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1 Introduction

A large fraction of every cohort that enrolls in four-year U.S. colleges drops out before

graduating and there is a higher concentration of dropouts among the students from lower-

income families. We also observe that students from low-income families tend to drop out

earlier than students from high-income families. Given the high return to graduation, the

skewed distribution of dropouts generates a channel that perpetuates and exacerbates income

inequality.

We present a dynamic model of educational choice to explore the relationship between

household wealth and college dropout behavior. In the model, the differences in the students’

unobserved innate scholastic ability and the familys’ initial wealth levels are the driving force

behind the high and skewed dropout rate among low-income students. At every period in

college, risk-averse students take an exam, the outcome of which provides both human capital

and information that can be used to update students’ beliefs about their ability level. Given

the outcome of the exams and their income level, the students decide optimally if and when

to drop out. Therefore, a student’s optimal dropout behavior is characterized by the distance

between her belief about her ability and a belief threshold at which the student drops out. We

show that this threshold depends endogenously on the wealth level of the student’s family,

therefore providing the link between household wealth and dropout behavior.

Our model implies that investing in a college education is risky because the outcome

is uncertain,1 and that wealthier students behave as if they are less risk averse due to

constant relative risk aversion (CRRA) preferences.2 This framework, combined with the

learning mechanism, generates the result that poor students are less willing to take the

risk associated with the uncertain outcome of college education and that they do not want

to continue their education for as long as the rich students in order to learn their ability.

Therefore, poor students are less likely to graduate and tend to drop out earlier compared

1Chen (2008) finds that college investment is indeed risky after correcting for selection bias and accounting
for permanent and transitory earnings risks.

2We also generalize our results to hyperbolic risk aversion (HARA) preferences, which include CRRA as
a special case.
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to wealthier students.

In order to model the evolution of beliefs about innate ability and the decision to drop

out, we take the Miao and Wang (2007) framework of entrepreneurial learning and survival,

and extend it with realistic features that are important for the dropout decision faced by

college students. In particular, we allow the workers’ lifetime wage profile to depend on their

experience, measured by the time spent in the labor market, and on their tenure in college,

as in Mincer (1974). Unlike Mincer, however, we also let the lifetime wage profile depend on

whether the worker has graduated from college and allow the experience premium to interact

with the individual’s graduation status. Our results are robust to different specifications of

the lifetime wage profile for students with different college tenures.

In a typical Mincerian framework, a student would choose the optimal number of years

of college education by comparing the marginal gain from an extra year in school with the

marginal gain from joining the workforce immediately. Within this framework, a nonlin-

ear relationship between schooling and returns to education can potentially explain why

many students decide to drop out even though the returns to earning a four-year degree are

high. Still, this framework does not fully explain the data. First, the Mincerian model is

silent about the relationship between wealth and educational profiles. Second, when college

students are confronted with questions regarding their expectations about postsecondary

educational outcomes, almost all of them respond that they intend to obtain four years of

college education.3 The failure of this basic Mincerian model suggests that it is necessary

to have a story where information unfolds as time elapses, in order to explain the dropout

behavior.

The literature provides three different mechanisms whereby information is revealed over

time. The first one involves binding credit constraints. However, credit constraints do not

seem to be the only determinant of dropout behavior because the dropout rate for students

from the richest households is around 38 percent, which is still very high.4 This seems to

conflict with arguments in favor of credit constraints because if credit constraints were the

3See the data manual of National Longitudinal Survey of Youth 1979.
4Own calculations from NLSY79 using top 5 percent of income distribution.
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main reason for dropping out we would expect that almost all the students at the top of

the income distribution to graduate, given the high returns to education. Moreover, using

NLSY 1997 data, Lovenheim and Reynolds (2010) find that rising house prices lead to

higher graduation rates, especially among low-income families. The result implies that the

effect of wealth on dropout behavior has not vanished despite the fact that there have been

many improvements in financial markets and credit availability to poor students. The second

potential mechanism is learning about scholastic taste, that is the student’s attitude towards

schooling, as in Stange (forthcoming) or Heckman and Urzua (2008). However, there is no

clear channel that relates scholastic taste with the wealth level of the family.

The third mechanism, used in this paper, is learning about unobserved ability through

college attendance. Our modeling choice follows from the empirical work of Stinebrickner

and Stinebrickner (2008) and Stinebrickner and Stinebrickner (2009), who construct a panel

study in order to understand the dropout decisions of students in a particular four-year

institution, Berea College. Stinebrickner and Stinebrickner (2008) calculate a lower bound

on the percentage of attrition that would remain at Berea College even if low-income students

were given access to loans, and find that this bound is very high, thus concluding that credit

constraints cannot explain the dropout decision for the majority of students. Stinebrickner

and Stinebrickner (2009) find that academic performance, a proxy for learning about one’s

scholastic ability, is a good predictor of dropout behavior, a result that is detrimental to

explanations relying on scholastic taste.5

We do not claim that the alternative mechanisms discussed above play no role in dropout

decisions but rather propose our model as a complementary explanation. For example,

although our model does not include explicit borrowing constraints, it implies a natural

borrowing limit in the spirit of Aiyagari (1994). Since a student does not know her ability

ex-ante when attending college, she faces the risk of ending up in a low-paying job, an

5Another mechanism that can explain the skewed distribution of dropouts is that richer students choose
a longer duration of education when education is a normal consumption good. However, this cannot explain
why academic performance matters so much for dropout decisions, as shown in Stinebrickner and Stinebrick-
ner (2009), unless we believe that academic performance affects the marginal utility of education and that
its effect on rich and poor students is different.
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event that will cause her to have low wealth, after adjusting for discounted lifetime wage

income and the cost of college. Due to CRRA preferences, as the student’s wealth level

approaches zero her consumption as a low-wage worker becomes infinitesimally small, and

her marginal utility of consumption post-education goes to infinity. This causes a lower

willingness by the student to borrow against her future labor income in order to finance her

college education. In Aiyagari’s words: “Thus, a borrowing constraint is necessarily implied

by non-negative consumption,” where the non-negativity of consumption is guaranteed by

the CRRA preferences in our model.6

The next section uses data from the National Longitudinal Survey of Youth 1979 and

the National Longitudinal Study of the High School Class of 1972 to compare the dropout

behavior of poor and rich students. We find that poor students are at least 27 percent more

likely to drop out and they do so before rich students, controlling for measures of unobserved

ability.

2 Evidence

To motivate our model, this section presents some statistics regarding dropout behavior

based on the National Longitudinal Survey of Youth 1979, NLSY hereafter, and the National

Longitudinal Study of the High School Class of 1972, NLS-72 hereafter. For the NLSY,

we focus on individuals who enrolled in a four-year college during or after 1979 with no

discontinuities in their education spells after college enrollment. For the NLS-72, we focus

on individuals who enrolled in a four-year college during 1972 with no discontinuities in their

education spells after starting college.7

6The intuition regarding a natural borrowing limit also holds for HARA preferences because the marginal
utility of consumption goes to infinity as consumption approaches to a positive limit under these preferences.

7Note that we also discarded students that attended two-year community colleges. The separation of
community colleges from four-year colleges is important because the salary profile of graduates from both
types of institutions is quite different. Within the context of our model, community colleges may serve as a
stepping stone to four-year colleges by giving students more information about their skills so that high school
graduates that are not optimistic enough to go to a four-year college initially may still enroll community
colleges. Trachter (2010) formalizes this idea to study the transition between community and four-year
colleges.
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Our analysis follows from comparing dropout profiles of students from rich and poor

families. For NLS-72 we use the socioeconomic status of the respondent’s family at the

moment of high-school graduation as a measure of wealth. For the NLSY such a variable

is not available, so we construct it ourselves. In particular, we first rank the respondents’

families according to their income at the time the student graduated from high school. Then

we match the fraction of families with different socioeconomic status in NLS-72 so that both

datasets become comparable.8

Table 1 presents some aggregate statistics regarding dropout behavior for both rich and

poor students. Here we withold students from middle income households to make the point

clearer. In both datasets, students from poor families have higher attrition rates. Further-

more, students from poor households tend to drop out before students with rich families.

As shown in the table, they tend to drop a half year to a year sooner than rich students

depending on the dataset.

Table 1 Dropout rates and mean time before dropping out by socioeconomic status of
family

Socio. statusa % that drop Mean tenure in college st. dev. of tenure

Low 62.5 2.78b 1.6
NLSY

High 26.96 3.94b 1.9

Low 65.6 2.02 1.29
NLS-72

High 52.86 2.69 1.63
a For the NLSY we constructed the measure of socioeconomic status thorugh the income level of
the family prior to the respondent’s enrollment in college. We choose the deciles so as to match
the distribution of socioeconomic status of the NLS-72.
b We only have the length of the tenure in college for a sub-sample of the population.

To further explore the skewed distribution of dropouts with respect to wealth, we compare

the dropout rates of rich and poor students in different years of college. If poor students tend

to drop out earlier than rich students, as we suggest, then a larger proportion of dropouts

among poor students should occur in the earlier college years, whereas a larger proportion

8For students enrolling in college, our sample from NLS-72 has 16.3 percent of families classified as low
socioeconomic status, 41.7 percent as average socioeconomic status, and the rest as wealthy.
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of dropouts among rich students should occur in later college years. Table 2 provides a

parsimonious way of checking this argument in the data by reporting the ratio of proportion

of dropouts among poor students to the proportion of dropouts among rich students in

different years of college. This statistic decreases from a number greater than 1 to a number

less than 1 as we go from the earlier to later college years, providing support for our claim.

Table 2 Dropout rates of low- vs. high-income students
tenure between

0 and 1 1 and 2 2 and 3 3 and 4 4 and 5 5 and 6 6 and 7
years years years years years years years

NLSY 3.28 1.31 1.61 0.8 0.35 0.23 0.4
NLS-72 1.49 1.17 0.94 0.38 0.52 0.19 0.47

Each number in the table represents the dropout rate of low-income students as a share of the total dropout
rate of low-income students divided by the yearly dropout rate of high-income students as a share of the
total dropout rate of high-income students.

We also extend our analysis by controlling for available proxies of ability that do not seem

to be strongly colinear with the household’s socioeconomic status.9 If students form their

beliefs rationally, these proxies are also positively correlated with students’ initial beliefs

about their ability levels because the belief distribution of higher ability students should

first-order stochastically dominate the belief distribution of lower ability students.

Table 3 presents the marginal effect and percentage effect of having high or low socio-

economic status relative to medium socioeconomic status on the college dropout rates for

the NLSY and NLS-72 datasets. This table provides the results of logit regressions, where

the dependent variable is equal to one if the student drops out and zero otherwise. For both

datasets rich students are less likely to drop out than are middle-income students, with the

marginal effect ranging from -5.88 percent to -13.8 percent depending on the dataset. Low

income students are more likely to drop out than middle income students, with marginal

effect ranging from 2.56 percent to 15.76 percent depending on the dataset. Given the

fraction of college students that drop out, the probability of dropping out increases by at

9The educational attainment of the student’s father and mother are strongly co-linear with the household’s
wealth and therefore these measures are not used.
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least 27 percent for students from poor households relative to those from rich households.

These results confirm the results shown in previous tables.

Table 3 Marginal and percentage effect of socioeconomic status on dropout probability
dF/dx std. error % of dropouts % effect N

NLSY
Low Income 0.1576 0.063

38.08
41.38

635
High Income -0.0588 0.0468 -15.44

NLS-72
Low Income 0.0256 0.0298

59.9
4.27

2705
High Income -0.138 0.0211 -23.03

The results are obtained from running logit regressions on the dropout probability based on the socioeconomic
status of the student’s family and a set of controls. The regressions and description of variables used as
controls can be found in Table 5 and Table 6 in Appendix E. N is the number of observations.

Our evidence regarding the negative relationship between wealth and dropout rates is

also supported by Lovenheim and Reynolds (2010) who find that house price appreciation

leads to higher graduation rates, especially among low-income families.

We also look at the distribution of dropout times across students with different family

income. To explore this connection we run an ordered logit regression of the dropout time

for those students who dropped out. We choose ordered logit because it is a simple way to

solve the interval censoring problem caused by the discrete measurements of dropout times

in our data, and the right-censoring problem inherent in duration data.10 The results of the

regressions can be found in Table 7 for the NLSY and Table 8 for NLS-72 in Appendix E.

Using the estimation results we produce the predicted probability of dropping out in a given

year as a function of the socioeconomic status of the student’s family.

In Figure 1 it can be seen that, for the NLSY data, poor students are more likely to

drop out earlier than wealthier students. Wealthier students also tend to drop out later than

middle-income students, but the difference is not significant. Still, the difference between

low-income and high-income students in terms of the predicted droout times is compelling.

In Figure 2 the same pattern can be observed for the NLS-72 data. Poor students are more

likely to drop out earlier than are richer students.

10See also Han and Hausman (1990) which shows that the proportional hazards specification for a duration
model leads to a likelihood function of an ordered logit form in the absence of time varying covariates.
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In this section, we have shown that a college student’s family income not only affects the

probability of dropping out but also the timing of attrition.

Figure 1 NLSY: Predicted time to drop

The figure plots, conditioning on students who dropped out, the predicted probability of dropping out in a
given time interval for different socioeconomic status of the student’s family. To compute the probabilities
we run an ordered logit regression that involves the probability of dropping out in a given year as a function
of the socioeconomic status variable plus a set of controls. The results of the regression can be found in
Table 7 in Appendix E.

3 Model

At t = 0 students are enrolled in college, endowed with wealth level x0. Students differ in

their ability to acquire human capital at college; this ability can be low or high. Let µ ∈ {0, 1}
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Figure 2 NLS-72: Predicted time to drop

The figure plots, conditioning on students who dropped out, the predicted probability of dropping out in a
given time interval for different socioeconomic status of the student’s family. To compute the probabilities
we run an ordered logit regression that involves the probability of dropping out in a given year as a function
of the socioeconomic status variable plus a set of controls. The results of the regression can be found in
Table 7 in Appendix E.

denote the ability level, where µ = 0 denotes low ability. The ability level is not observable

at t = 0. Instead, individuals inherit a signal about their true type p(0) = Pr(µ = 1).

At any point in time an agent can either be enrolled as a full-time student or working

in low- or high-skilled sectors.11 The high-skilled sector only hires high ability workers with

11Post-secondary education is a combination of both two-year and four-year colleges with dynamic patterns
that involve dropouts and transfers across types of schools. Using data from the National Longitudinal Survey
of 1972, Trachter (2010) shows that students enrolled in four-year colleges either drop out or remain at the
current type of institution until graduation.
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college degrees.12 Work is assumed to be an absorbing state with a constant wage function

w̃(µ, τ) where τ ≡ T − t accounts for the amount of time left prior to graduation and T is

the duration of college. We specify the function w̃(µ, τ) as follows:

w̃(µ, τ) =


w(τ) if τ > 0,

w(0) if τ = 0 and µ = 0,

w1 if τ = 0 and µ = 1,

with w(τ 0) > w(τ 1) if τ 0 < τ 1 and w1 > w(0). Therefore, the wage is increasing with

the time spent in college and high-ability graduates enjoy higher wages. The function w(τ)
w(T )

reflects the college premium in low-skilled sectors. A graphical representation of the wage

function is depicted in Figure 3.

Figure 3 Skill and College Premium



 0,1~w

T

 0,0~w

 ,~w

skill premium

college premium in 
low-skilled sectors

12The interest of this paper is to understand dropout behavior. Dropouts usually leave school and join
low-skilled sectors.
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The evolution of the wealth level x is given by

dx

dt
=

 rx+ w̃(µ, τ)− c if working,

rx− a− c if enrolled in college,

where a denotes the per period cost of attending college.

At every period of length dt in college, students take an exam and get three possible

grades: excellent, pass, or fail. High-ability students (i.e. µ = 1) can get either a grade

of pass or excellent for an exam. We let λ1 denote the probability per unit of time that a

high-ability student gets an excellent grade. Low-ability students (i.e. µ = 0) can get either

a passing or failing grade for an exam. We let λ0 denote the probability per unit of time that

a low-ability student gets a failing grade. Receiving a failing grade reveals that the student

has low ability whereas receiving an excellent grade reveals that she has high ability. When

the student receives a pass she updates her belief according to Bayes’ rule. Table 4 presents

the probability of the outcome of a given exam conditional on the student’s true type, which

is unobservable by the student.

We choose to model the student’s learning process about her true type using discrete

signals rather than continuous signals primarily because in our model the speed of learning, λ0

and λ1, depends on the type of the student. In a continuous Brownian Motion signal setting,

this would be equivalent to having different volatilities for the signal process. However,

Merton (1980) and Nelson and Foster (1994) point out that an observer of a continuous

path generated by a diffusion process can estimate a constant or a smoothly time-varying

volatility term with arbitrary precision over an arbitrarily short period of calendar time

provided she has access to arbitrarily high frequency data. Of course, introducing a discrete

signal is not the only way to get around this problem but it is analytically more efficient than

other possibilities, such as introducing stochastic volatility or writing a discrete time model.

These alternatives require belief updating about the mean and variance of the corresponding

stochastic process which complicates the analysis without adding anything to the intuition.

A student initially enrolled in college chooses her consumption stream {c(t) : t ≥ 0} and

11



Table 4 Probability of receiving different grades based on student’s type
Fail Pass Excellent

µ = 0 λ0dt 1− λ0dt 0
µ = 1 0 1− λ1dt λ1dt

Each value in the table is the probability of receiving a given grade on the exam per unit of time dt,
conditional of the student’s true ability level.

whether to remain a student or to drop out and join the workforce, in order to maximize her

time-separable expected discounted lifetime utility derived from consumption,

E
{∫ ∞

0

e−ρt
c(t)1−γ

1− γ

∣∣∣∣ p(0), x(0)

}
,

where γ is the coefficient of Constant Relative Risk Aversion (CRRA).

We let J(x, p, τ) denote the value for a student with current wealth level x, prior p, and

T − τ time already spent in school. Also, V (x, µ, τ) denotes the value for a worker of true

type µ with current wealth level x who spent T − τ time in school.

3.1 The Problem of a Worker

An individual with T − τ years of schooling who joins the workforce maximizes her lifetime

discounted utility
∫∞
0
e−ρtc1−γ/ (1− γ) dt, subject to the law of motion for wealth, dx/dt =

rx + w̃(µ, τ) − c. It will prove useful to characterize W (µ, τ), the present discounted value

of lifetime earnings. This object is simply

W (µ, τ) =

∫ ∞
0

e−rtw̃(µ, τ)dt.

The Hamilton-Jacobi-Bellman representation of the worker’s problem is

ρV (x, µ, τ) = max
c

c1−γ

1− γ
+ Vx(x, µ, τ)(rx+ w̃(µ, τ)− c),

which states that the flow value of being a worker must be equal to the instantaneous utility

derived from consumption in addition to the change in value that happens through the
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change in wealth.

The first-order condition of the worker’s problem reads c−γ = Vx(x, µ, τ). Plugging it

back and operating provides an equation that a worker’s maximized value function needs to

satisfy,

ρVx(x, µ, τ) =
γ

1− γ
[Vx(x, µ, τ)]1−

1
γ + r(x+W (µ, τ))Vx(x, µ, τ), (1)

with the solution given by

V (x, µ, τ) = A (r [x+W (µ, τ)])1−γ , (2)

where

A ≡ [(1− γ)r]γ−1
[
(ρ− (1− γ)r)

1− γ
γ

]−γ
. (3)

The term x+W (µ, τ) in equation (2) represents the worker’s wealth also accounting for the

discounted lifetime labor earnings.

Although we have assumed that the wages earned upon college graduation are constant,

this solution also holds if the wages depend upon on-the-job experience. Once we redefine

w̃(µ, τ , s) as the worker’s wage depending on how long she has been working, s, we can

replace W (µ, τ) with W (µ, τ) =
∫∞
0
e−rsw̃(µ, τ , s)ds in the solution. Therefore, our results

are robust to different specifications of the lifetime wage profile for students with different

durations of college education.

3.2 The problem of a student of type µ and the natural borrowing

limit

If the student knows that she has high ability, µ = 1, her value function satisfies

ρJ(x, 1, τ) = max
c

c1−γ

1− γ
+ (rx− a− c)Jx(x, 1, τ) + Jτ (x, 1, τ)

dτ

dt
, (4)
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subject to the terminal condition J(x, 1, 0) = V (x, 1, 0). This terminal condition states that,

upon graduation, the student’s value function is equivalent to the value of being a worker

in the high-skill sector. We are also using an implicit condition guaranteeing that high-

skilled students would never find it profitable to drop out. This condition is later derived in

Lemma 1.

This Hamilton-Jacobi-Bellman equation states that the desired return on being a student

with high ability, µ = 1, with wealth level x, and with τ periods left to graduation equals the

instant utility derived from consumption plus the change in value due to the change in wealth

and time to graduation, both due to the change accrued in time. Note that dτ/dt = −1.

The first-order condition of this problem states that c−γ = Jx(x, 1, τ). Solving for c and

plugging the result back into equation (4) provides the student’s maximized value function.

We guess and verify that the solution to this object is J(x, 1, τ) = A [rx+B(τ)]1−γ, where

A is defined as in equation (3) and B(τ) needs to be solved for. Intuitively, B(τ) accounts

for the change in the value function due to the time to graduation and the terminal payoff.

Plugging the guess into the maximized value function provides

rB(τ) +B′(τ) + ra = 0

with boundary condition, B(0) = rW (1, 0), that follows from the terminal condition of the

problem presented in equation (4). This is an Ordinary Differential Equation in one variable

with a terminal condition. The solution is B(τ) = (rW (1, 0) + a) e−rτ −a, and therefore the

value function of a student of type µ = 1 is

J(x, 1, τ) = A
(
rx− a+ e−rτ (rW (1, 0) + a)

)1−γ
(5)

or,

J(x, 1, τ) = A

[
r

(
x+ e−rτW (1, 0)− 1− e−rτ

r
a

)]1−γ
,

where the term in parentheses gives the student’s net lifetime wealth after accounting for

14



the discounted value of future wages and the remaining college costs.

The next lemma characterizes the condition guaranteeing that high-ability students who

know their type will not find it profitable to drop out of college.

Lemma 1 A student of type µ with current wealth level x and T − τ time spent in college

will choose to remain as a student until τ = 0 if re−rτW (1, 0)− a (1− e−rτ ) ≥ rW (1, τ).

Lemma 1 follows from noting that for a student to remain in college it has to be the case

that, for every value of τ , J(x, 1, τ) ≥ V (x, 1, τ). This condition simply indicates that the

graduation premium for a high-ability student is high enough so that a student who knows

she has high ability will remain in college until graduation. We assume throughout the paper

that this condition holds.13

Another important assumption of the model is that low-ability students who know their

type will always find it profitable to drop out of college. If this were not the case, for some

values of time to gradution, τ , there would be no dropouts by construction. The next lemma

characterizes the condition guaranteeing that low-ability students who know their type will

decide to drop out and join the workforce immediately, i.e. J(x, 0, τ) = V (x, 0, τ).

Lemma 2 A student who knows that she is of type µ = 0 will drop out immediately if

a+ rW (0, τ) +Wτ (0, τ) > 0.

Proof. See Appendix A.

Intuitively, the marginal cost of attending college for another period of time is adt.

Moreover, the marginal increase in the present value of earnings after an additional period

of college education is e−rdtW (0, τ − dt) −W (0, τ) = − [rW (0, τ) +Wτ (0, τ)] dt + O (dt)2

where we used a Taylor series expansion. Subtracting the increase in marginal earnings from

marginal cost, dividing by dt and taking the limit as dt→ 0 gives the condition stated above.

Although our model does not entail any explicit borrowing constraint this last assumption

leads to an implicit borrowing constraint for a student who does not know her true ability

13This condition at τ = T also guarantees that there are at least some students with optimistic prior
beliefs willing to enroll in college.
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level. Every student with p < 1 faces ex-ante a positive probability of receiving a shock

revealing that she has low ability. Such a shock would force her to drop out of college and

join the low-skilled workforce. Since the marginal value of wealth for a college dropout goes

to infinity as x goes to −W (0, τ) the student will never borrow more than her discounted

value of lifetime earnings W (0, τ). As long as the wage profile is common knowledge, as

it is the case in our model, this ”natural” borrowing constraint should also be the actual

one because the student can always repay the borrowed money using his earnings when

x > −W (0, τ).

3.3 The Problem of a Student of Unknown Type

The problem of a student who does not know her ability level is more difficult to solve

because of three reasons. First, the wage upon graduation depends on the agent’s true

ability. Second, the arrival of new information via exams results in updating of the student’s

belief. Third, some students drop out.

Before constructing the Hamilton-Jacobi-Bellman equation for this case first it is useful

to consider how the information obtained through exams can be used to update beliefs.

Consider a student with the belief p(t), where p(t) is the probability of being type 1 condi-

tional on the information available at time t. Table 4 can be used to construct the posterior

conditional on the grade received during (t, t+ dt). If the student receives a failing grade,

it is clearly revealed that she has low ability and thus p(t + dt) = 0. If the student receives

a grade of excellent, p(t + dt) = 1. Conditional on not receiving a failing or excellent grade

through period (t, t+ dt), receving a passing grade in the current exam implies that Bayes’

rule can be used to update beliefs,

p(t+ dt) =
p(t) [1− λ1dt]

p(t) [1− λ1dt] + [1− p(t)] [1− λ0dt]
.

Substracting p(t), dividing by dt, and taking the limit as dt→ 0 provides the Bayes’ rule in
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its continuous time formulation,

dp

dt
= − (λ1 − λ0) p(1− p). (6)

Figure 4 Timeline

 ,, pxJ
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dxxx '
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dppp '
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0

0
     0,0,''10,1,'' xVpxVp 

A student starts the current period with wealth level x, prior p, and remaining time in college τ . At the
beginning of the period a student chooses her consumption level and thus provides the new value for wealth
x′. Before the end of the period the student takes an exam used to produce the posterior p′ and reduces the
time left to graduation to τ ′. At the beginning of next period the student chooses between dropping out or
remaining as a student (or graduation is τ ′ = 0).

Figure 4 describes the timeline of the student’s problem in a given period. The student

enters the period with wealth level x, prior p, and remaining time until graduation τ . Her

value function is therefore J(x, p, τ). At the beginning of the period, the student chooses her

consumption level and thus produces the wealth level x′ for next period. Before the end of

the period she takes an exam and with the grade at hand updates her beliefs to p′. By the end

of the period she accumulates more time in school and therefore the distance to graduation is

reduced to τ ′. At the beginning of next period the student compares the value of remaining

in school, that is either J (x′, p′, τ ′) if τ ′ > 0 or p′V (x′, 1, 0)+(1− p′)V (x′, 0, 0) if τ ′ = 0 (i.e.

graduation), with the value of joining the workforce V (x′, 0, τ) to decide between staying in

college or becoming a dropout.

The Hamilton-Jacobi-Bellman equation for a student with current wealth level x, prior
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p, and τ periods left in school is

ρJ(x, p, τ) = maxc
c1−γ

1−γ + (rx− a− c)Jx(x, p, τ)− Jτ (x, p, τ)

− (λ1 − λ0) p(1− p)Jp(x, p, τ) + λ1p [J(x, 1, τ)− J(x, p, τ)]

+λ0(1− p) [V (x, 0, τ)− J(x, p, τ)] .

(7)

This equation states that the desired return on being a student with current wealth level

x, prior p, and time to graduation τ equals the instant utility derived from consumption plus

the change in value of being a student through (i) the change in wealth, (ii) the change in τ ,

and (iii) belief updating. When a passing grade arrives the belief adjustment is continuous

through the Bayesian updating of p; when an excellent grade arrives, expected with uncon-

ditional probability λ1p, the change in value occurs through switching from having p(t) = p

to p(t + dt) = 1; and when a failing grade arrives, expected with unconditional probability

λ0(1 − p), the change in value is through switching from having p(t) = p to p(t + dt) = 0.

Also note that the problem faced by a high-ability student who knows her type presented in

equation (4) is a particular case of the problem presented here, that follows by setting p = 1

in equation (7) and noting that dτ/dt = −1.

A student faces the problem presented in equation (7) subject to a set of boundary

conditions,

J(x, p, 0) = pV (x, 1, 0) + (1− p)V (x, 0, 0)

J(x, p∗(x, τ), τ) = V (x, 0, τ)

Jp(x, p
∗(x, τ), τ) = 0

Jx(x, p
∗(x, τ), τ) = Vx(x, 0, τ)

Jτ (x, p
∗(x, τ), τ) = Vτ (x, 0, τ).

(8)

The first equation gives the Terminal Condition (TC) and states that the value of being a

student with no time remaining until graduation has to equal the expected value of being

a worker. Note that with probability p a student expects to be of type µ = 1 and there-

fore would earn lifetime discounted labor income W (1, 0), while with probability 1 − p she

expects to be of type µ = 0 and therefore earn lifetime discounted labor income W (0, 0).
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To understand the second to fifth equations p∗(x, τ) needs to be defined. Let p∗(x, τ) be

the belief threshold such that students with p ≤ p∗(x, τ) drop out and join the workforce.

The second equation states that a student with p = p∗(x, τ), wealth level x, and τ periods

away from graduation has to be indifferent between staying in school and dropping out and

enjoying lifetime discounted labor income W (0, τ). This equation is also known as the Value

Matching Condition (VMC). The third, fourth, and fifth equations are known as Smooth

Pasting Conditions (SPC) required for the optimality of p∗(x, τ).14

The first-order condition of the problem presented in equation (7) is c−γ = Jx(x, p, τ).

Plugging it back into equation (7) together with the terminal, value matching, and smooth

pasting conditions provides the equation that the threshold p∗(x, τ) needs to satisfy,

ρV (x, 0, τ) = γ
1−γVx(x, 0, τ)1−

1
γ + (rx− a)Vx(x, 0, τ)

+λ1p
∗(x, τ) [J(x, 1, τ)− V (x, 0, τ)]− Vτ (x, 0, τ),

(9)

which we can rewrite as

λ1p
∗ (x, τ) [J (x, 1, τ)− V (x, 0, τ)] = [a+ rW (0, τ) +Wτ (0, τ)]Vx (x, 0, τ) .

This equation provides provides intuition about the belief threshold p∗ (x, τ). The left-

side of this equation is the expected utility gain from delaying the dropout decision by dt,

whereas the right side represents the marginal net utility loss due to delaying the dropout

decision. The student chooses the optimal dropout time, by equalizing the marginal gain

and loss from delaying the dropout decision.

Solving for p∗(x, τ) allows for a close-form representation of the student’s dropout thresh-

old,

p∗(x, τ) =
a+ rW (0, τ) +Wτ (0, τ)

λ1

Vx(x, 0, τ)

J(x, 1, τ)− V (x, 0, τ)
> 0, (10)

14For a treatment of Value Matching and Smooth Pasting Conditions see Dumas (1991) and Dixit (1993).
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provided that Lemma 2 holds. This threshold is decreasing with the wealth level. That is,

∂p∗(x, τ)

∂x
< 0, (11)

where the details of the calculations can be found in Appendix B.

Our main result is that, conditional on their beliefs, college students from wealthier

families drop out later and are less likely to drop out than are poor students. The result

that the threshold p∗ is decreasing with the wealth level is not enough to argue this result

because the consumption profiles during college tenure can overcome the initial difference in

wealth.15 The next proposition and corollary deal with this.

Let τ ∗ denote the time to graduation at the moment the individual joins the workforce.

For example, τ ∗ = T if the individual joins the workforce directly after high school gradu-

ation and τ ∗ = 0 if the individual joins the workforce with a college degree. The following

proposition states that, conditional on abilities and initial prior beliefs, the distribution of

dropout times for richer students first-order stochastically dominate the distribution for poor

students in the model, which explains the pattern in Figure 1 and Figure 2.

Proposition 1 Let xi(0) and xj(0) denote the initial wealth levels at time 0 of students i and

j. If xi(0) > xj(0) then, for any τ̄ , Pr {τ ∗ ≤ τ̄ |xi(0), p(0), µ} ≥ Pr {τ ∗ ≤ τ̄ |xj(0), p(0), µ}.

In other words, given a skill level µ and initial belief p(0), richer students tend to drop out

later and have longer expected tenures in college.

Proof. See Appendix C.

The next corollary extends the result to show that, conditioning in the initial prior p(0)

and ability level µ, students from richer families are less likely to drop out and, therefore

more likely to graduate.

Corollary 1 Let xi(0) and xj(0) denote the wealth levels at time 0 of students i and j.

If xi(0) > xj(0) then Pr [ τ̃ = 0|xi(0), p(0), µ] ≥ Pr [ τ̃ = 0|xj(0), p(0), µ]. That is, once

15Miao and Wang (2007) entrepreneurial survival model is a special case of our model where they also
show that the boundary p∗ is decreasing in the wealth level. However, they immediately conclude that richer
entrepreneurs survive longer without providing an explicit proof.
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conditioned on the initial prior p(0) and skill level µ, richer students are more likely to

graduate from college.

Proof. Set τ̄ = 0 in Proposition 1.

Both Proposition 1 and Corollary 1 are driven by the fact that ex-ante uncertainty

regarding the outcome of college education cannot be diversified away, which makes the

investment in college education more risky than financial investments in the model.16 Given

students’ abilities and beliefs, a student with higher wealth chooses to increase the number

of dollars invested in the risky asset, i.e. stay longer in college, if absolute risk aversion is

decreasing as it is the case with the CRRA preferences.17

4 Conclusion

In this paper, we provide evidence regarding the skewed distribution of college dropouts with

respect to the student’s family wealth. Poor students are more likely to drop out and they

tend to do so earlier than rich students. We explore whether a model that treats college

education as a risky investment and incorporates Bayesian learning about own’s unobserved

ability can explain the skewness in dropout behavior.

Our main results rely on the fact that the outcome of obtaining a college education is

subject to uncertainty against which students cannot insure themselves. When we combine

this fact with CRRA preferences so that the absolute risk aversion decreases with wealth we

arrive at the conclusion that poor students are less willing to accept the risk associated with

pursuing a college education. This mechanism generates the skewness observed in dropout

behavior.

16Of course, financial assets in real life are risky due to macroeconomic fluctuations not modeled in this
paper. However, these macroeconomic fluctuations also affect the payoff of college education through their
effect on wages, and investing in college education is still riskier than investing in financial assets due to
undiversifiable idiosyncratic risk.

17In Appendix D we extend the model to allow for hyperbolic risk aversion (HARA) preferences, which
include CRRA as a special case. We show that the belief threshold is decreasing in wealth if and only if the
absolute risk aversion is decreasing. Furthermore, Proposition 1 and Corollary 1 also apply here.
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We provide a closed-form characterization of a student’s optimal choice as a function of

(i) the expected future income due to graduation (through the prior, p), and (ii) the direct

and indirect costs of remaining in college (through the time remaining to graduation, τ). We

exploit the model’s simplicity to show that it is able to fit the data qualitatively: (i) poorer

students are more likely to drop out than are rich students, and (ii) if the poor students drop

out, they do so earlier than students from wealthier families.

To motivate the theory we run a series of reduced-form regressions, conditioning by

measures of the student’s unobserved ability and prior beliefs. The regressions’ results are

in line with the model’s predictions. We estimate that poor college students are at least 27

percent more likely to drop out than rich students and if they around a year earlier.

Our goal is not to claim that borrowing constraints are not part of the story behind

the high and skewed college dropout rates. Instead, we provide a complementary story

that is able to explain the skewed distribution of the time to drop out. Furthermore, our

story is consistent with Stinebrickner and Stinebrickner (2008) which finds that borrow-

ing constraints are not the main determinant of dropout decision, and Stinebrickner and

Stinebrickner (2009) which shows that bad grades are a good predictor of dropout behavior.

Since our model generates these results without including explicit borrowing constraints,

it also suggests that policies that are geared towards reducing borrowing constraints, such as

student loan programs, are not likely to eliminate the differences in dropout rates between

rich and poor students. Moreover, a direct subsidy to poor students for their college educa-

tion would not only increase their graduation rates but also their tenure in college, by both

reducing the cost of spending additional time in college and increasing the expected gain

from delaying the dropout decision. The optimal subsidy would depend on the wealth level

of the student’s family and the distribution of ability for a given wealth level, which is the

topic of future research.

Finally, it is plausible that poor students are more likely to participate in the labor

force during college and have less time to devote to study, making them take longer to

finish college. Although we have not included the time allocation decision in our model, an
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extension of the model with the decision to work versus study during college can potentially

generate this result, following the basic intuition in this paper: Labor force participation

while attending college provides a safe income today, and poor students are more likely to

work during college because they are more risk averse, and hence poor students are more

willing to invest in a safe asset. The empirical and theoretical analysis of the student’s

work-study decision during college is an interesting question that is left for future research.

23



References

Aiyagari, S. Rao. 1994. “Uninsured Idiosyncratic Risk and Aggregate Saving.” Quarterly
Journal of Economics 109(3): 659–84.
Available at http://ideas.repec.org/a/tpr/qjecon/v109y1994i3p659-84.html.

Chen, Stacey H. 2008. “Estimating the Variance of Wages in the Presence of Selection and
Unobserved Heterogeneity.” The Review of Economics and Statistics 90(2): 275–289.

Dixit, Avinash. 1993. The Art of Smooth Pasting. Routledge. Vol. 55 in Fundamentals of
Pure and Applied Economics, eds. Jacques Lesourne and Hugo Sonnenschein. Abingdon,
Oxon: Routledge.

Dumas, Bernard. 1991. “Super contact and related optimality conditions.” Journal of
Economic Dynamics and Control 15(4): 675–685.
Available at http://ideas.repec.org/a/eee/dyncon/v15y1991i4p675-685.html.

Han, Aaron, and Jerry A. Hausman. 1990. “Flexible Parametric Estimation of Duration and
Competing Risk Models.” Journal of Applied Econometrics 5(1): 1–28.
Available at http://ideas.repec.org/a/jae/japmet/v5y1990i1p1-28.html.

Heckman, James J., and Sergio Urzua. 2008. “The Option Value of Educational Choices and
the Rate of Return to Educational Choices.” Presented at Cowles Foundation Structural
Conference, Yale University. New Haven, CT: Yale University.

Lovenheim, Michael F., and C. Lockwood Reynolds. 2010. “The Effect of Housing Wealth
on College Choice: Evidence from the Housing Boom.” Working Paper. College of Human
Ecology. Ithaca, NY: Cornell University.
Available at
http://www.human.cornell.edu/pam/people/upload/Housing-Wealth-and-College-Choice.
pdf.

Merton, Robert C. 1980. “On estimating the expected return on the market : An exploratory
investigation.” Journal of Financial Economics 8(4): 323–361.
Available at http://ideas.repec.org/a/eee/jfinec/v8y1980i4p323-361.html.

Miao, Jianjun, and Neng Wang. 2007. “Experimentation under Uninsurable Idiosyncratic
Risk: An Application to Entrepreneurial Survival.” Department of Economics Working
Paper. Boston, MA: Boston University.
Available at http://people.bu.edu/miaoj/MiaoWang REStud06.pdf.

Mincer, Jacob A. 1974. Schooling, Experience, and Earnings. Cambridge, MA: National
Bureau of Economic Research.
Available at http://ideas.repec.org/b/nbr/nberbk/minc74-1.html.

24

http://ideas.repec.org/a/tpr/qjecon/v109y1994i3p659-84.html
http://ideas.repec.org/a/eee/dyncon/v15y1991i4p675-685.html
http://ideas.repec.org/a/jae/japmet/v5y1990i1p1-28.html
http://www.human.cornell.edu/pam/people/upload/Housing-Wealth-and-College-Choice.pdf
http://www.human.cornell.edu/pam/people/upload/Housing-Wealth-and-College-Choice.pdf
http://ideas.repec.org/a/eee/jfinec/v8y1980i4p323-361.html
http://people.bu.edu/miaoj/MiaoWang_REStud06.pdf
http://ideas.repec.org/b/nbr/nberbk/minc74-1.html


Nelson, Daniel B., and Dean P. Foster. 1994. “Asymptotic Filtering Theory for Univariate
ARCH Models.” Econometrica 62(1): 1–41.
Available at http://ideas.repec.org/a/ecm/emetrp/v62y1994i1p1-41.html.

Stange, Kevin M. forthcoming. “An Empirical Examination of the Option Value of College
Enrollment.” American Economic Journal: Applied Economics.
Available at http://www-personal.umich.edu/∼kstange/papers/StangeOptionValue.pdf.

Stinebrickner, Ralph, and Todd Stinebrickner. 2008. “The Effect of Credit Constraints on
the College Drop-Out Decision: A Direct Approach Using a New Panel Study.” American
Economic Review 98(5): 2163–2184.
Available at http://ideas.repec.org/a/aea/aecrev/v98y2008i5p2163-84.html.

Stinebrickner, Todd R., and Ralph Stinebrickner. 2009. “Learning about Academic Ability
and the College Drop-out Decision.” NBER Working Papers 14810. Cambridge, MA:
National Bureau of Economic Research.
Available at http://ideas.repec.org/p/nbr/nberwo/14810.html.

Trachter, Nicholas. 2010. “Option Value and Transitions in a Model of Postsecondary
Education.” Working Paper. Rome: Einuadi Institute for Economics and Finance.
Available at
http://www.eief.it/files/2011/02/wp-03-option-value-and-transitions-in-a-model-of-postsecondary-education.
pdf.

Appendix

A Proof of Lemma 2

Let τ ∗ denote the threshold for τ so that students drop out for τ < τ ∗. A student of type
µ = 0 faces the problem given by

ρJ(x, 0, τ) = max
c

c1−γ

1− γ
+ (rx− c− a)Jx(x, 0, τ)− Jτ (x, 0, τ),

subject to the terminal condition J(x, 0, 0) = V (x, 0, 0), the boundary condition J(x, 0, τ ∗) =
V (x, 0, τ ∗), and smooth pasting conditions Jx(x, 0, τ

∗) = Vx(x, 0, τ
∗) and Jτ (x, 0, τ

∗) =
Vτ (x, 0, τ

∗).
Plugging in the first-order condition provides that

ρVx(x, 0, τ
∗) =

γ

1− γ
[Vx(x, 0, τ

∗)]1−
1
γ + (rx− a)Vx(x, 0, τ)− Vτ (x, 0, τ ∗).

Using equation (1) this equation can be reduced to a + rW (0, τ ∗) + Wτ (0, τ
∗) = 0. Hence,

if a + rW (0, τ ∗) + Wτ (0, τ
∗) > 0 for all τ ≤ T the boundary condition for an interior
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dropout boundary is not satisfied. Moreover, the desired return from continuing education
in terms of utility, the left side of Bellman equation, is greater than the continuation value,
the right side of Bellman equation, at the default boundary and hence it is optimal to drop
out immediately.

B Proof of ∂p∗

∂x < 0

Differentiating the threshold p∗ (see equation (10)) with respect to x provides

∂p∗

∂x
= a+rW (0,τ)+Wτ (0,τ)

λ1

[
Vx(x,0,τ)

J(x,1,τ)−V (x,0,τ)
Vxx(x,0,τ)
Vx(x,0,τ)

− Vx(x,0,τ)
J(x,1,τ)−V (x,0,τ)

Jx(x,1,τ)−Vx(x,0,τ)
J(x,1,τ)−V (x,0,τ)

]
= a+rW (0,τ)+Wτ (0,τ)

λ1

Vx(x,0,τ)
J(x,1,τ)−V (x,0,τ)

[
Vxx(x,0,τ)
Vx(x,0,τ)

− Jx(x,1,τ)−Vx(x,0,τ)
J(x,1,τ)−V (x,0,τ)

]
= p∗(x, τ)

[
Vxx(x,0,τ)
Vx(x,0,τ)

− Jx(x,1,τ)−Vx(x,0,τ)
J(x,1,τ)−V (x,0,τ)

]
= −p∗(x, τ)

[
γr

r[x+W (0,τ)]
+ (1− γ)r

(r[x+e−rτW (1,0)−a
r (1−e−rτ)])

−γ
−(r[x+W (0,τ)])−γ

(r[x+e−rτW (1,0)−a
r
(1−e−rτ )])

1−γ
−(r[x+W (0,τ)])1−γ

]
= −p∗(x, τ)

[
γr

r[x+W (0,τ)]
+ 1

x+W (0,τ)
y−γ−1
y1−γ−1

1−γ

]
= − p∗(x,τ)

x+W (0,τ)

[
γ + y−γ−1

y1−γ−1
1−γ

]
,

where y ≡ x+e−rτW (1,0)−a
r (1−e−rτ)

x+W (0,τ)
, with y ≥ 1 provided the condition on Lemma 1 holds.

Next, it will be proved by contradiction that γ + (1− γ) y
−γ−1

y1−γ−1 > 0 when y ≥ 1.

Consider first the case where γ < 1. Suppose that γ + (1 − γ) y
−γ−1

y1−γ−1 < 0. Because

γ ∈ (0, 1) and hence y1−γ − 1 > 0 we can multiply both sides of this inequality by y1−γ − 1
to get γ(y1−γ − 1) + (1 − γ)(y−γ − 1) < 0. The left-hand-side of this in equality is strictly
increasing in y and therefore attains its minimum at y = 1 with value equal to 0. Therefore,
γ(y1−γ − 1) + (1− γ)(y−γ − 1) < 0 and hence γ + (1− γ) y

−γ−1
y1−γ−1 < 0 is not possible.

Now consider the case where γ > 1. Suppose that γ + (1 − γ) y
−γ−1

y1−γ−1 < 0. Because

γ > 1 and hence y1−γ − 1 < 0 we can multiply both sides of this inequality by y1−γ − 1
to get γ(y1−γ − 1) + (1 − γ)(y1−γ − 1) > 0. The left-hand-side of this equation is strictly
decreasing in y and therefore attains its maximum at y = 1 with value equal to 0. Therefore,
γ(y1−γ − 1) + (1− γ)(y1−γ − 1) > 0 and hence γ + (1− γ) y

−γ−1
y1−γ−1 < 0 is not possible.

As γ + (1− γ) y
−γ−1

y1−γ−1 > 0 for every γ > 0, ∂p∗

∂x
< 0.

C Proof of Proposition 1

Two students with the same skill level µ are equally likely to receive a failing or an excellent
grade at any point in time. Therefore, although the grade earned affects the behavior of an
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individual student it does directly affect the distribution of dropout times for students with
different wealth levels. Therefore, we look at the dropout behavior of students that do not
receive any signals that reveal their true types.

Suppose we have two students i and j with the same initial belief, i.e. pi(0) = pj(0), and
with initial wealth levels xi(0) > xj(0) so that the first student is initially richer. There are
two possible outcomes conditional on not receiving a signal. First, if p(0) is high enough both
students wait until they graduate which does not violate our proposition as τ ∗i = τ ∗j = 0.
Second, if p(0) is not high enough at least one of the students drops out. Let t0 < T be
the first point in time when one of the students drop out. Then we have pi(t) = pj(t)
for all t ≤ t0 because pi(0) = pj(0) and the belief evolution is the same for both students
conditional on not receiving a signal. Moreover, we know that the richer student does not
drop out earlier than the poorer student, that is τ ∗i ≤ τ ∗j, if xi(t) ≥ xj(t) for all t ≤ t0
because p∗ (xi, τ) ≤ p∗ (xj, τ) as long as xi ≥ xj. Therefore, we can prove our proposition
by showing that xi(t) ≥ xj(t) for all t ≤ t0. Suppose xi(t) < xj(t) for some t < t0. Then,
since xi(t) and xj(t) have continuous paths there exists a t̄ ≤ t0 where xi (t̄) = xj (t̄) by the
intermediate value theorem. Moreover, since pi(t) = pj(t) for all t ≤ t0 we have pi (t̄) = pj (t̄).
As a result, both students’ consumption decisions are synchronized from time t̄ on because
they are forward looking. Hence, xi(t) = xj(t) for t̄ ≤ t ≤ t0 which is a contradiction.

D Hyperbolic Risk Aversion

In this appendix we extend the model to allow for hyperbolic risk aversion (HARA) pref-
erences and show that the belief threshold is decreasing in wealth if and only if we have
decreasing risk aversion. The absolute risk aversion for this class of preferences is given by

RA = −u
′′ (c)

u′ (c)
=

1

ac+ b

where a and b are constants. For a = 0 we have exponential preferences, for a > 0 we have
decreasing absolute risk aversion, and for a < 0 we have increasing absolute risk aversion.
Moreover, we obtain the CRRA preferences in the model for b = 0. The solution of this
differential equation is given by

u (c) = κ1
(ac+ b)1−1/a

a− 1
+ κ2,

where κ1 and κ2 are constants of integration. Let γ ≡ 1/a and c̄ ≡ −b/a. Then,

u (c) = κ1a
−1/a (c+ b/a)1−1/a

(a− 1) /a
+ κ2 = κ̄1

(c− c̄)1−γ

1− γ
+ κ2.

Since a > 0, hence γ > 0, determines if we have decreasing risk-aversion we stick to the
linear transformation of this utility function, u (c) = (c− c̄)1−γ / (1− γ).
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Let us define ĉ ≡ c − c̄ as the surplus consumption and the x̂ ≡ x − c̄/r as the surplus
wealth. Then, dx̂/dt = dx/dt and all (rx− c) terms in the law of motion of x become
rx̂ − ĉ. Moreover, the utility function becomes u (ĉ) = (ĉ)1−γ / (1− γ). Therefore, the new
belief boundary will be p̂∗ (x, τ) = p∗ (x̂, τ) = p∗ (x− c̄/r, τ). Hence, in order to show that
∂p̂∗/∂x < 0 iff γ > 0, it is enough to show that ∂p∗/∂x < 0 iff γ > 0. If γ > 0, ∂p∗/∂x < 0
follows immediately from Appendix B. So, we only have to show that γ > 0 if ∂p∗/∂x < 0.

From the derivation in Appendix B and Lemma 1, it follows that ∂p∗/∂x < 0 implies

that γ + (1 − γ) y
−γ−1

y1−γ−1 > 0 for all y ≥ 1. Suppose ∂p∗/∂x < 0 holds but γ ≤ 0. Then,

γ + (1− γ) y
−γ−1

y1−γ−1 ≤ 0 because

signum

[
γ + (1− γ)

y−γ − 1

y1−γ − 1

]
= signum

[
γ
(
y1−γ − 1

)
+ (1− γ)

(
y−γ − 1

)]
and

max
y≥1

γ
(
y1−γ − 1

)
+ (1− γ)

(
y−γ − 1

)
= 0.

This contradicts ∂p∗/∂x < 0.

E Other Tables

Table 5 NLSY: marginal effect of socioeconomic status on dropout probability
coef. std. err.

male 0.0377 0.0412
afqt -0.0047 0.0009
home-abroad 0.1059 0.0979
city 0.014 0.052
siblings 0.0029 0.0108
country-mother 0.0616 0.0752
minority 0.0656 0.0523
socio-low 0.1576 0.063
socio-high -0.0588 0.0468
# of obs. 635

To compute the marginal effects we run a logit regression on the probability of dropping out. Male: =1
if male . afqt: Armed Forced Qualification Test. home-abroad: =1 if born in the United States and =0
otherwise. city: =1 if living in a city and =0 otherwise. siblings: numbers of siblings. country-mother:
=1 if mother was born in the United States and =0 otherwise. minority: =1 if black or hispanic and =0
otherwise. Socio-low: =1 if student reported to be of low socioeconomic status. Socio-high: =1 if student
reported to be of high socioeconomic status.
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Table 6 NLS-72: marginal effect of socioeconomic status on dropout probability
coef. std. err.

male 0.017 0.0192
rank 0.0004 0.0000
minority -0.0375 0.0275
socio-low 0.0256 0.0298
socio-high -0.138 0.0211
# of obs. 2705

To compute the marginal effects we run a logit regression on the probability of dropping out. Male: =1 if
male. Rank: ratio of rank in high-school senior class to total class size. Minority: =1 if race is not white.
Socio-low: =1 if student reported to be of low socioeconomic status. Socio-high: =1 if student reported to
be of high socioeconomic status.

Table 7 NLSY: effect of socioeconomic status on time to dropout
coef. std. err. marg. eff. std. err.

male 0.4057 0.2935 -0.0286 0.0217
afqt 0.008 0.0063 -0.0005 0.0004
home-abroad -0.0366 0.7184 0.0025 0.0486
city -0.0619 0.4248 0.0042 0.0285
no-mother 0.9776 1.1664 -0.0461 0.0362
siblings -0.0518 0.0652 0.0036 0.0045
country-mother -0.1982 0.5102 0.0129 0.0313
minority -0.3258 0.3412 0.0227 0.0243
socio-low -0.9225 0.3871 0.0801 0.043
socio-high 0.0343 0.3631 -0.0023 0.025
cutoff 1 -2.684 0.9707
cutoff 2 -0.7625 0.933
cutoff 3 0.1705 0.9329
cutoff 4 0.7995 0.9365
cutoff 5 1.6166 0.946
cutoff 6 2.4725 0.9694
Pseudo R-2 0.0326
# of obs. 158

Results an ordered logit regression on the time to drop out. Male: =1 if male . afqt: Armed Forced
Qualification Test. home-abroad: =1 if born in the United States and =0 otherwise. city: =1 if living in a
city and =0 otherwise. siblings: numbers of siblinigs. country-mother: =1 if mother was born in the United
States and =0 otherwise. minority: =1 if black or hispanic and =0 otherwise. Socio-low: =1 if student
reported to be of low socioeconomic status. Socio-high: =1 if student reported to be of high socioeconomic
status.
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Table 8 NLS72: effect of socioeconomic status on time to dropout
coef. std. err. marg. eff. std. err.

male 0.2148 0.0911 -0.0495 0.021
rank -0.0008 0.0003 0.0001 0.0000
minority 0.3444 0.1225 -0.0768 0.0263
socio-low -0.425 0.1339 0.1009 0.0325
socio-high 0.5285 0.1023 -0.1187 0.0223
cutoff 1 -0.3672 0.0926
cutoff 2 0.9031 0.095
cutoff 3 1.3934 0.0988
cutoff 4 2.2977 0.1125
cutoff 5 3.3964 0.1492
cutoff 6 4.099 0.1917
Pseudo R-2 0.0116
# of obs. 1610

Results an ordered logit regression on the time to drop out. Male: =1 if male. Rank: ratio of rank in high
school senior class to total class size. Minority: =1 if race is not white. Socio-low: =1 if student reported
to be of low socioeconomic status. Socio-high: =1 if student reported to be of high socioeconomic status.
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