

t ) +
∞∑

u=t

Qu(T
s
u + Pth

s
t) =

∞∑

u=t

Qu

[
Puc

s
u +

(
ru

1 + ru

)
Ms
u+1

]
, (A.10)

which is just (6) with equality. Since

Qu
QtPt

=

[
u−1∏

v=t

(
1

1 + xv

)]
1

Pu
,

(A.10) can be rewritten as

ast+
∞∑

u=t

[
u−1∏

v=t

(
1

1 + xv

)]

(τ su+h
s
u) =

∞∑

u=t

[
u−1∏

v=t

(
1

1 + xv

)][
csu +

ru(1 + πu+1)m
s
u+1

1 + ru

]
. (A.11)

Substitute (9), (10), and (A.9) into (A.11) to obtain (11) from the text.

Use (7) and (8) to recast (A.5) in real terms as

ast + τ st + hst = cst +

(
1

1 + xt

)
(ast+1 + rtm

s
t+1), (A.12)

then use (9) and (10) to rewrite (A.12) as (12) from the text. Finally, use

Qt+1
QsPs

=

[
t∏

v=s

(
1

1 + xv

)]
1

Pt+1

and (8) to replace (A.7) with (13) from the text.

35



6.3 Deriving the Steady-State Conditions

Equations (24)-(28) describe the equilibrium behavior of the five aggregate variables xt, rt,

πt+1, mt, and ct under policies of constant money growth via equal lump-sum monetary

transfers; in a steady-state equilibrium, xt = x, rt = r, πt+1 = π, mt = m, and ct = c for

all t = 0, 1, 2, .... Equations (24), (25), and (27) immediately imply that these steady-state

values must satisfy (29), (31), (33).

In a steady state, (28) becomes

m =

(
1 + x

1 + n

)[
(1 + σ)m−

(
1

1 + r

)
rc

]

or, using (26),

m =

(
1 + x

1 + n

)[
(1 + σ)m−

(
1

1 + r

)
r(1 + n)(1 + π)m

]
.

Divide both sides of this last equality by m and rearrange using (29) to obtain (30); (30)

then allows (26) to be rewritten as (32).

6.4 Deriving the Lower Bound on Money Growth

In light of the Euler equation (A.9), cst − (1/γ)(h
s
t)
γ > 0 for all t = s, s + 1, s + 2, ..., as

required by (4), if and only if css − (1/γ)(h
s
s)
γ > 0. Combining (9), (11), and (21) with the

initial condition ass = 0, which applies to any household born into a steady state with n > 0,

reveals that

css − (1/γ)(h
s
s)
γ = (1− β)

(
1 + x

x

)[

σm+

(
γ − 1

γ

)(
1

1 + r

)γ/(γ−1)]

in any steady state with n > 0. Equivalently, using (33),

css − (1/γ)(h
s
s)
γ = c−

1

γ

(
1

1 + r

)γ/(γ−1)
− (1− β)m.
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When r = 0, (40) and (41) imply that the right-hand side of this last equality is strictly

positive if and only if the money growth rate satisfies (43).

6.5 Characterizing the Steady State under the Friedman Rule

with Fiscal Transfers

Equations (49)-(53) determine the steady-state values x, r, π, m, and c under the monetary-

fiscal policy regime described in the text. When, under this regime, the money growth rate

σ is set equal to β(1 + n)− 1, (49) and (50) imply

1 + x = (1 + r)/β (A.13)

and

1 + π = β. (A.14)

Substituting (51), (A.13), and (A.14) into (53) yields

(
1

1 + r

)1/(γ−1)
=

1

γ

(
1

1 + r

)γ/(γ−1)

+

(
1− β

1 + r − β

)[

r(1 + σ)m+

(
γ − 1

γ

)(
1

1 + r

)1/(γ−1)]

.

In light of (52), however, this last expression collapses to

γ(1 + r)2 − (1 + γ)(1 + r) + 1 = 0. (A.15)

Equation (A.15) admits two possible solutions for r, r = 0 and r = (1− γ)/γ, but only the

first of these is nonnegative as required by (52). It therefore follows immediately from (51)

and (A.13)-(A.15) that the steady-state values of r, π, x, and c are uniquely determined as

shown in (54)-(57), while (52) requires only that m satisfy (58) from the text.

Equations (11) and (12), meanwhile, characterize each individual household’s pattern of
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consumption and asset holdings under arbitrary government policies. In the steady state just

described, however, (54) and (56) must hold, as must the expressions ass + τ ss = (1 + σ)m =

β(1 + n)m and τ st = τ̄ = (σ − n)m = (β − 1)(1 + n)m for all t = s+ 1, s+ 2, s+ 3, ... called

for by the design of policy regime. Hence, for all s = 0, 1, 2, ..., these equations specialize to

cst = 1

and

ast+1 = (1 + n)m

for all t = s, s + 1, s + 2, .... The first of these two expressions, together with (9) and (54),

then implies that (59) must hold.
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7 Endnotes

1As noted below, Abel (1987) and Gahvari (1988) present earlier examples of Bhattacharya,

Haslag, and Russell’s general result.

2While this specification for utility is also used by Greenwood, Hercowitz, and Huffman

(1988), among others, it has sometimes been criticized for being inconsistent with

balanced growth in models with rising real wages driven by exogenous technological

progress. Along these lines, however, Greenwood, Rogerson, andWright (1995) demon-

strate that a very similar utility function that does remain consistent with balanced

growth emerges from a model with home production when productivity rises at the

same average rate across the market and household sectors. For simplicity, however,

the model used here abstracts from technological progress of all kinds.

3In addition, (24)-(28) characterize the model’s dynamics away from the steady state. As

noted below, however, this model has no predetermined state variables: hence, if a

steady state exists, a perfect foresight equilibrium also exists in which the economy

begins and remains forever in that steady state. A more thorough analysis of the

model’s dynamics would therefore serve only to confirm or rule out the existence of

multiple perfect foresight equilibria of the kind studied in a more conventional cash-

in-advance specification by Woodford (1994).

4When, for instance, γ = 1.6 as in the numerical examples presented below, a range of

values for σ satisfying both (42) and (43) exists for all values of β exceeding 0.7273.

5Note that according to (9), all households from all cohorts work the same number of

hours in equilibrium. This result follows from the specification (1) for utility, which

as explained earlier implies that there are no wealth effects on labor supply, greatly

facilitating the aggregation of quantities chosen by otherwise heterogenous households.

6See Titelman (1996, p.119) for a brief discussion.
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