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1 Introduction

Agency theory provides us with a framework for the study of contracts and their effect

on behavior in organizations. Starting from the assumption that agents are rational and

narrowly pursue self-interest, the theory shows how appropriately designed contracts can

resolve conflicts between principals and agents, and between partners. However, in the

extensive literature on behavior within partnerships, teams, and organizations, a neglect of

the social components of group interaction is conspicuous (exceptions include Kandel and

Lazear 1992, Rob and Zemsky 2002, and Encinosa, Gaynor, and Rebitzer 2000). In contrast,

the noneconomic literature on organizational behavior has long stressed the importance of

social-psychological factors such as peer pressure, need for affiliation, group identity, social

norms, and organizational culture (for example, Pfeffer 1997 and Granovetter 1985). Recent

work in economics (Lazear 2001, Brock and Durlauf 2001a and 2001b, Postlewaite 2001,

Bernheim 1994, Young 1993, Ichino and Maggi 2000, Akerlof and Kranton 2000, Glaeser and

Scheinkman 2002, Becker and Murphy 2000) makes it feasible to develop models in which

social interactions play a central role. This research has yielded an abundance of innovation

that has expanded the empirical reach of economics. In this paper, we examine the effects

of one type of non-market social interaction—a desire for conformity among workers. We

deduce implications for the design of optimal contracts, outline features of data generated

by such a model, and argue that our results are broadly consistent with stylized facts about

incentives and performance.

The assertion that workers care about how their effort levels compare with those of their

co-workers sounds on its face uncontroversial, and yet standard models of labor economics

and industrial organization systematically omit any such concerns. The reasons to expect

such invidious comparisons are many. A worker might experience direct pressure from peers

not to shirk, especially in a revenue-sharing setting, or self-imposed pressure to live up to an

established group standard. Even within groups in which outputs are not explicitly shared,

such as among academic colleagues who are not co-authors, members are expected to do their
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fair share to maintain the prestige of the institution. Who among us has never felt either

guilty for leaving earlier than our colleagues or righteous (or perhaps resentful) for staying

later?

Formally, we can capture these concerns as a cost of deviating from the average effort of

one’s contracting partners. In such a model, average effort is an endogenously emerging work

norm towards which people are drawn. The cost of nonconformity is symmetric: exceeding

the norm is just as costly as falling short of it. We can view this as capturing an individual’s

desire not to be taken advantage of or as pressure from others not to outdo them. When

preferences embody this desire to conform, the group’s behavior becomes subject to a social

multiplier (see Becker and Murphy 2000). Any change in contract terms or exogenous para-

meters sets off cascading effects: each individual responds directly to the parameter change

and makes a further adjustment as peers’ efforts are also adjusted, both to the parameter

change and to their peers’ responses. Small changes in fundamentals therefore lead to rel-

atively large changes in average performance. The efficacy of incentives is altered by the

social multiplier, as are the optimal contract terms. In the presence of such interactions,

then, the standard relationships between incentives, risk, and performance may be distorted

or overridden. The results imply, for example, that organizational success or failure may

depend as much on the nature of social interactions as on objective factors, giving the latter

less predictive power over organizational performance.

In the standard moral hazard model, the optimal contract strikes the proper balance

between spreading risk and encouraging work effort. Group members choose efforts to maxi-

mize expected utility, which depends on an individual’s effort, on the income process implied

by the contract, and on exogenous factors. While risk-sharing contracts have been studied

exhaustively in many contexts (see, for instance, the review by Prendergast 1999), social

interactions among group members have, until very recently, been largely absent from this

literature. To study this, we use the contracting framework of Gaynor and Gertler (1995)1.

Specifically, we consider the group contracting problem when each member of the group cares

1This framework has been extended previously by Encinosa, Gaynor, and Rebitzer (2000) and Dutta and
Prasad (2002) to incorporate social interactions
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about his or her own effort relative to the average effort of his or her partners, as well as

his or her absolute effort and his or her (uncertain) income under the contract. In Encinosa,

Gaynor, and Rebitzer (2000), a version of the model includes an effort norm to which indi-

viduals aspire, but the effect is linear in the difference between individual and group effort.

The group mean does not enter the first-order condition for individual effort, and a social

multiplier cannot arise. Kandel and Lazear (2001) examine the effect of peer pressure on

worker effort under profit-sharing contracts, but they focus on the case in which the cost

associated with peer pressure is monotonically decreasing in a worker’s own effort, rather

than symmetric about average effort. While their model admits a version in which the cost

of peer pressure basically mimics our nonconformity cost, no social multiplier arises, because

workers are homogeneous. They do, however, argue that the symmetric cost structure, re-

flecting the desire to conform to a group norm, seems apt in the case of partnerships. The

Kandel-Lazear model treats contract structure as exogenous and focuses on the case of pure

profit-sharing, whereas we admit a broader class of contracts and derive optimal contract

terms.

Following Glaeser and Scheinkman (2002) and Brock and Durlauf (2001a)2, we model

the cost of deviation from the average action of a peer group as quadratic in the difference

between individual and mean peer efforts. Optimal individual effort depends directly on

mean peer effort, and the coefficient of mean peer effort captures the degree of preference for

conformity. A change in the contract’s parameters (or in an exogenous variable) sets off two

effects—the direct adjustment of effort to the changed variable, as well as an indirect effect

that arises as a response to the adjustment of others. The workings of the multiplier are

seen explicitly in analyzing the effects on behavior of a change in the distribution of effort

costs and changes in contract parameters. The optimal contract, after taking such effects

into account, is quite different than it would be in the absence of social interactions and also

responds differently to changes in environmental parameters. Depending on the parametric

specification, introducing a preference for conformity can either increase or decrease the

2These papers model preference for conformity and study social multipliers but do not consider the con-
tracting problem.
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incentive intensity in the optimal contract, depending on how average effort is altered by the

conformity effects. When average effort increases due to conformity, the optimal contract

is “high-powered,” using higher incentive intensity. When average effort decreases, optimal

incentives are low-powered.

While we work with an explicit parametric form, the principal qualitative features that

drive our results are conformity, strategic complementarity, and a property introduced in

Glaeser and Scheinkman (2002) called “moderate social influence.” Following Gaynor and

Gertler (1995), we focus on linear, budget-balancing contracts.3 We find that, for a given

contract, a unique equilibrium profile of effort levels exists. In addition, an optimal contract—

maximizing the sum of utilities for the group, subject to enforceability constraints—exists

quite broadly. Given the social interaction effects, a small increase in a given individual’s

cost of effort diminishes his or her own effort as well as that of group members, although the

own effect is more significant. We find that individuals with low cost of effort prefer to be in a

group of similar individuals. Consequently, it is possible to separate individuals into a “high

action” group and a “low action” group through an appropriate choice of group-specific fees.

Preference for conformity then leads to the use of low-powered incentives in the high-cost

group, while low-cost groups use high-powered incentives.

We complement the theoretical analysis of this paper with an empirical investigation

aimed at testing for the presence of social interaction effects in the data and recovering

parameters that allow us to assess the magnitude of the social multiplier. We reanalyze

the medical partnership data of Gaynor and Gertler (1995). This data set has been studied

extensively and is somewhat dated, but our principal objectives here are to illustrate the

feasibility of estimating social interaction effects and to highlight some of the methodological

issues that arise. We find that tests support the presence of interactions but suggest values

of social multipliers that are small.

The remainder of the paper is organized as follows. The basic model is described in

Section 2. For a given contract, we study the equilibrium and assess the effects of the social

3Linear contracts are widely used in the real world, even though theory often predicts very complicated
contracts. For our purposes, and given our data on medical partnerships, this restriction seems reasonable.
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multiplier in Section 3.1. In Section 3.2, we study existence and properties of the optimal

contract. We consider sorting by individual characteristics when individuals are free to choose

among different groups in Section 4. In addition, we report in Section 5 the results from

estimating the magnitude of social interaction effects using data on group medical practices

from Gaynor and Gertler (1995). A conclusion follows.

2 Model

We look at a very simple model with mean-variance utility in which effort affects only the

mean of the distribution of output. To begin, we fix the number of workers at n. Each

worker i chooses a level of effort ei from R. This results in a random contribution to output

of yi(ei). We let y ≡ (y1, y2, . . . , yn). The total output of the group is additively separable

and written as

ȳ(e) ≡
n

∑

i=1

yi(ei),

where e = (e1, e2, . . . , en). In addition,

yi(ei) = ei + εi,

where εi has zero mean and finite variance ν (independent of the level of effort). Thus,

ȳ(e) =
n

∑

i=1

ei +
n

∑

i=1

εi.

For a given profile of effort choices, the expected output is E(ȳ|e) =
∑n

i=1 ei. Effort is costly,

and we represent the cost function by Ci(ei):

Ci(ei) = θi
eβ
i

β
.

The only difference between workers is in the cost parameter θi. We assume β ≥ 1 to

guarantee nondecreasing marginal effort cost.
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We assume preference for conformity. Individuals get disutility if their actions depart

from those of their peer group (taken to be everyone else in the group). The cost takes the

following form:

G(ei) =
J

2
(ei − êi)

2,

where êi =
∑

j 6=i ej/(n − 1).4 The non-negative parameter J indexes the strength of con-

formity pressure: the greater is J , the greater the cost of a given deviation from average

effort.

If each worker’s share of output is given by si(y), payoffs may be written as

Vi(e) = E[si(y(e)) − Ci(ei) − G(e) −
1

2
rVar(si(y(e)))], (1)

expectations being taken with respect to the distribution of the εi.
5 The parameter r is the

coefficient of absolute risk aversion.

When each of the yi is observed, we have essentially the environment studied by Mir-

rlees (1974), so that his nonexistence result applies. Like numerous other papers, we restrict

contracting possibilities. Lang and Gordon (1995) and Gaynor and Gertler (1995) have stud-

ied this environment, assuming budget-balancing linear contracts. Specifically, they examine

contracts of the form:

si(y1, . . . , yn) = ξyi +
(1 − ξ)

(n − 1)

∑

j 6=i

yj . (2)

One gets to keep a fraction ξ of one’s own contribution and the rest goes into a pool that

is shared equally among the others. When n = 1, there is only one possible value of ξ, that

is, ξ = 1. Other groups must choose an optimal value for ξ. Equal sharing corresponds to

ξ = 1/n.

4We assume that efforts are observable to co-workers, but not contractible. It is possible to specify the
conformity effect as J(yi − ŷi)

2. We expect this to lead to identical results.
5This is the approximate certainty equivalent wealth of i. The approximation is exact for exponential

utility when y(e) has a normal distribution.
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3 Contracts in the presence of social interactions

We examine the problem in two parts. First, we take a fixed contract ξ and characterize

equilibrium action levels chosen in the presence of social interactions, explicating the role of

social multipliers. Next, we examine the choice of ξ that maximizes the sum of utilities of

group members. Agents are said to display preference for conformity when J > 0.

3.1 Equilibrium effort

The next proposition follows Glaeser and Scheinkman (2002) (hereafter GS). In particular,

we verify their Moderate Social Influence (MSI) condition.

Definition 1 (MSI). The MSI condition holds if the marginal utility of an agent’s own action

is less affected (in absolute value) by a change in the average action of his or her peers than

by a change in his or her own action.

Proposition 1. For any given θ = (θ1, . . . , θn) ∈ R
n
+, ξ ∈ (0, 1], β > 1 and J > 0, there

exists a unique equilibrium e(θ, ξ, β, J).

Existence is established using a simple fixed-point argument. For uniqueness, we verify

the MSI condition and invoke GS.

The next corollary examines the effect on efforts when some θi is changed. The corollary

takes into account both the direct effect of an increase in θi, as well as the change that results

when the direct effect on ei causes a response in the ej . What is ultimately of interest is the

response to a change in θi when the system has finally settled into a new equilibrium. The

proof relies on a framework that we elaborate upon in the discussion following the corollary.

Corollary 1. (1) An increase in θi decreases the effort level of each player in the group,

with a greater decrease in ei than in ej (j 6= i). (2) In equilibrium, players with a smaller

value of θi exert greater effort.

The corollary examines how equilibrium efforts change in response to changes in θi. We

may, similarly, obtain comparative statics results for changes in other parameters, and we

8



are particularly interested in changes in ξ.

We proceed using familiar methods based on the implicit function theorem. The in-

teresting features of our results stem from the associated social multiplier. Since strategic

complementarity holds (between a worker’s action and the average action of his or her peer

group), anything that increases the action of any one worker will end up increasing the ac-

tions of the other workers in the peer group. This will feed back and increase the workers’

actions even further. This means, for instance, that two “slightly different” realizations of

parameters could have fairly large effects. This has great relevance for the optimal contract-

ing problem, in which small increases in ξ could have a significant effect on the workers’

actions.

The analysis starts with the system of first-order equations that define equilibrium,

ξ − θie
β−1
i − J(ei − êi) = 0 for i = 1, 2, . . . , n. (3)

Proposition 1 assures us that there is an equilibrium e(ξ, θ, β, J), assumed to be a smooth

function of the parameters. We are interested in evaluating the response of ei to a change

in ξ. Changes in other parameters can be analyzed similarly. We adopt the notation that

∂ei/∂ξ denotes the response of ei when all other effort levels are held constant, and dei/dξ

denotes the equilibrium response. Taking the total differential of the equations (3) we obtain,

de

dξ
= F−1

1

∂e

∂ξ
, (4)

where de/dξ and ∂e/∂ξ are vectors and F1 is the matrix where all diagonal elements are one,

and off-diagonal elements in the i-th row equal

F1(i, j) =

(

J

n − 1

)

−1

J + θi(β − 1)eβ−2
i

.

It will be convenient to denote xi ≡ (J + θi(β − 1)eβ−2
i )−1, and zi ≡ Jxi/(n − 1). Observe

that xi = ∂ei/∂ξ.
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We use the representation of F−1
1 given in GS (the Neumann expansion):

(F1)
−1 = I + (I − F1) + (I − F1)

2 + · · · ,

where all diagonal elements of (I − F1) are zero, and off-diagonal elements of row i equal zi.

This allows us to write

de

dξ
= (I + H)

∂e

∂ξ
, (5)

where H is a non-negative matrix. This leads to the following expression for the derivative

of interest:

dei

dξ
=

∂ei

∂ξ
+

∑

j

Hij
∂ej

∂ξ
. (6)

The first term on the right side of this equation, ∂ej/∂ξ, gives us the direct effect of a change

in ξ. A change in ξ affects ei through its effect on ej(j 6= i) as well, and any change in

ei causes further changes in the ej . The second term in equation (6) gives the additional

response from the social multiplier. The size of the social multiplier depends on

∂ei

∂êi
≡ (n − 1)zi,

and becomes larger as all the ∂ei/∂êi approach one.

Computational Experiment

To assess the role of the social multiplier, we conduct some computational experiments.

For any given (ξ, θ, J), we can compute the equilibrium, e, by solving the system of equa-

tions (3). This allows us to compute changes in equilibrium efforts as the parameters are

changed. In our computations, we assume quadratic effort costs and compare the results for

the following two models:

Ci(ei) = θi
e2
i

2
,

Ci(ei) = (1 − J + θi)
e2
i

2
.

10



The former is the model from Proposition 1, with β = 2. The latter is a form similar to

Example 2 of GS. J now appears as the relative weight of effort costs and the costs from

departing from the norm. This form is convenient: we have

ei =
ξ + Jêi

1 + θi
,

so that ∂ei/∂ξ = 1/(1 + θi), which is also the total response to a change in ξ when J = 0.

We have

∂ei

∂êi
=

J

1 + θi
,

with J ≤ 1 to ensure MSI. The two models yield qualitatively similar results regarding the

multiplier, but very different results for optimal contracts. So we present results only for the

latter model, except when we compute optimal contracts (in which case we present results

for both).

Figure 1 illustrates the effort distributions for the J = 0 and J = 1 case. We let N = 10

and fix the value of ξ at 0.3 and that of θ at (0.1, 0.2, . . . , 1.0). In other words, each individual

has a distinct value of θi, and these values are spaced 0.1 units apart. This allows us to plot

the effort, ei, corresponding to each θi, and we observe that efforts are much larger when

J = 1. This comparison of outcomes tells us little, since we are comparing two models

with different cost functions. Our interest is in the qualitative properties of data generated

according to the two models. The rest of the figures, and especially Tables 1–2, address this.

Of greater interest is Figure 2, which shows the response of efforts when ξ is increased

from 0.3 to 0.35. The lower two lines, identified by + and 2, are drawn with J = 0, so that

their difference (≡ ∆ξ · (∂ei/∂ξ)) identifies the direct effect. The difference between the two

upper lines, identified by ◦ and ▽, gives the total effect (for J = 0.75). We see this is larger

than the direct effect, the difference being attributable to the social multiplier.

In Figure 3, we illustrate the effect of the social multiplier when costs are scaled down

(with ξ fixed). We multiply the cost vector, θ, by a scalar: first 0.6, and then 0.5. The
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effort distribution is graphed for J = 0 (denoted by + for both scale values), and for J = 1

(denoted by ◦). The direct effect is very small, virtually indistinguishable in the graph. The

total effect and the social multiplier are both quite large. Relative to Figure 2, the parameter

values are chosen to make the multiplier much larger (∂ei/∂êi is closer to one if θi is smaller

and J is closer to one).

3.2 Optimal contracts

From Proposition 1, for any ξ, we have a unique equilibrium e. We find ξ∗, the value of ξ

that maximizes group utility, subject to the constraint that individuals in the group choose

equilibrium effort levels. In other words, ξ∗ solves the following problem:

max
ξ

V ≡
∑

i

(ei − θi
eβ
i

β
) −

nrν

2
[ξ2 +

(1 − ξ)2

n − 1
] −

J

2

∑

i

(ei − êi)
2

subject to

ξ − θie
β−1
i − J(ei − êi) = 0 (∀i).

(Recall that the parameter ν above represents the variance of the deviation of output from

effort.) In Proposition 2, we show that an optimal contract, ξ∗, exists.

Proposition 2. Given any θ = (θ1, . . . , θn) ∈ R
n, β ≥ 2 and J > 0, an optimum ξ∗ ∈ (0, 1)

exists.

We now examine the properties of the optimal contract using a computational approach,

extending the example from section 3.1.

Computational Experiment (continued)

Figure 4 illustrates the determination of the optimal share. From the first-order condition,

we look for a zero of the marginal social utility. When J = 0, the optimal share is ξ∗ = 0.17.

When J = 1, the optimal share is ξ∗ = 0.34. When the social multiplier is taken into account,

it is optimal to use high-powered incentives. Figure 5 considers the effects of a decrease in
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costs. When J = 0, the marginal social utility for Scale = 0.4 is virtually indistinguishable

from that for Scale = 0.5. However, with J = 1, the two are noticeably different—leading to

a significant increase in ξ∗.

In Table 1, we consider the effects of changing costs (using ten different values of the

scale, ranging from 0.05 to 0.50). In each case, we compute the optimal contract and the

distribution of effort at this contract. We observe, once again, the effect of the social mul-

tiplier. When J = 0.9, average efforts are noticeably higher. The range of outcomes is also

much greater. When we compute the coefficient of variation of the average group outcomes,

the values are 0.0957 (for J = 0) and 0.5544 (for J = 0.9). This is accompanied by smaller

values of the coefficient of variation within groups (columns 5 and 9 of Table 1). The optimal

share is much greater when J = 0.9, and rises when costs are scaled down. A striking fea-

ture of Table 1 is the much greater variation in the optimal shares when social interactions

are present (the coefficient of variation is 0.1757 as opposed to 0.0301) than when they are

absent.

Finally, in Table 2, we consider the effects of changing the risk premium term—either the

risk aversion coefficient, r, or the variance, ν. We use 10 different values, ranging from 0 (risk-

neutrality) to 1.8. In each case, we compute the optimal contract and the distribution of effort

at this contract. We note first that ξ∗ decreases. This is actually easy to show analytically—ξ∗

decreases as rν increases, converging to 1/n. We notice that average efforts are significantly

higher when J = 0.9. The standard deviation is also higher, but the coefficient of variation

is a little smaller. What is particularly interesting about these results is that changes in rν

have no direct effect on efforts. All of the effect here comes from the change in ξ∗, which

then has both a direct and a multiplied effect on actions. There is a much broader range

of outcomes when J = 0.9, but this is associated with smaller variation within groups. The

across-group coefficient of variation (of average effort) is actually smaller when J = 0.9, but

this is reversed as soon as we drop the risk-neutral outcome. Similarly, the range of contracts

is greater for J = 0.9 when we drop the risk-neutral outcome.

Tables 3 and 4 present results for the case where Ci(ei) = θie
2
i /2. Now, average efforts

13



are higher for J = 0. The coefficient of variation of effort continues to be lower for the J = 1

groups. The variation across groups is higher when J = 1 (COV = 1.3032, as opposed to

COV = 1.2480 when J = 0). Now, the values of ξ∗ are larger when J = 0, and greater

conformity leads to lower values of ξ∗. The ξ∗ are more variable when J = 0 (COV = 0.3107

as opposed to COV = 0.2548 when J = 1). There is greater within-group variation in efforts

for J = 0, but smaller variation in average efforts across groups (COV = 0.3973 when J = 0,

but COV = 0.4590 when J = 1).

A preference for conformity can lead to either higher or lower incentive intensity, ξ∗,

depending on how the intensity of conformity preference affects average effort. In the model

of Tables 1 and 2, all effort levels go up when J increases (although the higher effort levels

go up by less). In the model of Tables 3 and 4, low efforts increase, high efforts decrease,

and the average effort decreases. In general, the high-effort (low-cost) people respond most

to stronger incentives, but in the latter model they are behaving more like the high-cost

people, and in this case the high incentives are not worth the cost (in terms of sacrificed

risk-sharing). The reverse is true when all efforts increase with J .

To summarize: (1) a striking feature of the generated data in the presence of preference

for conformity is that small differences across groups, whether in individual characteristics

or environmental conditions, are reflected as large differences in outcomes and endogenously

chosen organizational variables (for example, contracts). At the same time, because of pref-

erence for conformity, we have greater uniformity within groups. (2) Optimal incentive

intensity, ξ∗, can be either greater or smaller, and this depends on the nature of effort costs.

When average efforts increase with conformity, high-powered incentives are optimal. If av-

erage efforts decrease, low-powered incentives are warranted.

The simulation results are consistent with the empirical findings of Hansen (1997), and

Weiss (1987), both of whom report a convergence of individual output levels toward a stan-

dard, following the introduction of group incentive schemes. Observing telephone operators

at American Express, Hansen found that those workers who were least productive before

introduction of the plan increased their output significantly under the plan, but the more
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productive workers did not alter output significantly. The net result was an increase in av-

erage productivity for the group, and a decrease in the variance of individual output. For

manufacturing workers, Weiss observed that most of the least productive workers increased

their output levels under the group incentive plan, but nearly all of the most productive

workers actually reduced their outputs. We can think of such plans as introducing a concern

for conformity by linking individual output to group output, where prior to the plan no such

link existed.

4 Choice of groups

Suppose there are ℓ = 2 groups, and 2n people. There are n “slots” in each group. Suppose

θ = (θ1, . . . , θ2n), with θ1 < θ2 < . . . < θ2n. After the realization of θ, the two “groups”

choose shares, labelled ξ1 and ξ2 (ξℓ ∈ [0, 1]). Then, agents choose groups based on the their

realization of θi. We ask if segregation by θi could arise, that is, can we have group 1 with

θ1 = (θ1, . . . , θn) and group 2 with θ2 = (θn+1, . . . , θ2n) in equilibrium?

The next proposition shows two things. First, agents with lower values of θi will gain

more from belonging to a group where the others also have lower values of θi (this is the

“high-action” group θ1, where average actions are higher). This result can be used to show

that group-specific prices, qℓ, can separate players by θi in the following sense: There is an

assignment of players to groups ℓ ∈ {1, 2} such that, if agent i is assigned to group ℓ, there

is no ℓ′ such that

sup
ei

U(ei, θi, ξℓ′ , A
ℓ′

i ) − qℓ′ > sup
ei

U(ei, θi, ξℓ, A
ℓ
i) − qℓ,

where Aℓ
i is used to denote both the peer group of i and the average action êi for this peer

group. Share parameters can be chosen such that ξ1 is optimal for group 1 (θ1) and ξ2 is

optimal for group 2 (θ2). We denote supei
U(ei, θi, ξℓ, A

ℓ
i) by U ℓ(θi) for ℓ ∈ {1, 2}. As before,

group 1 has θ1 as the cost parameters of its members.

Proposition 3. Suppose there are two peer groups, (A1
i , A

2
i ), such that θk < θj whenever k
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is in A1
i and j is in A2

i .

1. For any fixed ξ, U1(θi) − U2(θi) decreases with θi.

2. There exists a set of prices (q1, q2) that separate players by θi.

An examination of the proof demonstrates that ξ1 > ξ2, so that low-cost groups use

high-powered incentives. This is further evident from Table 1.

5 Empirical tests of the model

A central prediction of our theoretical model is that individual effort under a group contract

depends not only on contract terms and effort costs, but also on the average effort level

of other group members. We reanalyze the data of Gaynor and Gertler (1995) (hereafter

GG) and test for peer effects, using data on group medical practices under revenue-sharing

contracts, and adopting the standard approach in the literature of regressing individual

outcomes against group outcomes (Arcidiacono and Nicholson 2002; Epple and Romano

1998; Hoxby 2000; Encinosa, Gaynor, and Rebitzer 2000; Glaeser and Scheinkman 2001 and

2002, among others). The approach constitutes an estimation of our equation (3), after the

equation is modified to suit the context of the medical practice data. Using office visits as a

proxy for physician effort, we obtain an estimate of the theory’s social interaction term, J ,

that supports the hypothesis of positive peer effects.

The remainder of this section is organized as follows: In Section 5.1 we derive a testable

empirical model based on our theory. Section 5.2 describes the empirical methodology. A

data appendix describes the data sources and the measurement of key variables. In Section

5.3 we discuss the empirical results, which are presented in full in Table 3.

5.1 The empirical model

In the data, each physician gets a percentage, call it ζ, of her self-generated revenues, together

with the fraction 1/n of the pooled income, where n is the total group size (the pooled income
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is (1−ζ) times total group revenues). In our theoretical model, the physician gets the average

of the pooled income of the others, not including herself. Under the observed contracts, then,

the effective percentage of an individual’s revenues retained is ζ + (1−ζ)
n

, denoted by ζ̂. In

the empirical model, we use ζ̂ where appropriate, computing it using the data’s measures of

ζ and n. We retain the theory’s assumption that the social multiplier acts on the difference

between a physician’s own effort and the mean effort of his or her peers, not including himself

or herself.

For each physician in the sample, we observe the self-reported typical quantity of office

visits per week, qi, and use this as a proxy for physician effort. Given this substitution, our

theory predicts a positive relationship between the quantity of office visits to an individual

physician and the average number of visits to that physician’s practice partners, a relationship

analogous to that between individual and peer effort described in equation 3. Assuming

quadratic costs of the form θi
e2

i

2 , we can express this relationship as

qi = (
1

J + θi
)ζ̂P + (

J

J + θi
)q̄−i + ǫi. (7)

Here we have substituted individual office visits qi for effort ei, mean peer visits q̄−i for

mean peer effort êi, and the adjusted incentive parameter ζ̂ for ζ. We multiply the latter

by P , the office visit fee (common to all group members), which we had normalized to 1 in

the theoretical model. We have also added a stochastic component ǫi, assumed i.i.d. across

physicians, with mean zero and variance σǫ.

To test this relationship we must take into account factors other than effort that might

affect the demand for office visits to a given physician. The data contain several likely demand

factors, such as physician experience and board certification status; market factors, such as

income per capita and education levels; and group-practice factors, such as the number of

exam rooms, the quantity of non-physician labor, and the price per visit. Assuming demand

is linear and additively separable in each of the included factors, we specify the empirical

model as follows:
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qi = (
1

J + θi
)ζ̂P + (

J

J + θi
)q̄−i + g(Ni,X, P, H, K) + ǫi, (8)

in which g(.) is a linear function of its arguments. Ni represents a vector of physician charac-

teristics, and X is a vector of market-area statistics. P , H, K denote three variables specific

to the physician’s group practice: respectively, the office visit fee, hours of non-physician

labor, and number of examination rooms. Using the group practice data, we estimate the

above equation in order to test for the presence and magnitude of social interactions. The

estimated coefficient on group mean output indicates the strength of such interactions, and

can be used to obtain an estimate of the average social multiplier across practice groups, as

described below.

5.2 Empirical methodology

We face a number of well-known problems identifying peer effects in this manner. First,

individual and peer-group outputs may be correlated for reasons other than genuine, social

influence (Manski 1993; Arcidiacono and Nicholson 2002). Such correlated effects, to use

Manski’s terminology, would occur when physicians sort themselves into groups on the basis

of unobserved productivity factors, or when physicians in the same group practice experience

similar unobserved environmental influences on output such as local epidemiological factors.

In either case, mean peer output proxies for the unobserved group-level influences to produce

spurious peer effects. However, if the peer effects are genuine, average practice-partner output

is simultaneous with individual output, and therefore endogenous. Yet another problem

concerns the separation of endogenous peer effects (operating through effort) and any so-

called “contextual” social interactions deriving from exogenous group characteristics. In

some group settings, such as school classrooms, peer gender composition has been found to

exert independent effects on individual achievement separate from the simultaneous choice of

effort (Hoxby 2000). In such cases, it may be impossible to separately identify the effects of

exogenous and endogenous peer variables because the latter may constitute linear functions
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of the former (Manski 1993).6 In this setting we assume there are no independent contextual

interactions, so we don’t face the problem of separating the two types of effects.

To identify the peer effects, we use an instrumental variable for mean peer output, employ-

ing instruments that predict average group output but not individual output. For example,

we use the group average of years of experience and the percentage of group members with

board certification. Assuming production is non-joint across physicians, neither of these ag-

gregate factors should cause variation in individual output.7 While an individual’s board

certification status may affect his or her productivity, we do not expect the certification sta-

tus of an individual’s peers to be a source of direct social influence on individual productivity

apart from its influence on the productivity of peers. Of course, we include the individual’s

own certification status and years of experience (and squared experience) as explanatory

variables, together with the physician’s specialty field and an indicator for whether he or she

also has a subspecialty. Including these variables controls for selection into groups on the

basis of these factors and on any unobserved factors correlated with them. Further control for

unobserved physician type obtains from including the price per visit and contract incentive

parameters. If, as in the theoretical framework, physicians can select into groups on the basis

of these contract terms, these parameters proxy for unobserved effort costs. We include other

group-level factors, such as quantity of exam rooms and hours of non-physician labor, and

the market-level factors income per capita and average education level, in order to control for

additional correlated influences on members of a given practice. Although the instruments

could be correlated with the average values of unobserved factors in the group, the exogeneity

requirement is that they need only be uncorrelated with the residual unobserved factors not

absorbed by the individual and group-level controls.

Another econometric issue (raised first in GG) we must address is the endogeneity of the

variables P (the office visit fee), ζ̂ (the incentive term), H (hours nonphysician labor), and K

6In binary choice models, however, Brock and Durlauf (2001) obtain separate identification of endogenous
and exogenous effects based on the non-linearity of outcomes in the exogenous variables.

7Peer effects do not amount to joint production: under joint production the marginal product of an
individual’s effort depends on the quantity and/or quality of other physicians’ inputs, a condition wholly
independent of the presence or absence of peer effects as we model them.
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(exam rooms). Because these values are chosen (jointly) by the group members themselves,

presumably to optimize group welfare, they may be correlated with the errors on individual

output. While this is a virtue for the purpose of preventing bias on the coefficient for group

mean output (or its instrumental variable), if we want to observe the effect of exogenous price

and incentive changes we should remove this endogeneity. Following the results of Hausman

specification tests conducted in GG, which do not reject exogeneity for H and K, but do

reject it for P and ζ̂, we employ instrumental variables for P ζ̂ and P .8 Following GG we

use the wages for non-physician staff (including physician’s assistants, lab technicians, and

nurses) to identify the effects of P and P ζ̂, because these wages affect a group’s costs, and

therefore its price and incentive choices, but not individual demand. Risk preferences and

income variability within the group also play a role in optimal contract determination, but not

in the choice of individual effort. Thus, it is appropriate to include as additional instruments

the group-average values of risk-preference measures and of variables that proxy for income

variability, such as physician specialty. We adopt a two-stage least-squares estimation with

three endogenous variables: group mean office visits, price per visit, and incentive intensity.

The results of the estimation are reported in Table 5. However, we also report results

from OLS estimation, because including the endogeneous contract parameters offers a better

defense against correlated effects bias on the estimation of the social interactions.

Notice that the first two coefficients in equation 8 depend on the idiosyncratic variable θi,

which represents subjective effort cost. Viewing θi as a random variable implies random coef-

ficients on P ζ̂ and q̄−i. With random coefficients, the standard OLS estimates will be biased

because of the likely correlations between the effort costs, mean group output, and the incen-

tive parameter. Standard instrumental-variables (that is, two-stage least-squares) regression

yields inefficient estimates, and may or may not produce inconsistent estimates. Consistency

requires that the variable θi be independent of the instrumental variables for P ζ̂ and q̄−i, and

8We conduct our own specification tests for the endogeneity of P , H, K, ζ̂, and mean peer output q̄−i,
which do not reject exogeneity for any of them. The discrepancies between our test results and GG’s most
likely owe to two factors: first, GG use the logarithms of these variables while we use the values directly; and
second, the data set that survives omission of missing values is in our case smaller than in GG’s. We are able
to nearly replicate GG’s results by replicating their specification.
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we proceed assuming such independence. This assumption simply reiterates the condition

that idiosyncratic effort cost cannot be predicted on the basis of a group’s non-physician

wage payments, nor on the basis of the average observed group-member characteristics (such

as average years experience), controlling for the other included variables.

5.3 Interpretation of results

The empirical results are presented in Table 5.9 The relevant data description and variable

definitions are in an appendix. Here, we focus only on the variables of theoretical interest.

The model implies that the social multiplier varies inversely across groups with the average

effort cost in the group. We can estimate the average value of the social multiplier across

groups as a simple transformation of the estimated coefficient on GRPMEAN. Denoting this

coefficient as γ and the average multiplier as M , we get M = 1
1−γ

(Becker and Murphy

2000). Given the IV estimate of γ of 0.376, we get an average multiplier value of 1.6 that is

significant at the .01 level. Under standard OLS regression, the estimated mean multiplier

is 2.07, significant at the .01 level. The IV estimate suggests that, on average, a change

in an exogenous variable (for example an exogenous shock to price) will have on average

a 60 percent greater impact on group productivity than it would have in the absence of

social interactions. The estimated coefficient on GRPMEAN lies between zero and one, and

so satisfies the moderate social influence condition required for unique equilibrium in the

theoretical model. The signs of other key coefficients take the predicted values: under the IV

specification, the coefficient of the incentive term (INCENTIVE) is positive and significant

at the .10 level, and the coefficient on the visit fee (PRICE) is negative and significant at

the .10 level. Under OLS, the incentive effect is small and insignificant while the price effect

is negative, significant at the .05 level, and yet smaller in absolute value than under the IV

estimation.

9A single asterisk (*) denotes significance at the .10 level, (**) denotes significance at the .05 level, and
(***) denotes significance at the .01 level.
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6 Conclusion

A criticism often levelled at the economics literature on organizations is that it neglects cul-

tural and social processes in the workplace. People involved in economic transactions are also

socially related to each other, and to properly understand the functioning of organizations

we must understand the nature of social interactions within them. Addressing a conspicu-

ous gap in the formal theory of organizations, we have shown that social interactions can

have profound effects on individual behavior and optimal contractual incentives. Further,

the model’s predictions can be tested empirically, and we find support for the presence of a

significant social multiplier among partners in a group medical practice. The limitations of

the data notwithstanding, the test is valuable, given the relative scarcity of empirical work

on social interactions, and it contributes to the discussion of how best to approach such work.

Our computational results explore properties of data generated from our model. One of these

properties, the compression of individual effort levels in the presence of a social multiplier,

has been observed empirically as an effect of introducing group profit-sharing. We know of

no other model that can explain this observation.

The model teaches us that a given organization’s success may well depend upon details

of the social interaction among the members of the organization. Replicating such success,

therefore, is difficult because such interactions cannot be reproduced at will. This lesson

applies quite generally at the societal level, despite our formal focus on organizations. In

response to the puzzling observation that societies in apparently similar situations, given

similar economic prescriptions, experience vastly different results, there has been a push to-

wards understanding the role of norms and social capital in development. (See, for example,

http://www.worldbank.org/poverty/scapital/.) The consensus emerging from this literature

is that such divergent paths can be understood only in light of differences in institutions.

Institutions, in turn, can be understood only in light of both market and non-market inter-

actions.
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8 Proofs

Proof of Proposition 1

Proof. We begin by noting that

V i
1 = ξ − θie

β−1
i − J(ei − êi).

Now let θm = mini{θi} and define the interval

I ≡ [0, (ξ/θm)
1

β−1 ].

If ei = 0, V i
1 = ξ + Jêi > 0 whenever ξ > 0. If ei = (ξ/θm)

1

β−1 , then

V i
1 = ξ − θi

ξ

θm
− J((ξ/θm)

1

β−1 − êi).

Since θi > θm, for any êi ∈ I we must have V i
1 < 0. Recalling that V i

11 < 0, and V i
1 is

continuous, we have ei ∈ I whenever êi ∈ I. A fixed point argument, as in Proposition 1 of
GS, now shows that there exists at least one equilibrium e(θ, ξ, β, J).

To show that there is at most one equilibrium we verify the MSI condition. Note that

∣

∣

∣

∣

V i
12

V i
11

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

−
J

J + θi(β − 1)eβ−2
i

∣

∣

∣

∣

∣

< 1

for all θi > 0, β > 1 and ei > 0. ξ > 0 ensures that ei > 0 for all i. Now Proposition 3 of GS
establishes the desired result.

Proof of Proposition 2

Proof. We find ξ∗, the share parameter that maximizes group utility subject to the constraint
that individuals in the group choose equilibrium effort levels:

max
ξ

V ≡
∑

i

(ei − θi
eβ
i

β
) −

nrν

2
[ξ2 +

(1 − ξ)2

n − 1
] −

J

2

∑

i

(ei − êi)
2

subject to
ξ − θie

β−1
i − J(ei − êi) = 0 (∀i).

From Proposition 1 we know there is a unique e(θ, ξ, β, J) that satisfies the constraints. The
first order condition from the maximization problem can be simplified to

∑

i

(1 − ξ)
dei

dξ
− rnν

(

nξ − 1

n − 1

)

+ J
∑

i

(ei − êi)
dêi

dξ
= 0.

Upon expanding the sum, we see that

∑

i

(ei − êi)
dêi

dξ
=

∑

i

∑

j 6=i

(ej − êj)
dei

dξ
.
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Since
∑

i(ei − êi) = 0, we have

∑

j 6=i

(ej − êj) = −(ei − êi),

which allows us to write

∑

i

(ei − êi)
dêi

dξ
= −

∑

i

(ei − êi)
dei

dξ
.

The first order condition can be rewritten as

Vξ(ξ) ≡
∑

i

(1 − ξ)
dei

dξ
− rnν

(

nξ − 1

n − 1

)

− J
∑

i

(ei − êi)
dei

dξ
= 0.

Observe that
dei

dξ
=

∂ei

∂ξ
+

∑

j

Hij
∂ej

∂ξ

with H ≡ F−1
1 as defined in the discussion following Proposition 1. When ξ = 0, we have

ei = 0 and (with β ≥ 2) ∂ei/∂ξ > 0 for each i so that, together with (nξ − 1) = −1 we have
Vξ(0) > 0. In case J = 0,

Vξ(1) =
∑

i

(1 − ξ)
dei

dξ
− rnν

(

nξ − 1

n − 1

)

= −rnν < 0.

Continuity of Vξ shows that ξ∗ ∈ (0, 1) exists.
For J > 0, we show that J

∑

i(ei − êi)dei/dξ is positive for all ξ. This follows from
two claims: (1) dei/dξ is smaller when θi is larger, and (2) ei > êi when θi is smaller
than average, while ei < êi when θi is greater than average. Since

∑

i(ei − êi) = 0, weighting
positive terms by larger (positive) numbers yields the required result. Claim (2) is immediate
from Corollary 1. We prove claim (1).

(1) We denote xi ≡ ∂ei/∂ξ and zi ≡ (∂ei/∂êi)/(n − 1), observing that zi = Jxi/(n − 1).

Suppose θi < θj . From the equilibrium conditions it is possible to show that θi(β − 1)eβ−2
i <

θj(β − 1)eβ−2
j . This implies xi > xj . Now we examine dei/dξ when the effect of changes

in other players’ actions is taken into account. We first enumerate some properties of the
matrix H that appears in

dei

dξ
=

∂ei

∂ξ
+

∑

j

Hij
∂ej

∂ξ
,

where F−1
1 = I + H. Now F1 has 1 as each diagonal element, and every off-diagonal element

of row i equals −zi. From the Neumann expansion (see GS),

H = (I − F1) + (I − F1)
2 + (I − F1)

3 + . . . .

Denote a term in the expansion (I − F1)
m by Am for m ≥ 1. For each m we have

1. Am(i, k) > Am(j, k) when k 6∈ {i, j},
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2. Am(i, i) > Am(j, j), and

3. xiA
m(j, i) = xjA

m(i, j).

Consequently each property holds for H as well. Now write

dei

dξ
= (1 + Hii)xi + Hijxj +

∑

k 6=i,j

Hikxk,

dej

dξ
= (1 + Hjj)xj + Hjixi +

∑

k 6=i,j

Hjkxk.

A comparison shows that dei/dξ > dej/dξ when θi < θj .

We have Vξ(1) < 0 and Vξ(·) continuous so that a solution ξ∗ ∈ (0, 1) exists.

Proof of Corollary 1

Proof. (1) Following the approach explained after Proposition 1 we see that, for each i,

∂ei

∂θi
=

−eβ−1
i

J + θi(β − 1)eβ−2
i

< 0.

Incorporating the social multiplier we have

dei

dθi
= (1 + Hii)

∂ei

∂θi
< 0.

An increase in θi will also increase ej , by increasing ei:

dej

dθi
= Hji

∂ei

∂θi
< 0.

An increase in θi will decrease all action levels. Since (1+Hii) > Hji, part (1) is now proved.
(2) The equilibrium condition, for each i, can be written as

ξ + Jêi = θie
β−1
i + Jei.

This can, in turn, be written as

ξ +
J

n − 1

∑

j

ej = θie
β−1
i + Jei

n

n − 1
.

For every e,

θie
β−1 + Je

n

n − 1
> θje

β−1 + Je
n

n − 1

whenever θi > θj . Together with the previous condition this implies that ei < ej whenever
θi > θj .

Proof of Proposition 3
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Proof. (1) Let U ℓ(θi) denote
sup
ei

U(ei, θi, ξℓ, A
ℓ
i).

We follow GS (Section 2.5) and show that an agent with low θi gains more from belonging
to the high action group. Consider the utility V of an agent with share parameter ξ when
the average action of her peers is A.

dV

dA
= ξ

dei

dA
+ (1 − ξ) − θie

β−1
i

dei

dA
− J(ei − A)

d

dA
(ei − A).

From equilibrium conditions, and since d(ei − A)/dA = dei/dA − 1, this equals:

J(ei − A) + (1 − ξ).

Differentiating with respect to θi we get

d2V

dAdθi
= J

d

dθi
(ei − A),

which must be less than zero in light of the arguments in the Corollary and at the end of
Proposition 2 (the decrease in ei when θi increases is greater than the decrease in any other
ej , hence A). Since the low cost group θ1 will have higher actions in equilibrium, the first
part of the proposition follows.

(2) For a fixed ξ, in a segregated equilibrium, every agent would like to join the high
action group. We choose a price for group 1 that is just higher than the increase in utility
for the agent in group 2 who has the highest gain from switching.

Now suppose that for each group θℓ, ξℓ is optimal for ℓ. The value of ξ which maximizes
a player’s utility is higher when θi is lower. In addition, ξℓ is found by averaging the first
order conditions that define each individual’s best ξ. Hence, each individual in group 1 must
have a higher gain from belonging to group 1 than a member of group 2. As before, we can
find a price for group 1 that separates the players by θi.

9 Data

9.1 Data sources

The physician level and group-practice data are the results of a 1978 survey conducted by
Mathematica Policy Research Group. These are the same data used by GG to test their
model of moral hazard under revenue-sharing contracts. Controlling for missing values, we
observe 755 physicians in 236 groups.10 Prices are reported in 1978 dollars. All the groups
operated under a fee-for-service system and provided primarily ambulatory care. Specialties
among the observed physicians consisted of general practice, internal medicine, pediatrics,
and obstetrics/gynecology. We also use data describing characteristics of the market area
served by each group. These data were collected by GG from a list of sources including the
American Medical Association, The County and City Data Book, and the American Hospital
Association Guide. The sources are described at length in Boldin et al. (1979).

10The reported sample sizes are after omission of records with missing values. Average actual group size for
the 236 observed groups is about 16 physicians. When computing group-average values for given variables, we
use all available data, including data reported by physicians ultimately excluded based on their not reporting
for other variables.
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9.2 Variable names and measurement

The dependent variable in equation (8) is physician output, measured by the number of
office visits per week (VISITS). The key independent variables are the incentive term and
the mean peer output, both of which are represented by instrumental variables. The incentive
term (INCENTIVE) is the product of the group’s office visit fee and its ‘compensation scale’
variable. The compensation scale corresponds roughly to the term ζ from our theoretical
model and captures the extent of revenue sharing in the group. To measure this variable,
the survey asked respondents to rank, on a scale of one to ten, the relationship between
individual productivity and compensation.11 Mean peer output (GRPMEAN) represents,
for any given physician, the average office visits over all other physicians in the same group
practice. These values were computed prior to omitting physician records with missing values
for other variables of interest in order to use all available information.

The remaining independent variables for the second stage are as follows: hours of non-
physician labor per week (HRSNON), number of exam rooms at the group facility (EXAM-
RMS), office visit fee (PRICE–given by an instrumental variable), individual years experience
and experience squared (EXPER and EXPERSQ), foreign medical graduate dummy (FMG),
subspecialty dummy (SUBSPEC), dummies for specialty in pediatrics (PDS), internal medi-
cine (IM) and obstetrics/gynecology (OBS), board certification dummy (BOARD), multispe-
cialty dummy (MULTSPEC) indicating whether the group employs physicians of more than
one specialty, hospital beds per capita in the relevant market region (BEDSPOP), physicians
per capita in the region (MDPOP), average regional apartment rental rate (RENT), percent
of regional population receiving AFDC payments (AFDC), regional population per square
mile (POPDENS), regional per capita income (PCAPINC), and average years education
among the regional population (EDUC).

As explained above we use instruments for the endogenous firm-level variables and for
mean peer output. The list of instruments includes non-physician wages for each of four
classes of non-physician labor (WAGELPN, WAGECLT, WAGEULT, WAGEBA), and the
group averages of variables measuring risk preferences, income variance, preferred group size,
years experience, medical training location (foreign vs. domestic), and board certification.
To measure risk aversion, the survey asked physicians to rank the importance of income
regularity on a scale of one to ten. The group average of this ranking is denoted AIMPR-
EGY. The average value for preferred group size is denoted APREFSIZ. To measure income
variance, we use the specialty and subspecialty dummies mentioned above. For group-level
measures of these variables, we use the percentage composition of each specialty (PCTGS
for general surgery, PCTOB for obstetrics/gynecology, PCTIM for internal medicine, and
PCTPD for pediatrics), and the average value of the subspecialty dummy (ASUBSPEC).
We also include the average of the foreign medical graduate dummy (AFMG), and percent
board certified (PCTBOARD), average years experience (AEXPER) and average experience
squared (AEXPERSQ).

11The reported values are highly correlated with alternate measures of the compensation structure from
the same survey (see GG p. 599).
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Table 1: Statistics on equilibrium effort and optimal share for groups with small cost differ-
ences

J = 0 J = 0.9

Group Scale Average Stdev COV ξ∗ Average Stdev COV ξ∗

Effort Effort

1 0.05 0.1752 0.0026 0.0147 0.18 3.7701 0.0506 0.0134 0.48
2 0.10 0.1707 0.0049 0.0287 0.18 2.8518 0.0748 0.0262 0.44
3 0.15 0.1665 0.0070 0.0420 0.18 2.2661 0.0872 0.0385 0.41
4 0.20 0.1626 0.0089 0.0547 0.18 1.8334 0.0920 0.0502 0.38
5 0.25 0.1589 0.0106 0.0669 0.18 1.5429 0.0947 0.0614 0.36
6 0.30 0.1467 0.0115 0.0785 0.17 1.3122 0.0947 0.0722 0.34
7 0.35 0.1436 0.0129 0.0896 0.17 1.1242 0.0928 0.0826 0.32
8 0.40 0.1406 0.0141 0.1003 0.17 1.0002 0.0926 0.0926 0.31
9 0.45 0.1378 0.0152 0.1106 0.17 0.8955 0.0915 0.1022 0.30
10 0.50 0.1351 0.0163 0.1205 0.17 0.8058 0.0899 0.1115 0.29

Parameters: N = 10, β = 2, rν = 1.

Table 2: Statistics on equilibrium effort and optimal share for groups with differences in risk
premium

J = 0 J = 0.9

Group Risk Average Stdev COV ξ∗ Average Stdev COV ξ∗

Premium Effort Effort

1 0.0 0.8024 0.0967 0.1205 1.00 2.7232 0.3037 0.1115 0.98
2 0.2 0.2781 0.0335 0.1205 0.35 1.6673 0.1859 0.1115 0.60
3 0.4 0.1986 0.0239 0.1205 0.25 1.2504 0.1395 0.1115 0.45
4 0.6 0.1668 0.0201 0.1205 0.21 1.0281 0.1147 0.1115 0.37
5 0.8 0.1430 0.0172 0.1205 0.18 0.8892 0.0992 0.1115 0.32
6 1.0 0.1351 0.0163 0.1205 0.17 0.8058 0.0899 0.1115 0.29
7 1.2 0.1271 0.0153 0.1205 0.16 0.7225 0.0806 0.1115 0.26
8 1.4 0.1192 0.0144 0.1205 0.15 0.6947 0.0775 0.1115 0.25
9 1.6 0.1192 0.0144 0.1205 0.15 0.6931 0.0713 0.1115 0.23
10 1.8 0.1112 0.0134 0.1205 0.14 0.6113 0.0682 0.1115 0.22

Parameters: N = 10, β = 2, Scale = 0.5.
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Table 3: Statistics on equilibrium effort and optimal share for groups with small cost differ-
ences (Case 2)

J = 0 J = 1

Group Scale Average Stdev COV ξ∗ Average Stdev COV ξ∗

Effort Effort

1 0.05 50.3783 47.6896 0.9466 0.86 28.9178 0.3845 0.0133 0.79
2 0.10 21.9673 20.7949 0.9466 0.75 12.1564 0.3158 0.0260 0.66
3 0.15 13.0827 12.3845 0.9466 0.67 7.0420 0.2683 0.0381 0.57
4 0.20 8.9334 8.4566 0.9466 0.61 4.7533 0.2363 0.0497 0.51
5 0.25 6.5609 6.2107 0.9466 0.56 3.4493 0.2099 0.0609 0.46
6 0.30 5.0769 4.8059 0.9466 0.52 2.6388 0.1888 0.0716 0.42
7 0.35 4.1006 3.8817 0.9466 0.49 2.1114 0.1728 0.0819 0.39
8 0.40 3.3683 3.1885 0.9466 0.46 1.7617 0.1617 0.0918 0.37
9 0.45 2.7988 2.6494 0.9466 0.43 1.4461 0.1466 0.1014 0.34
10 0.50 2.4018 2.2736 0.9466 0.41 1.2693 0.1404 0.1106 0.33

Parameters: N = 10, β = 2, rν = 1.

Table 4: Statistics on equilibrium effort and optimal share for groups with differences in risk
premium (Case 2)

J = 0 J = 1

Group Risk Average Stdev COV ξ∗ Average Stdev COV ξ∗

Premium Effort Effort

1 0.0 5.9165 5.6008 0.9466 1.00 3.7114 0.4473 0.1205 0.96
2 0.2 4.4520 4.2144 0.9466 0.76 2.5516 0.3075 0.1205 0.66
3 0.4 3.6319 3.4381 0.9466 0.62 2.0104 0.2423 0.1205 0.52
4 0.6 3.1047 2.9390 0.9466 0.53 1.6624 0.2004 0.1205 0.43
5 0.8 2.7532 2.6063 0.9466 0.47 1.4691 0.1771 0.1205 0.38
6 1.0 2.4603 2.3290 0.9466 0.42 1.3145 0.1584 0.1205 0.34
7 1.2 2.2260 2.1072 0.9466 0.38 1.1985 0.1445 0.1205 0.31
8 1.4 2.1089 1.9963 0.9466 0.36 1.1212 0.1351 0.1205 0.29
9 1.6 1.9331 1.8299 0.9466 0.33 1.0438 0.1258 0.1205 0.27
10 1.8 1.8160 1.7190 0.9466 0.31 0.9665 0.1165 0.1205 0.25

Parameters: N = 10, β = 2, Scale = 0.5.
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Table 5: Instrumental variable and OLS estimates of the individual physician demand func-
tion. Dependent variable: office visits.

IV (2SLS) OLS

CONSTANT 71.83** 39.74**
(2.03) (1.36)

INCENTIVE† 3.24* .42
(1.73) (.93)

GRPMEAN† .38*** .52***
(4.13) (15.27)

PRICE† -3.70* -1.56**
(-1.82) (-2.30)

HRSNON .13* .19**
(1.18) (2.26)

EXAMRMS .10** .12***
(2.12) (2.91)

EXPER 2.61*** 2.44***
(3.89) (3.90)

EXPERSQ -.08*** -.08***
(-4.73) (-4.79)

FMG -20.52*** -17.43**
(-2.65) (-2.39)

SUBSPEC -3.01 -3.91
(-.68) (-.95)

PDS 16.38*** 15.96***
(2.95) (3.00)

OBS -5.28 -3.96
(-.83) (-.68)

IMS -30.50*** -26.03***
(-5.65) (-5.46)

BOARD 1.44 .81
(.34) .20)

MULTSPEC 10.18 20.50***
(1.51) (4.62)

BEDSPOP .71 .06
(.46) (.04)

MDPOP -12.52*** -11.58***
(-2.68) (-2.64)

RENT .21 .06
(1.20) (.51)

AFDC -.13 .62
(-.06) (.43)

POPDENS .00051 .0029
(.14) (.90)

PCAPINC -.0023 -.002
(-.94) (-.87)

EDUC .62 2.48
(.19) (.92)

† Instrumental variable 32
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Figure 1. Effort distribution for J = 0 and J = 1
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Figure 2. Effort distribution when share increases from 0.3 to 0.35
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Figure 3. Effort distribution when costs are scaled down
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Figure 4. Optimal shares when J = 0 and J = 1
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Figure 5. The effect on optimal share of a decrease in costs 
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