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1 Introduction

Crowdedness varies hugely across U.S. cities. Among metropolitan areas with a population

of at least 100,000 in 2000, the most crowded (New York City) had a population density

forty-nine times that of the least crowded (Dothan, Alabama). Among municipalities with a

population of at least 100,000 in 2000, the ratio between the most and least crowded (New

York City and Chesapeake, VA) was forty-five.

Economic theory can account for such variation by assuming that more crowded areas are

characterized by higher productivity. But are the required productivity differences plausible?

Conversely, the very existence of cities is often attributed to increases in productivity that

are caused by dense concentrations of economic activity (Marshall, 1890; Jacobs, 1969). How

do the increases in productivity required to sustain higher density compare with estimates

of the higher productivity engendered by such higher density?

To answer these questions, the present paper lays out and calibrates a simple, static

general equilibrium model of city crowdedness. Homogenous individuals choose to live and

work in one of two local economies. They derive utility from consumption of a traded good

and housing. Firms in each economy produce the traded good and housing using land,

capital and labor. Total factor productivity is assumed to vary exogenously between the

two economies. In equilibrium, each economy must offer individuals the same level of utility

and provide capital with the same rate of return. The resulting model is similar to those

in Henderson (1974, 1987, 1988), Haurin (1980), Upton (1981), and Haughwout and Inman

(2001).

A baseline calibration of the model suggests that accounting for the observed variation

in crowdedness requires productivity differences among cities on the order of 40 percent.

Such productivity differences are far less than is observed among U.S. states. Nevertheless,

the productivity required to obtain especially high population densities is considerably above

estimates of the increases in productivity caused by such high density. As argued by Kim

(1999) and Davis and Weinstein (2002), accounting for high crowdedness requires substantial

differences in local “fundamentals.” But as argued by Chatterjee (2003), much smaller

exogenous differences in productivity can underpin large differences in density at low degrees

of crowdedness. Hence realized density among sparsely populated cities may be especially

history dependent.



The paper proceeds as follows. Section 2 describes in more detail the empirical varia-

tion in crowdedness across U.S. cities. Sections 3 and 4 lay out the model and discuss its

calibration. Section 5 describes the model’s numerical results, both for a baseline calibration

and for several large perturbations to it. It then presents empirical results that confirm

two of the model’s key implications. For both wages and housing expenditures, positive

correlations with density increase in magnitude as density increases. Section 6 compares

the productivity differences required to sustain crowdedness with estimates of population

density’s agglomeration effect. A last section briefly concludes.

2 Empirical Motivation

That crowdedness varies hugely across cities is clear. By how much it does so is less clear.

More specifically, a theoretical city corresponds to several possible geographic units. And

depending on the size of the geographic unit, crowdedness can be measured in several possible

ways.

From a theoretical perspective, a “city” is meant to be a geographic place where a given

group of people both live and work. For the United States, metropolitan areas (which are

defined by the Office of Management and Budget primarily based on Census Bureau data)

best correspond to this. The raw density of metropolitan areas—that is, their population

divided by land area—varies by a multiplicative factor of more than four hundred (Table

1, Panel A). The problem is that metropolitan areas are constructed as the combination of

whole counties, large parts of which may be agricultural or unoccupied.

“Urbanized areas” (UAs) are an alternative empirical counterpart of a theoretical city.

They are constructed by the Census Bureau to include only the densely-settled land area

within metropolitan areas. Raw population density among urbanized areas varies by a mul-

tiplicative factor of eight (Panel B). The problem with UAs is that their raw population

density greatly understates the population density experienced by millions of people living

in the most crowded of them. For example, the New York City UA has a population of just

under 18 million and a raw density of 5.3 (thousand persons per square mile). But for the 8

million people living in the actual municipality of New York City, population density is 26.4.

For the 1.5 million people living in the borough of Manhattan, it is 66.9.

To address the shortcomings of the previous two alternatives, this paper’s preferred mea-
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sure of crowdedness is a population-weighted mean of metro-area subunit densities (Glaeser

and Kahn, 2004). Whereas raw population density gives crowdedness as experienced by

the average unit of land, population-weighted density gives crowdedness as experienced by

the average person. More specifically, the Census Bureau partitions all U.S. counties into

subdivisions. These subdivisions are further partitioned into the portions of any municipal-

ities that lie within them (many municipalities span multiple subdivisions) along with any

remaining unincorporated area. A population-weighted mean of the raw densities of such

county-subdivision place/remainders suggests that metro area crowdedness in 2000 varied by

a multiplicative factor of forty-nine (Panel C).1

A final measure of crowdedness is the raw population density of municipalities. It varies

by a multiplicative factor of forty-five (Panel D). Of course, the disadvantage of using mu-

nicipalities as an empirical counterpart of cities is that many people live in one municipality

but work in another. But the similar range of variation to that of the weighted metro-area

density reinforces the latter as a good measure of crowdedness.

3 Model

The model uses a static, open-city framework. The world is made up of two open economies,

one small and one large. The small economy can be interpreted as a locality: a well-defined

market for factors and goods. The large economy can be interpreted as the aggregate of

numerous other localities. The size distinction reflects relative land areas. An important

semantic point is that the small economy may be considerably more crowded than the large

economy, in which case it might be interpreted as a “big city”.

3.1 Firms

Within each economy (i = s, l), perfectly-competitive firms employ a constant-returns-to-

scale production function that combines land, capital, and labor (Di, Ki, and Li) to produce a

traded numeraire good and housing (Xi and Hi). Housing must be consumed in the economy

1A population weighted mean of the county subdivisions suggests that density varies by a multiplicative

factor of sixteen hundred. A population weighted mean of census tracts, which are the next smallest unit

below the county-subdivision place/remainders, suggests that density varies by a multiplicative factor of

sixty-four.
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in which is produced. Aggregate production within each economy is given by

Xi = AX,i D
αX,D
X,i K

αX,K
X,i L

αX,L
X,i (1)

Hi = AH,i

ηD,KLD

σD,KL − 1
σD,KL

H,i +
(
1− ηD,KL

) (
K

αH,K
H,i L

αH,L
H,i

)σD,KL − 1
σD,KL


σD,KL

σD,KL − 1
(2)

Production of the traded good is Cobb-Douglas. The factor income share parameters

are each assumed to be strictly positive with αX,D + αX,K + αX,L = 1. Production of housing

is constant elasticity of substitution (CES) with respect to land and an implicit intermediate

product of capital and labor. The elasticity of substitution between land and the capital-

labor intermediate good is given by σD,KL. The weighting parameter ηD,KL, which lies strictly

between 0 and 1, calibrates the relative share of factor income accruing to land. The capital-

labor intermediate hybrid good is produced with constant returns to scale: αH,K + αH,L = 1.

These coefficients determine the division of factor income between capital and labor.

Total factor productivity, AX,i and AH,i, varies exogenously between the two economies.

It thus serves as the only source of crowding. In contrast, the endogenous growth and

new economic geography literatures typically assume that TFP increases with the scale

of production. Section 6 below compares the productivity differences required to sustain

crowding with estimates of the productivity differences such crowding may engender.

Profit maximization by perfectly competitive firms induces demand such that each of

the factors is paid its marginal revenue product. Frictionless intersectoral mobility assures

intersectoral factor price equalization within each economy. Let pi give the price of housing

in terms of the traded good. The economy-specific returns to land, capital, and labor are

respectively given by

rD,i = ∂Xi/∂Di = pi ∂Hi/∂Di (3)

rK,i = ∂Xi/∂Ki = pi ∂Hi/∂Ki (4)

wi = ∂Xi/∂Li = pi ∂Hi/∂Li (5)

Capital is additionally assumed to be perfectly mobile across economies. Hence its return

must be the same in both economies. Because the present framework is static, this identical

capital rent is taken as exogenous. In a dynamic neoclassical framework, it would equal the

real interest rate plus the rate of capital depreciation.
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3.2 Individuals

Individuals derive utility from consumption of the traded good and of housing:

Ui =

ηx,h x

σx,h − 1
σx,h

i +
(
1− ηx,h

)
h

σx,h − 1
σx,h

i


σx,h

σx,h − 1
(6)

The parameter σx,h measures the constant elasticity of substitution between the traded good

and housing. The weighting parameter ηx,h lies strictly between zero and one.

Optimizing behavior by individuals equates the ratio of marginal utility to price within

each economy. Additionally, individuals’ mobility equates utility levels between economies.

∂Ui/∂xi =
∂Ui/∂hi

pi

(7)

Us = Ul (8)

Individuals supply labor inelastically. They must each satisfy a budget constraint,

xi + pihi = wi + nonwage (9)

Under the base set of assumptions below, non-wage income is assumed to be zero. In this

case, capital and land rents can be interpreted as being paid to absentee owners who reside

outside of either economy. Under an alternative set of assumptions discussed in the sensitivity

analysis, non-wage income is the per capita sum of all capital and land rents collected in both

economies: nonwage =
∑

i (rK Ki + rD,i Di)/
∑

i Li. The variable Li gives the population

of each economy. Note that non-wage income is assumed to always be identical between the

two economies.

3.3 Closure

In addition to the profit and utility maximization conditions, several adding up constraints

must be met. For each of the economies, the land and labor factor markets and the housing

market must clear.

DX,i +DH,i = Di (10)

LX,i + LH,i = Li (11)

hi Li = Hi (12)
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Additionally, the sum of local populations must equal the exogenously given total population.∑
i

Li = L (13)

The combined optimization conditions, individual budget constraints, local adding up

constraints, and global adding up constraint can be reduced to a nonlinear system of eleven

equations with eleven unknowns. The absence of any sort of increasing returns to scale com-

bined with the fixed land supply and decreasing marginal utility suggests that any solution

to this system will be unique.

4 Calibration

The primary purpose of the present paper is to gauge the magnitude of the variation in

total factor productivity that is required to match the widely varying degree of crowdedness

we observe across U.S. cities. In this spirit and to not imply a false level of precision,

parameters are set to round values. The numerical results section includes an extensive

sensitivity analysis.

To simplify the analysis, the small economy is henceforth assumed to have approximately

zero land area. This shuts down any feedback from it to the large economy. Doing so is espe-

cially helpful when land and capital factor payments are assumed to be made to individuals

within the two-economy system rather than to absentee owners. The large economy serves

three functions. First is to calibrate the weighting parameters in the housing production and

utility functions. Second is to determine the reservation level of utility that individuals in

the small economy must attain. Third is to determine the level of non-wage income when

factor payments are indeed recycled

4.1 Production

The calibration of production requires determining the large-economy factor income share

accruing to each of land, capital, and labor in both the traded-good and housing sectors. For

the housing sector, it additionally requires determining the elasticity of substitution between

land and the capital/labor composite. Lastly, the rate-of-return determining capital intensity

needs to be specified. Table 2 summarizes the base parameterization as well as alternative

values that will be used in the sensitivity analysis.
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The land share of factor income derived from the production of the traded good is

assumed to be 1.6%. This value is a weighted average across a large number of industries

using intermediate input shares estimated by Jorgenson, Ho, and Stiroh (2005).2 It is nearly

identical to the 1.5% land share Ciccone (2002) suggests is reasonable for the manufacturing

sector. Sensitivity analysis is conducted for land factor shares equal to 0.4% and to 4.8%.

One-third of remaining factor income is assumed to accrue to capital; two-thirds is assumed

to accrue to labor (Gollin, 2002). Because traded-good production is Cobb Douglas, the

assumed factor shares will hold in both economies.

Non-Cobb-Douglas production in the housing sector implies that factor income shares

will differ between the two economies. Numerical results are somewhat sensitive to the as-

sumed land share. Under the base parameterization, its large-economy value is set to 35%.

This is below a recent estimate that land accounts for approximately 39% of the implicit

factor income attributable to aggregate U.S. housing stock. (Davis and Heathcote, 2005).3

Using micro data, several other researchers have found substantially lower land shares. Based

on houses sold in the Knoxville metro area, Jackson, Johnson, and Kaserman (1984) esti-

mate that land accounts for 27% of implicit factor income. Based on houses constructed

in new subdivisions of the Portland Oregon metro area, Thorsnes (1997) estimates that it

accounts for 17%. But Knoxville is among the least densely populated metro areas. And new

subdivisions tend to be located at the metro fringes. In both cases, land prices are likely to

be below average. If the production elasticity of substitution with land is below one, land’s

factor share would be below average as well. None of the empirical studies accounts for the

especially high land intensity of services that are strongly complementary with housing such

as residential streets, parks, schools, and municipal utilities. For the sensitivity analysis,

the housing land factor share is assumed to equal 20% and 50%. As with traded-good pro-

duction, one-third of remaining factor income is assumed to accrue to capital; two-thirds is

assumed to accrue to labor.

The elasticity of substitution between land and non-land inputs in the production of

2The industry-specific intermediate input estimates, which are not included in the publication, were kindly

provided by the authors.
3Davis and Heathcote find that between 1975 and 2004, land accounted for an average of 47% of the sales

value of aggregate U.S. housing stock. Adjusting for the fact that structures depreciate but land does not

using a 1.6% rate of structure depreciation as suggested by Davis and Heathcote and a 4% required real

rate-of-return gives a 38.8% land factor share.
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housing, σD,KL, is assumed to be 0.75. No clear consensus exists on an appropriate value. A

survey by MacDonald (1981) reports preferred estimates from twelve different studies ranging

from 0.36 to 1.13. Updating this research, Jackson, Johnson, and Kaserman (1984) estimate

the elasticity to lie somewhere between 0.5 and 1. More recently, Thorsnes (1997) argues

that a unitary elasticity of substitution cannot be rejected. For the sensitivity analysis, σD,KL

is assumed to equal 0.50 and 1.

Finally, the rent on the services of capital goods, rK, is set to 0.08, which implicitly

represents the sum of a required annual real return plus an annual allowance for depreciation.

However, results are completely insensitive to the parameterization of rK. This makes sense

since the framework has no natural time context.

4.2 Utility

The calibration of the utility function, (6), requires parameterizing the elasticity of substi-

tution between the traded good and housing as well as setting the weighting parameter that

determines the large-economy share of consumption spent on housing.

The elasticity of substitution, σx,h, is assumed to equal 0.50. It is calibrated using

cross-section data on housing prices and the share of consumption expenditure spent on

housing. The dots in Figure 1 plot the latter against the former for 24 large metro areas.4

The lines represent the expected housing expenditure share for each of three elasticities of

substitution.5 The line for σx,h equal to 0.50 almost exactly overlays the fitted relationship

from a linear regression. This baseline value is close to numerous estimates of the price

elasticity of housing demand, the negative of which corresponds to σx,h (Goodman, 1988,

4The housing price measure is an index of the rental price of apartments in professionally-managed prop-

erties with five or more units. It is constructed by Torto Wheaton Research based on quarterly surveys. The

index adjusts for the number of bedrooms per unit and a property’s age but not for other characteristics such

as square footage, parking, and location. The inability to control for these implies that the index measures

a hybrid of housing rental prices and housing rental expenditures. Because of substitution, expenditures

understate variations in prices. An accurately-measured house price would likely result in a scatter more

horizontal than depicted in Figure 1. An additional shortcoming of the present price index is that it fails to

measure the price of owner-occupied housing. The resulting direction of bias is less clear.
5For each elasticity, the weighting parameter ηx,h is chosen so that the expected expenditure share passes

through the fitted expenditure share for Pittsburgh based on a linear regression. Pittsburgh’s weighted

density is close to the population median.
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2002; Ermisch, Findlay, and Gibb, 1996; Ionnides and Zabel, 2003). As another source of

comparison, some typical open-economy calibrations of the elasticity of substitution between

traded and nontraded goods include 0.44 (Mendoza, 1995) and 0.74 (Tesar, 1995). For the

sensitivity analysis, σx,h is assumed to equal 0.25 and 0.75.

For a given traded-good-to-housing elasticity, σx,h, the weighting parameter ηx,h is cho-

sen such that large-economy individuals spend 18% of their consumption expenditures on

housing. This approximately matches the aggregate U.S. value from 2001 to 2003. The

sensitivity analysis alternatively assumes large-economy housing expenditure shares of 14%

and 22%.

5 Numerical Results

The model’s mechanics are straightforward. The large economy serves to calibrate the util-

ity and production weighting parameters. It also determines the reservation level of utility

that small-economy residents must attain and the amount of non-labor income they receive

when all factor payments are recycled. As the small economy’s total factor productivity

exogenously increases, so too do the marginal products of labor, capital, and land. These

attract complementary inflows of labor and capital. The resulting increase in aggregate

housing demand puts additional upward pressure on land prices. In equilibrium, traded-

good-denominated wages, house prices, and land prices must all rise. The equating of

small-economy with large-economy utility comes via an increase in small-economy traded

consumption but a decrease in small-economy housing consumption.

The first subsection below illustrates these mechanics under the base calibration. The

required TFP to increase crowdedness is relatively small when the small economy is sparsely

populated. But as the small economy becomes more crowded, the additional TFP required

to achieve additional increases in crowdedness becomes large. The productivity increases are

accompanied by similar sized increases in wages, somewhat larger increases in housing prices,

and an order-of-magnitude larger increases in land prices.

A second subsection discusses the sensitivity of the model’s quantitative results to the

parameterization. Unsurprisingly, resistance to crowding is strongly increasing with respect

to the implicit land factor content share of large-economy consumption.

A last subsection argues that the numerical results nicely match several empirical esti-
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mates. In particular, the model predicts that the induced elasticities of wages and housing

expenditures with respect to population density will be increasing. Cross-sectional regres-

sions find strong evidence that this is indeed the case.

5.1 Base Calibration

Numerical results from the base calibration are shown in Figure 2.

Panel A plots the small-economy relative total factor productivity required to attain

a range of relative population densities. The vertically-plotted TFP variation should be

interpreted as exogenous. It is assumed to hold for production of both the traded good and

housing. The horizontally-plotted relative population density should be interpreted as an

endogenous response. So, for example, a small-economy population density one-fourth that of

the large economy follows from a small-economy TFP that is 0.92 that of the large economy.

A small-economy population density four times that of the large economy follows from a

small-economy TFP that is 1.14 times that of the large economy.6 The slope of the locus

measures the elasticity of required TFP with respect to relative population density, εTFP.

The locus’ positive second derivative implies that this elasticity increases with crowdedness.

Specifically, εTFP increases from 0.05 to 0.07 to 0.12 as density increases from one-fourth to

one to four.

The required TFP increase as the small economy becomes more crowded causes a rise

in traded-good-denominated wages (Panel B). Because of capital deepening, wages vary by

slightly more than does TFP. As with TFP, the wage-to-density locus has a positive second

derivative. In other words, the induced elasticity of wages with respect to density is increasing

with crowdedness.

The remaining panels of Figure 2 plot the relationships between a number of other

endogenous outcomes and population density. Increases in population density pull land out

of traded good production into housing production (Panel C). As density increases from one-

fourth to one to four, the percent of land devoted to housing production increases from 62

to 74 to 83. Relative land prices vary by an order of magnitude more than do wages (Panel

6The increase in population density as productivity increases is a numerical result rather than an analytical

one. Increases in only traded-good productivity can actually lower density as land becomes too valuable to

be used for housing production. But numerical results show such “crowding out” occurs only when labor’s

share of factor income is below 20%, which for most industries is unrealistically low.
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D). They go from 0.16 to 7.3 as relative density goes from one-fourth to four. As the price of

land increases, so too does its share of housing factor income (Panel E). But the actual land

factor content of housing—that is, land per unit of housing—falls with density (not shown).

At a one-fourth density, the quantity of land per housing unit is more than three times its

large-economy level. At four-times density, land per unit housing is approximately one third

its large-economy level.

The sharply rising price of land causes the price of housing to increase as well (Panel

F). But the rise in house prices—from 0.60 to 2.1 as density rises from one-fourth to four—

is considerably more moderate. Housing expenditures rise by even less (also Panel F). As

with TFP and wages, the induced elasticities of house prices and house expenditures with

respect to density increase with crowdedness. The share of expenditures devoted to housing

increases with crowdedness as well(Panel G). But the actual quantity of housing consumed

falls (Panel H). To achieve the large-economy reservation utility, traded-good consumption

must rise with crowdedness (also Panel H). At a one-fourth density, relative traded and

housing consumption are respectively 0.96 and 1.24. At a four-times density, relative traded

and housing consumption are 1.08 and 0.75.

5.2 Sensitivity Analysis

The present model requires five key parameterization choices. Figure 3, Panels A through

E, illustrate the dependence of required TFP on each of these. Table 3 provides a partial

summary. Unsurprisingly, changes that increase the implicit land factor share of large econ-

omy consumption—either by explicitly increasing land’s factor share in production or by

increasing the expenditure share of land-intensive housing—increase resistance to crowding.

Less obviously, decreasing the production and consumption elasticities increases resistance

to crowding at high relative densities but decreases it at low relative densities.

Resistance to crowding depends closely on the importance of land in production (Panels

A and B). As discussed above, the elasticity of required TFP with respect to density under

the base calibration increases from 0.05 to 0.07 to 0.12 as relative density increases from

one-quarter to one to four. Tripling land’s factor share of traded-good production from its

baseline value of 1.6%, εTFP at the same benchmark density levels rises from 0.08 to 0.10 to

0.14. Increasing land’s factor share of housing production from its baseline value of 35% to
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50%, εTFP rises from 0.06 to 0.10 to 0.19.

Variations in resistance to crowding imply different relative population densities for a

given difference in productivity. Under the base calibration, a TFP deficit of 5% (i.e., a

TFP level of 0.95) causes the small economy to have a relative density of 0.46. With land

accounting for just 20% of housing production, the same 5% TFP deficit causes density to

fall all the way to 0.28. With land accounting for 50% of housing production, a 5% TFP

deficit causes population density to fall only to 0.58.

Correspondingly, variations in resistance to crowding are reflected in different required

TFP levels to achieve a given relative density. Attaining a relative density of four requires a

14% TFP premium under the base calibration. With housing land factor shares of 20% and

50%, it requires respective premiums of 8% and 22%.

Resistance to crowding responds nonmonotonically to the housing-production elasticity

of land (Panel C). At low relative densities, εTFP is increasing with σD,KL. At intermediate

and high relative densities (including at a unitary density), it is decreasing with σD,KL. The

latter relationship is easily visible and is the more intuitive. As crowding makes land more

scarce, a high elasticity allows for easy substitution to the hybrid capital-labor input.

The nonmonotonic sensitivity to σD,KL derives from the curvature of the CES production

function. As the elasticity goes to zero, the housing production isoquant between land (on a

horizontal axis) and the hybrid capital-labor input (on a vertical axis) becomes Leontief. In

other words, at low levels of the land input, the isoquant is nearly vertical. At high levels,

it is nearly horizontal. Land per unit of housing is inversely correlated with population

density. At low densities, increased crowdedness is associated with leftward movement along

the horizontal portion of the isoquant. The marginal cost of housing production increases

only slightly as the land input decreases. But at high densities, increased crowdedness is

associated with upward movement along the vertical portion of the isoquant. The marginal

cost of production increases sharply with further decreases in the land input.

As might be expected, increasing housing’s share of consumption expenditures increases

resistance to crowding (Panel D). This is because production of housing is more intensive in

land than is production of the traded good.

Similarly intuitive is the increased resistance to crowdedness at intermediate and high

population densities that arises from decreasing the substitutability between the traded good

and housing (Panel E). As σx,h decreases, individuals become less willing to endure low
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housing consumption in return for high traded good consumption. But for the same reason

as the nonmonotonic response to σD,KL, resistance to crowdedness is relatively insensitive to

σx,h at low population densities.

Panels F and G show resistance to crowding under low-resistance and high-resistance

combinations of the parameters just discussed. In Panel F, parameters are chosen to min-

imize and maximize resistance to crowdedness at high density levels. The low resistance

combination assumes weightings that implicitly minimize land’s share of consumption (low

land factor shares for both goods and a low housing consumption share) along with high

elasticities of substitution (σD,KL equal to 1 and σx,h equal to 0.75). Under this low-land,

high-elasticity combination, small differences in TFP lead to large changes in population

density. Resistance, εTFP, remains between 0.02 and 0.03 even as density varies from well be-

low one-fourth to well above four. Under the converse high-land, low-elasticity combination,

extremely large changes in TFP are required to get large density changes. At one-fourth den-

sity, εTFP equals 0.09 and it then rapidly increases with crowdedness. In Panel G, parameters

are chosen to minimize and maximize resistance to crowdedness at low density levels. In this

case the low-resistance combination assumes low elasticities of substitution. At one-fourth

density, εTFP is just 0.01. But it then rapidly ramps up as density increases above one. Under

the high-land, high-elasticity combination, resistance remains fairly stiff at all densities.

The numerical results so far have assumed that TFP varies for both the traded good

and housing. Resistance to crowdedness is stronger if TFP varies only for the traded good

(Panel H, dashed-dotted line). But the larger variation in traded-good productivity required

to achieve a given difference in crowdedness is slight at low and intermediate densities.

Another baseline assumption is that individuals receive only labor income. Allowing

for capital income stiffens resistance to crowding (Panel H, dashed line). In this case, the

alternative assumption is that individuals receive an identical capital payment regardless of

where they live. As discussed in the theory section, its size is the per capita sum of factor

payments to land and capital across both economies. Without capital income, real wages—

that is, traded-good denominated wages deflated by a “true cost of living index” (Diewert,

1993)— must be equal across economies. With capital income, real wages must be higher in

the more crowded economy. This is to compensate for the lower purchasing power of capital

income where housing prices are high. The higher real wages in turn rely on even larger

variations in TFP.
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The parameterization and baseline assumptions obviously affect numerous endogenous

outcomes in addition to the resistance to crowdedness. Table 3 shows the sensitivity of the

main variables’ elasticity with respect to crowdedness at a unitary density. Most of the

qualitative results are intuitive.

For example, land and house prices rise more steeply with density and housing con-

sumption falls more steeply with density as land’s large-economy factor share of housing

increases. For densities above one, the same holds true as σD,KL decreases. Also for densities

above one, decreasing σx,h causes land and house prices to rise more steeply with density but

housing consumption to fall less steeply with it. Less intuitive is that a higher traded-good

land factor share dampens elasticities with respect to crowdedness. Recall from above that

a higher traded-good land share increases εTFP. In contrast, the elasticities of wages, land

prices, housing prices, and housing expenditures all fall. Increasing the land factor share of

traded-good production increases the availability of land that can be pulled into the housing

sector. Substituting away from land is more attractive in traded-good production than in

housing production because of the former’s assumed unitary elasticity of substitution.

5.3 Empirical Match

The model predicts that the elasticities of wages and of housing expenditures with respect

to population density are each increasing. Cross-sectional regressions using aggregate data

find strong support for both predictions at low population densities but not at high ones.

From a quantitative perspective, the estimated wage elasticities are considerably higher than

is predicted by the baseline parameterization of the model. Two of the model’s simplifying

assumptions are likely to account for a portion of the discrepancy between the estimated and

predicted wage elasticities.

Table 4 shows results from regressing the log of the median wage among non-Hispanic

white males on the linear and quadratic logs of relative population density. The regressions

are descriptive only and are not meant to imply any sense of causality. Columns 2 through

5 use metropolitan areas as the geographic unit of observation. Density is calculated using

a population-weighting of county-subdivision place/remainders as in Table 1 Panel C. The

denominator for measured relative density is the population median among metro residents.

The coefficient on linear log density corresponds to the wage elasticity at the popula-
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tion median. Not controlling for anything, this elasticity is estimated to be 0.20 (column

2). Controlling for educational attainment, it falls to 0.15 (column 3). Including the educa-

tional controls is the more sensible specification since it better corresponds to the model’s

assumption of homogenous agents. The same rationale underlies the limiting of the sample

population to non-Hispanic white males. With the education controls, a positive coefficient

on quadratic relative population density differs from zero at the 0.05 level. In other words,

the wage elasticity is indeed estimated to be increasing with respect to density.

Columns 4 and 5 show results from a slightly more flexible specification. It allows the

coefficients on quadratic density to differ depending on whether density is above or below

the population median. Doing so increases the leverage of high-density observations, which

are vastly outnumbered by low-density ones. Allowing for such a spline on the quadratic

term shows that the increase in wage elasticity holds only for densities below the population

median.7

Column 6 shows results using urbanized areas as the geographic unit of observation

and density measured simply by total population divided by total land rather than by a

population-weighting of subunits. Similar to the case of metro areas, the elasticity of wages

with respect to density is found to be increasing for population densities below the population

median. The corresponding coefficient on quadratic density differs from zero only at the 0.10

level. But the equality of the two quadratic coefficients (for observations below and above

the population median) can not be rejected. Constraining them to be equal yields a small

positive coefficient on quadratic density that is significant at the 0.01 level (not shown).

A similar pattern of an increasing elasticity for observations with below-median density

also holds for housing expenditures (Table 5). In columns 2 and 3, expenditures are measured

by monthly rent. Both for metro and urbanized areas, a positive coefficient on below-median

quadratic density statistically differs from zero, though for metro areas it only does so at

the 0.10 level. Constraining the metro-area specification to a single quadratic term yields

a positive corresponding coefficient that differs from zero at the 0.05 level (not shown). A

disadvantage of measuring expenditures by rent is that high-quantity housing units are often

available only for purchase. In columns 4 and 5, expenditures are measured by owners’

estimates of their unit’s sales value. The corresponding elasticities with respect to density

7Maximum likelihood estimation suggests that an increasing elasticity may hold up to densities consider-

ably above the population median.
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prove to be even more sharply increasing for below-median observations.

In addition to testing the model’s prediction that the wage and housing expenditures

are increasing with density, it is also possible to quantitatively compare predictions with

estimates. The predictions are considerably lower. In Table 4, Column 1 shows the predicted

wage elasticity under the model’s base specification at densities one half, one, and two. Over

this interval, it rises from 0.06 to 0.08 to 0.11. The bottom rows of columns 2 through 6 show

estimated wage elasticities at these same densities relative to the population median. Under

the preferred empirical specification (column 5), the estimated elasticity rises from 0.11 to

0.20 and then falls to 0.15.8

There are several possible explanations for the lower predicted compared to estimated

elasticity of wages with respect to density. One is the model’s simplifying assumption that

the small economy’s land area is fixed. As higher productivity attracts population to the

small economy, its land area is likely to increase. Indeed the elasticity of population-weighted

density with respect to population is only 0.34, which suggests that two-thirds of any increase

in population gets dissipated by an increase in land area (Table 1 Panel C). Allowing for

such changes in land area would increase the variation in productivity—and hence in wages—

required to achieve a given variation in population density.

A second possible explanation for the lower predicted wage elasticity is the model’s

assumption of homogeneous individuals. Of course, people differ in innumerable ways. For

present purposes, the most relevant is that some people may have more human capital than

others. The empirical results suggest that individuals in more dense cities may have higher

human capital. For example, controlling for education lowers the estimated wage elasticity.

Similarly, other unobserved attributes are likely to account for a portion of the positive

empirical correlation (Combes, Duranton, and Gobillon, 2003; Lee, 2005).

8An important caveat is that the observed population median density is only a rough proxy for the

modeled large-economy density. For example, large-economy density might alternatively correspond to the

population-weighted mean density or—equivalently—to population-weighted aggregate density. However,

the 18-percent base calibration of the large-economy housing share more closely corresponds to the observed

shares of metro areas with density near the population median rather than to those with density near the

population mean. More meaningful than the point comparisons is the lack of overlap between the modeled

and estimated elasticities. Metro areas with density one-half to twice the metro-are population median

contain 64 percent of the metro-area sample population. The interval includes the population mean, which

is 1.6 times the population median.
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Still another explanation is that the model is better parameterized by a combination that

results in higher predicted wage elasticities. For example, the high-land, low-substitutability

combination predicts wage elasticities similar to the estimated range.

The predicted housing expenditure elasticities more closely match estimates. The pre-

dicted elasticity range (0.22 to 0.33) does exceed the preferred rent-based estimate (0.10 to

0.16) but is right in the center of the preferred value-based estimate (-.13 to 0.41).

The model predicts numerous other elasticities and shares. Most are considerably diffi-

cult to measure empirically. The model does approximately match the relationship between

density and the housing share of consumption. But the calibration of σx,h was based, at least

in part, to make this so. The especially high elasticity of the price of land with respect to

density seems reasonable. As density rises from one quarter to four, the price of land rises

by a factor of 45. Tax assessments of land in central business districts of large U.S. cities

vary by approximately the same degree.9

Similarly reasonable is that housing’s share of land will increase with density. Land-

scaped corporate parks are simply not affordable in crowded places. From a quantitative

perspective, the base parameterization predicts that 74 percent of large-economy land will

be used for housing. This compares with a USDA estimate that 55 percent for all urban land

was used for residential purposes in 1997 (Vesterby and Krupa, 1997). However, the USDA

estimate is based on an extremely expansive definition of “urban” to include all places with

just 2,500 people. Many such urban places are sparsely populated and so are predicted by

the model to have low residential land shares.

Another comparison concerns whether the magnitude of the productivity differences re-

quired to sustain observed differences in crowdedness are plausible. Here the answer is almost

certainly yes. Under the baseline calibration, a small economy with relative density 6.8 (cor-

responding to New York City) requires TFP 1.37 times that of a small economy with relative

density 0.4 (corresponding to Dothan Alabama). In other words, a 37 percent productivity

difference suffices to underpin the observed forty-nine fold difference in density. No good

9Cities and approximate assessed value per square foot circa 2005 are Columbus ($230), Dallas ($60),

Milwaukee ($70), Sacramento ($220), San Francisco ($2,300), Seattle ($500), Tampa ($50), and Washing-

ton D.C. ($1,600). Values represent highest assessment among central business district parcels of at least

five thousand square feet. Central business district locations were chosen to include the most expensive

commercial property near what appear on maps to be downtown areas.
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estimates of city-level productivity exist with which to compare this. But the much larger

productivity differences that are observed across U.S. states and across developed nations

suggest that the required variation in city-level productivity is easily plausible. Specifically,

Ciccone and Hall (1996) estimate that the most productive U.S. state (New Jersey) had

output per worker in 1988 that was 1.70 times that of the least productive U.S. state (South

Dakota).10 Hall and Jones (1999) estimate that U.S. TFP in 1988 was 41 percent above

that of Ireland and Denmark and 52 percent above that of Japan. Among the non-former

communist members of the European Union, the ratio of the highest to lowest TFP in 1988

(corresponding to Italy and Greece, respectively) was 1.79.

Overall, the model appears to be a reasonably good match to empirical estimates of

correlations with density. This suggests that it can serve to evaluate estimates of the ag-

glomeration effects of density.

6 Increasing Returns

The modeling so far has taken total factor productivity to be exogenous. In fact, it is

unlikely to be so. Indeed the very existence of cities is often premised on the existence

of a productivity advantage via some sort of increasing returns to scale (Marshall, 1890;

Jacobs, 1969). This section compares the productivity required to sustain crowdedness as

predicted by the model with recent estimates of the increases in productivity attributable to

such crowdedness. The required TFP is generally larger. Increasing returns in productivity

appears insufficient to account for the wide range of population density across U.S. cities.

This conclusion is especially true in accounting for the most crowded cities.

Many studies have tried to measure the increase in productivity attributable to city

size. Estimates of the elasticity of TFP with respect to employment tend to fall between

0.03 and 0.08 (Rosenthal and Strange, 2004). Only a few studies have sought to measure the

increase in productivity attributable to density. Using U.S. state and county data, Ciccone

and Hall (1996) estimate the elasticity of TFP with respect to employment density, υTFP,

to be approximately 0.04. Using European data, Ciccone (2002) estiamtes υTFP to be 0.05.

10The model suggests that real output per worker will slightly understate differences in TFP because of

land scarcity. Nominal output per worker—that is, failing to control for differences in housing prices—will

moderately overstate differences in TFP.
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Combes, Duranton, and Gobillon (2003) argue that both of these estimates are likely to be

biased upward because they fail to control for unobserved individual attributes. Allowing for

individual fixed effects in a large panel of French workers, their preferred estimate suggests

that υTFP is no higher than 0.02.

The model’s baseline parameterization predicts that the elasticity of required TFP with

respect to density, εTFP, overlaps the upper end of these estimates. As population density

rises from one sixteenth to one fourth, εTFP rises from 0.036 to 0.049 (Table 3). But at higher

relative densities, the required increases in TFP to sustain increases in crowdedness become

much larger. As population density rises from one to four, εTFP rises from 0.073 to 0.123.

Small-economy relative TFP can be thought of as combining an endogenous agglom-

eration component that is increasing in density and an exogenous component that is unre-

lated to density. The estimated agglomeration elasticity, υTFP, characterizes the endogenous

component. The exogenous component can be measured as combined relative TFP at the

large-economy density. Equivalently, the endogenous component of TFP is assumed to equal

zero at a unitary relative density.

Figure 4 compares predicted and estimated elasticities. In each of the panels, the dashed

line shows the small-economy productivity required to sustain a given small-economy popu-

lation density under the baseline calibration. The solid lines represent loci of small-economy

productivity and density under different assumed combinations of υTFP and of the small-

economy exogenous productivity component. In Panels A and C, small-economy exogenous

TFP is assumed to be one. In other words, the small economy is assumed to have TFP equal

to that of the large economy when its density equals that of the large economy. In Panels

B and D, small-economy exogenous TFP is allowed to differ from one. In Panels A and B,

υTFP is assumed to equal a “low” value of 0.02. In Panels C and D, it is assumed to equal a

“high” value of 0.05.

With exogenous TFP equal to one and a low υTFP, the unique equilibrium is for small-

economy density to equal that of the large economy (Panel A). As small-economy density

increases above one, the TFP gained due to agglomeration is less than the TFP required to

sustain the higher density. Conversely, as small-economy density decreases below one, the

TFP lost due to negative agglomeration is less than the decrease in TFP needed to sustain

the lower density.

More generally, a low υTFP implies that the exogenous TFP component uniquely de-
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termines small-economy density. To be sure, agglomeration magnifies variations in the ex-

ogenous productivity component; but only by a relatively small amount. In Panel B, the

top solid line represents a small economy with an equilibrium relative density of four. The

combined TFP to sustain this assumed equilibrium is 1.14. The prerequisite exogenous TFP

to do so is 1.11. Agglomeration thus accounts for 22 percent of the total required TFP dif-

ferential (1-0.11/0.14). The bottom solid line represents a small economy with an assumed

one-fourth equilibrium relative density. In this case, the required combined TFP is 0.92 and

the prerequisite exogenous TFP is 0.946. Here, agglomeration accounts for 32 percent of the

total required TFP differential. Agglomeration’s higher share in sustaining the lower density

equilibrium reflects the increase in εTFP with density.

Increasing the agglomeration elasticity introduces the possibility of multiple equilibria.

In Panel C, the exogenous component of small-economy productivity is again assumed to

equal one. At a unitary density, εTFP exceeds υTFP. Hence there is a stable equilibrium

in which the two economies have equal density. But at densities below one, the required

locus (dashed line) lies only slightly below the endogenous locus (solid line). Moreover, the

required locus is flattening as density decreases. Although it is not shown, the two loci

intersect at a one-sixteenth density. In other words, the endogenous loss in productivity

from having a density of one sixteenth rather than one equals the lower density required to

sustain a small-economy density of one sixteenth. However, this second equilibrium is not

stable. With slightly higher “initial” density, actual productivity is above what is required.

In a dynamic setting, presumably the small economy would grow until it attained a unitary

density. With initial density slightly below one sixteenth, actual productivity is below what

is required. Presumably the small economy would lose population until it no longer existed.

A high agglomeration elasticity combined with an exogenous productivity component

slightly below one implies a virtual continuum of low-density equilibria. In Panel D, the

lower solid line represents an economy that is formally assumed to have equilibrium density

of one fourth. The required combined small-economy TFP is 0.920 and the prerequisite

exogenous TFP component is 0.986. Agglomeration thus accounts for 83 percent of the

required productivity differential. As is visually clear, however, the agglomeration and re-

quired loci are virtually congruent for relative densities from one half down to one eighth.

Any small-economy density in this range is approximately consistent with the assumed small-

economy exogenous productivity. Which below-average density outcome is actually realized
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may depend more on history and other idiosyncratic factors than on static fundamentals.

In contrast, high-density equilibria remain unique notwithstanding the high estimated

agglomeration elasticity. But increasing returns does greatly magnify variations in exoge-

nous productivity. The top solid line in Panel D represents an economy with a four-times

equilibrium density. Agglomeration accounts for 54 percent of the required combined higher

productivity. To achieve an eight-times relative crowdedness, agglomeration can account for

42 percent of the required combined higher productivity. As is clear visually, the steeper

slope of the required productivity line implies a unique high-density equilibria. For there

to be multiple high-density equilibria, εTFP would need to remain close to or below 0.05 as

density increases above one. Variations to the base calibration that achieve this include low-

ering land’s share of housing production to 20 percent or increasing the housing-production

elasticity of substitution with land to one (Table 3; Figure 3 Panels B and C).

The shortfall of increasing returns in accounting for high density cities is much more

robust under the low estimate of the agglomeration elasticity. The only parameterization

under which it can do so combines an implicit low land factor share of consumption with

high elasticities of substitution (Figure 3, Panel F). In this case, εTFP remains below 0.026 all

the way up to a relative density of eight. But under all of the other parameterizations tested

in the sensitivity analysis, the required increases in productivity to achieve high-density

outcomes far exceed estimates of υTFP in the range of 0.02.

Overall, a comparison of the model’s numerical results with the agglomeration esti-

mates places some upper bounds on the role of increasing returns to scale in accounting for

the variation in population density across cities. Even if actual agglomeration is at the high

end of estimates, it falls well short of being able to account for above-average population

densities. If it is at the low end of estimates, it also falls well short of being able to ac-

count for below-average densities. Such conclusions are reinforced by the possibility that the

model understates required productivity differences by failing to account for the endogenous

expansion in land size with population increases.

7 Conclusions

Crowdedness varies hugely across U.S. cities. A simple, static general equilibrium model

suggests that moderate-sized differences in cities’ total factor productivity can account for
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such variation. Nevertheless, the productivity differences required to sustain high levels

of crowdedness considerably exceed estimates of the higher productivity such crowdedness

causes.

What, then, compensates for the shortfall of increasing returns in accounting for high

crowdedness? Economic theory suggests two main possibilities. One is variations in pro-

ductivity unrelated to density. For example, productivity may depend on locational fun-

damentals such as easy access to raw materials, navigable waterways, seaports, and other

transportation infrastructure (Wright, 1990; Sokoloff, 1988; Rappaport and Sachs, 2003).

Or it may depend on government policies such as regulation, taxes, and service provision

(Holmes, 1998).

Second, the difference between required and endogenous productivity might be com-

pensated for by high consumption amenities (Rappaport, 2004). The most obvious such

amenity is nice weather. U.S. residents have been crowding into warmer-winter, cooler-

summer weather cities throughout most of the twentieth century (Rappaport 2006). Individ-

uals are similarly likely to be willing to endure crowded conditions in return for the chance to

enjoy nearby beaches, mountains, lakes, and other natural recreational opportunities; or they

may be willing to do so in order to obtain desired government policies such as the efficient

provision of low pollution, low crime, and good schools (Roback, 1982; Blomquist et. al.,

1988; Gyourko and Tracy, 1989, 1991; Kahn, 2000). Alternatively, consumption amenities

may arise endogenously due to the wide product variety and cultural amenities that high

density can support (Glaeser, Kolko, Saiz, 2001).

In contrast to its inability of increasing returns to underpin high levels of crowdedness,

increasing returns to scale may be able to account for variations in crowdedness at low

population densities. If so, history rather than fundamentals can account for the extreme

sparsity of population of some cities compared to the merely below-average density of others.

While increasing returns can not underpin New York City’s crowdedness, it may be enough to

separate outcomes such as those of Houston from Beaumont/Port-Arthur Texas (2.4 versus

1.2 thousand persons per square mile), Atlanta from Athens Georgia (1.8 versus 0.7), and

Des Moines from Waterloo/Cedar Falls Iowa (2.0 versus 1.0).
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Rankings by population density (thousand persons per square mile) in 2000 of continental U.S. local areas with population of at least 100,000

Rank Metropolitan Area Density Rank Urbanized Area Density

1 New York-Nrthrn New Jersey-Long Island, NY-NJ-PA 2.7 1 Los Angeles--Long Beach--Santa Ana, CA 7.1
2 Los Angeles-Long Beach-Santa Ana, CA 2.6 2 San Francisco--Oakland, CA 7.0
3 San Francisco-Oakland-Fremont, CA 1.7 3 San Jose, CA 5.9
4 Trenton-Ewing, NJ 1.6 4 New York--Newark, NY--NJ--CT 5.3
5 Bridgeport-Stamford-Norwalk, CT 1.4 5 New Orleans, LA 5.1
6 New Haven-Milford, CT 1.4 6 Vallejo, CA 4.7
7 Chicago-Naperville-Joliet, IL-IN-WI 1.3 7 Las Vegas, NV 4.6
8 Boston-Cambridge-Quincy, MA-NH 1.3 8 Oxnard, CA 4.5
9 Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 1.2 9 Miami, FL 4.4

10 Detroit-Warren-Livonia, MI 1.1 10 Fairfield, CA 4.4
:             : : :             : :
:             : : :             : :

49 Minneapolis-St. Paul-Bloomington, MN-WI 0.5 49 Dallas--Fort Worth--Arlington, TX 2.9
50 population median (Vallejo-Fairfield, CA) 0.5 50 population median (Lancaster--Palmdale, CA) 2.9
51 Orlando-Kissimmee, FL 0.5 51 Trenton, NJ 2.9

:             : : :             : :
:             : : :             : :

330 Prescott, AZ 0.0 253 Spartanburg, SC 1.1
331 Rapid City, SD 0.0 254 Hickory, NC 0.9
332 Flagstaff, AZ 0.0 255 Barnstable Town, MA 0.9

Rank Metropolitan Area Density Rank Municipality Density

1 New York-Nrthrn New Jersey-Long Island, NY-NJ-PA 18.9 1 New York, NY 26.4
2 Los Angeles-Long Beach-Santa Ana, CA 7.8 2 Paterson, NJ 17.7
3 San Francisco-Oakland-Fremont, CA 7.2 3 San Francisco, CA 16.6
4 Chicago-Naperville-Joliet, IL-IN-WI 6.7 4 Jersey City, NJ 16.1
5 Miami-Fort Lauderdale-Miami Beach, FL 5.8 5 Cambridge, MA 15.8
6 Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 5.2 6 Daly City, CA 13.7
7 San Jose-Sunnyvale-Santa Clara, CA 5.1 7 Chicago, IL 12.8
8 Boston-Cambridge-Quincy, MA-NH 5.0 8 Santa Ana, CA 12.5
9 Salinas, CA 4.7 9 Inglewood, CA 12.3

10 Washington-Arlington-Alexandria, DC-VA-MD-WV 4.5 10 Boston, MA 12.2
:             : : :             :           : 
:             : : :             :           : 

49 Pittsburgh, PA 2.8 89 Tacoma, WA 3.9
50 population median (Omaha-Council Bluffs, NE-IA) 2.8 90 population median (Garland, TX) 3.8
51 Lincoln, NE 2.7 91 San Diego, CA 3.8

:             : : :             :           : 
:             : : :             :           : 

330 Ocala, FL 0.5 235 Peoria, AZ 0.8
331 Bangor, ME 0.4 236 Augusta-Richmond, GA 0.8
332 Dothan, AL 0.4 237 Chesapeake, VA 0.6

share of continental U.S. land area:   27.7%
share of continental U.S. population: 82.0%

A. Metropolitan Areas (2003 OMB definitions; raw density)

elasticity with respect to population:  ε = 0.53 (0.04); R2 = 0.40

Table 1: Variations in Population Density

2.4   
times

8.3
times

B. Urbanized Areas (Census 2000 definitions; UA's are 
essentially the densely settled portions of metropolitan areas.)

45  
times

7.0 
times

5.8
times

437
times

share of continental U.S. population: 63.6%
share of continental U.S. land area:   2.2%

D. Municipalities (Census 2000 land areas)

6.8  
times

elasticity with respect to population:  ε = 0.16 (0.02); R2 = 0.21

share of continental U.S. population: 82.0% share of continental U.S. population:  26.6%

49   
times

C. Metropolitan Areas (2003 OMB definitions; population-
weighted mean of county--subdivision--place/remainder densities)

share of continental U.S. land area:   27.7% share of continental U.S. land area:      0.7%

elasticity with respect to population:  ε = 0.34 (0.02); R2 = 0.39 elasticity with respect to population:  ε = 0.17 (0.06); R2 = 0.04



      Parameter Base

Low
Resistance*

("Loose")

High
Resistance*

("Tight")

Factor Income Shares
(large economy)

Traded Good: Land, Capital, Labor 1.6%, 32.8%, 65.6% 0.4%, 33.2%, 66.4% 4.8%, 31.7%, 63.5%

Housing: Land, Capital, Labor 35%, 21.7%, 43.3% 20%, 26.7%, 53.3% 50%, 16.7%, 33.3%

Housing Production CES  (σD,KL) 0.75 1 0.50

Housing Share of Consumption
Expenditure (large economy)

Utility CES  (σx,h) 0.50 0.75 0.25

Table 2: Base and Alternative Calibrations

*Note: The CES substitution parameters (σD,KL, and σx,h) have an asymmetric effect on 
resistance. The "loose" values above are those for which resistance is lower at a relative 
density of one and above.

18% 14% 22%



   Endogenous Elasticity →
           (with respect to density)

      at rel. density → 1/16 1/4 1 4

↓ Parameterization ↓

Baseline 0.036 0.049 0.073 0.123 0.079 1.367 0.438 0.258 0.039 -0.180

Traded-Good Factor Shares
D=0.4%, K=33.2%, L=66.4% 0.023 0.037 0.065 0.122 0.089 1.487 0.493 0.291 0.044 -0.202
D=4.8%, K=31.7%, L=63.5% 0.067 0.079 0.099 0.137 0.064 1.222 0.355 0.210 0.032 -0.146

Housing Factor Shares
D=20%, K=26.7%, L=53.3% 0.028 0.034 0.046 0.068 0.040 1.247 0.224 0.132 0.020 -0.092
D=50%, K=16.7%, L=33.3% 0.042 0.062 0.103 0.190 0.121 1.480 0.676 0.399 0.061 -0.277

Housing Production CES
σD,KL = 1 0.047 0.054 0.063 0.075 0.068 1.179 0.379 0.223 0.034 -0.155
σD,KL = 0.50 0.026 0.041 0.087 0.218 0.093 1.626 0.519 0.306 0.047 -0.213

Housing Expenditure Share
plhl/(xl+plhl) = 0.14 0.031 0.041 0.061 0.099 0.060 1.326 0.429 0.244 0.030 -0.184
plhl/(xl+plhl) = 0.22 0.040 0.056 0.086 0.145 0.098 1.400 0.445 0.271 0.049 -0.174

Utility CES, traded and housing
σx,h = 0.75 0.039 0.051 0.069 0.096 0.074 1.285 0.412 0.158 0.056 -0.253
σx,h = 0.25 0.032 0.046 0.078 0.163 0.084 1.460 0.468 0.372 0.021 -0.096

Combination Parameterizations:
low land, high σ 0.021 0.022 0.023 0.025 0.029 1.065 0.205 0.073 0.022 -0.132
high land, low σ 0.063 0.088 0.174 0.474 0.151 1.629 0.688 0.553 0.038 -0.134

low land, low σ 0.007 0.014 0.040 0.190 0.049 1.840 0.351 0.276 0.012 -0.076
high land, high σ 0.106 0.115 0.125 0.136 0.108 1.164 0.494 0.205 0.081 -0.289

Alternative Assumptions:
Only Traded TFP Varies 0.037 0.053 0.086 0.172 0.096 1.419 0.537 0.317 0.048 -0.220
With Capital Income 0.050 0.071 0.108 0.169 0.129 1.417 0.444 0.262 0.040 -0.182

Table 3: Sensitivity of Elasticities

1

Required TFP w rD p p·h x h



(1) (2) (3) (4) (5) (6)
MODEL

(baseline)

Geographic Unit →     Metro Metro Metro Metro UA

RHS Variables:

Education Controls no yes no yes yes

log(rel density) 0.20 0.15 0.26 0.20 0.20
(0.03) (0.02) (0.03) (0.02) (0.07)

(log(rel density))2:

all obs 0.04 0.03
(0.02) (0.01)

dens < pop median 0.08 0.06 0.13
(0.02) (0.02) (0.08)

dens ≥ pop median -0.05 -0.04 0.07
(0.03) (0.02) (0.13)

Observations 332 332 332 332 255

Independent Var 2 6 3 7 7

R-sqrd 0.45 0.57 0.46 0.58 0.42

Marg R-sqrd 0.18 0.19 0.09

R-sqrd, no controls 0.45 0.46 0.19

P-val (equal quad term) 0.00 0.01 0.75

elasticty @ 1/2 dens 0.06 0.15 0.11 0.16 0.11 0.03

(0.01) (0.01) (0.01) (0.01) (0.05)

elasticity @ 1x density 0.08 0.20 0.15 0.26 0.20 0.20

(0.03) (0.02) (0.03) (0.02) (0.07)

elasticty @ 2x dens 0.11 0.25 0.19 0.20 0.15 0.29

(0.05) (0.04) (0.03) (0.02) (0.14)

Table 4: Correlation of Wages and Density

Dependent variable is the log of median annual labor income in 1999 for white, non-Hispanic males 16 
years or over who worked full time, year-round in 1999.  All regressions include a constant. Education 
controls are the percentage of the white, non-Hispanic males 25 and older with each of a high school, 
associate, bachelors, and graduate degree.  Coefficient standard errors (in parentheses) are robust to 
heteroskedasticity.  Bold type signifies coefficients that differ from zero at the 0.05 level. Italic type 
signifies coefficients that do so at the 0.10 level. For derived elasticities, standard errors are calculated 
using the "delta method" (Goldberger 1991).  Geographic observations and densities correspond to those 
listed in Table 1. Metro area density is a population weighted mean of county-subdivision-
place/remainders. Marginal R-squared is the increase in R-squared compared to a regression on only the 
educational controls.  P-value is the level at which an F test rejects that the coefficients on quadratic 
density are the same for observations below and above the population median.



(1) (2) (3) (4) (5)
MODEL

(baseline)
Dependent Var →     rent rent value value

Geographic Unit →     Metro UA Metro UA

RHS Variables:

Education Controls yes yes yes yes

log(rel. density) 0.16 0.25 0.41 0.59
(0.03) (0.08) (0.07) (0.14)

(log(rel. density))2:

dens < pop median 0.04 0.25 0.21 0.63
(0.02) (0.09) (0.04) (0.15)

dens ≥ pop median 0.00 0.17 -0.07 0.27
(0.03) (0.17) (0.06) (0.28)

Observations 332 255 332 255

Independent Var 7 7 7 7

R-sqrd 0.64 0.46 0.59 0.47

Marg R-sqrd 0.08 0.09 0.10 0.12

R-sqrd, no controls 0.35 0.23 0.36 0.25

P-val (equal quad term) 0.46 0.77 0.00 0.36

elasticty @ 1/2 dens 0.22 0.10 -0.09 0.13 -0.28

(0.01) (0.06) (0.03) (0.10)

elasticity @ 1x density 0.27 0.16 0.25 0.41 0.59

(0.03) (0.08) (0.07) (0.14)

elasticty @ 2x dens 0.33 0.16 0.49 0.31 0.96

(0.03) (0.19) (0.06) (0.30)

Table 5: Correlation of Housing
Expenditure and Density

For columns 2 to 5, dependent variable is the log of the median monthly gross rent in 2000 
for renter-occupied housing units with a white, non-Hispanic householder.  For columns 6 to 
9, dependent variable is the log of the estimated value in 2000 for owner-occupied housing 
units with a white, non-Hispanic householder.  All regressions include a constant and 
controls for the percentage of the population with each of a high school, associate, 
bachelors, and graduate degree.  For coefficients, standard errors in parentheses are robust 
to heteroskedasticity.  For derived elasticities, standard errors in parentheses are calculated 
using the "delta method" (Goldberger 1991).  Geographic observations and densities 
correspond to those listed in Table 1.  Marginal R-squared is the increase in R-squared 
compared to a regression on only the educational controls.  P-value is the level at which an 
F test rejects that the coefficients on quadratic density are the same for observations below 
and above the population median.
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Figure 1: Calibration of Consumption Elasticity

Dots plot aggregate share of consumption devoted to shelter in each of 24 large metro areas
(BLS Consumer Expenditure Survey, 1997-to-2002 average) against Torto-Wheaton multi-unit rental
price index (1997-to-2002 average).  Lines represent expected housing shares as a function of the
price index for each of three elasticity parameters.
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Figure 2: Productivity-Driven Crowding

Panel A shows the required small-economy to large-economy ratio of tfp (in both the traded-good and
housing sectors) to achieve different relative densities under the base calibration. Remaining panels
show implied ratios of various endogenous variables. Horizontal axes are plotted using a log scale.
Vertical axes are also plotted using a log scale except for share variables.
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B. Housing Factor Shares
(Large Economy)
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C. House Production CES
  σD,KL  = 0.50
  σD,KL  = 0.75
  σD,KL  = 1
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D. Housing Expend Share
(Large Economy)

  plhl/(xl+plhl) = 0.22
  plhl/(xl+plhl) = 0.18
  plhl/(xl+plhl) = 0.14
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E. Utility CES: Housing
  σx,h = 0.25
  σx,h = 0.50
  σx,h = 0.75
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F. Combinations 1
  high land, low σ
  baseline
  low land, high σ
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G. Combinations 2
  high land, high σ
  baseline
  low land, low σ

Relative Pop Density
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H. Assumptions
  with capital income
  baseline
  traded TFP only
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Figure 3: Required TFP Sensitivity Analysis

Panels show the required small-economy to large-economy ratio of tfp (in both the traded-good and
housing sectors, except in Panel H) to achieve different relative densities under various perturbations
to the base calibration.  Axes are plotted using a log scale.
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C. High IRS
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Figure compares TFP levels required to sustain various population densities with estimates of the
increase in TFPassociated with higher density.  The dashed lines show the required TFP to sustain
relative population density under the baseline calibration.  The solid lines show actual TFP under 
different combinations of an increasing-returns component and an exogenous component.  In panels A
and B, the agglomeration elasticity of TFP with respect to density is assumed to be 0.02.  In panels C 
and D, it is assumed to be 0.05.  In panels A and C, the exogenous component of small economy TFP
is assumed to be identical to that of the large economy. In panels B and D, the the exogenous component
is assumed at the levels that are required for equilibrium relative population density to be one-fourth and
four.

Figure 4: Increasing Returns to Scale




