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Abstract

The paper derives measures of prior sensitivity and prior informativeness for poste-

rior results in large Bayesian models that account for the high dimensional interaction

between prior and likelihood information. The basis for both measures is the derivative

matrix of the posterior mean with respect to the prior mean, which is easily obtained

from Markov Chain Monte Carlo output. An application to Smets and Wouters’ (2007)

dynamic stochastic general equilibrium model shows that for many structural parame-

ters, the prior is very informative, and posterior means are quite sensitive to changes

in prior means. In contrast, the prior plays a much less important role for key impulse

responses and variance decompositions.
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1 Introduction

Especially in empirical macroeconomics, Bayesian inference has become a popular estimation

method. For instance, the rapidly growing empirical literature of dynamic stochastic general

equilibrium (DSGE) models is largely Bayesian (Sims and Zha (2006), Smets and Wouters

(2003, 2007), Fernandez-Villaverde and Rubio-Ramirez (2007), Justiniano and Primiceri

(2008), etc.–see An and Schorfheide (2007) for a survey), and also structural and reduced

form time varying parameter models are often approached with Bayesian techniques (Kim

and Nelson (1999), Primiceri (2005), Cogley and Sargent (2005), among others). These

models typically contain a moderate or large number of unknown parameters, requiring the

specification of a corresponding prior. The empirical conclusions are based on the center

and spread of the resulting posterior, which are estimated using Markov Chain Monte Carlo

(MCMC) methods.

At least to some extent, the results depend on the prior. This is, of course, not a

problem as such–one key advantage of the Bayesian approach is that it allows the (coherent

and optimal) incorporation of a priori information, which is useful and sometimes even

necessary in large scale macroeconomic applications (cf. An and Schorfheide (2007)). It is

nevertheless helpful for the interpretation of the results to try to disentangle the role of prior

and likelihood information. This task is substantially harder when there are many unknown

parameters. While one might often have a reasonably good sense of what constitutes an

informative marginal prior for an individual parameter, the more implicit effects of the

typical product prior for the whole parameter vector are more difficult to think about:

The likelihood information about different parameters can be far from independent, so that

marginal posterior distributions critically depend on the interaction of the likelihood with

the whole prior. And with a high dimensional parameter space, it is simply not feasible to

plot or otherwise describe in detail the shape of the likelihood, let alone to leave it to the

reader to combine the likelihood with his or her subjective prior beliefs.

Current standard practice is two provide to sets of numbers: (i) comparisons of marginal

prior and posterior distributions; (ii) comparisons of posterior results over a small number of

prior variations, such as an increase of the prior variance on all parameters. These statistics

are not necessarily very informative about the relative importance of the prior and likelihood.

Example 1: We observe data from the model Y ∼ N (θ,Σ) with Σ known, and are

interested in the first element of the k dimensional vector θ. Suppose Yi = θi +
1
6
εi + 6ε0,

1



i = 1, · · · , k where εi ∼ iidN (0, 1) and k = 40. With a N (0, Ik) prior for θ, and conditional
on the realization Y = Y 0 = (Y 0

1 , · · · , Y 0
k )
0 arising from εi = (−1)i for i = 0, · · · , k, the

posterior of θ1 is θ1|Y = Y 0 ∼ N (−0.158, 0.051). With the prior changed to θ ∼ N (0, 2Ik),
we obtain instead θ1|Y = Y 0 ∼ N (−0.156, 0.077).
For both priors, the posterior distribution of θ1 is very different from the N (0, 1) prior,

and especially the posterior mean only varies moderately across the two priors. Superficially,

this suggests that the prior only plays a modest role in the posterior of θ1. But without

knowledge of the last k−1 elements of θ, only Y1 ∼ N (θ1, 36.03) contains useful informative
about θ1 (note that the MLE is θ̂1 = Y1). The data thus contains only a very limited

amount of information about θ1, and the sharp posterior θ1|Y = Y 0 ∼ N (−0.158, 0.051)
merely reflects interactions between Σ and the prior on the remaining elements of θ (for

comparison, θ1|Y1 = Y 0
1 ∼ N (0.158, 0.973) under the standard normal prior for θ1). N

The goal of this paper is to develop additional, easily computed statistics that help to

clarify the role of prior and likelihood information in Bayesian inference of large models.

We ask two related questions. First, how sensitive are the posterior results to variations in

the prior? Second, what is the relative importance of prior and likelihood information for

individual parameters, that is how informative is the prior for individual parameters?

We approach both questions by analyzing how the posterior mean varies locally as a

function of the prior mean. The idea is that the mean is a measure for the center of a

distribution, so that the prior mean reflects the a priori information about predominant

parameter values, and variations of the posterior mean are a key aspect of posterior sensi-

tivity. Also, if the likelihood is very peaked relative to the prior (so that the prior is not

very informative compared to the data) then the posterior is dominated by the likelihood,

and variations of prior means will have almost no impact on posterior means. In contrast,

with an approximately flat likelihood (so the prior is relatively informative), the posterior is

similar to the prior, and prior mean changes are pushed through one-for-one to the posterior

mean. It thus makes sense to consider the derivative of the posterior mean with respect to

the prior mean as a starting point for both questions.

To make this operational one must take a stand on how exactly the prior distribution

changes along with its mean. The suggestion is to embed the original prior distribution

in an exponential family. This choice has a certain theoretical appeal, as discussed below.

But what is more, this embedding leads to an simple expression for the derivative matrix

as a function of the prior and posterior variance-covariance matrices. The derived prior
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sensitivity and prior informativeness measures thus become trivial to compute in practice.

More concretely, with a scalar unknown parameter, the suggested prior sensitivity mea-

sure and prior informativeness measure are proportional to the derivative of the posterior

mean with respect to the prior mean. The derivative usually takes on values between zero

and one, with values close to one indicating both high sensitivity and strong informativeness

of the prior. What is more, the derivative also has an interpretation as the approximative

fraction of prior information to total (posterior) information.

In the multivariate parameter case it makes sense to normalize the parameters to have

identity prior covariance matrix to ensure comparability of their scales. A natural measure

of the prior sensitivity for a particular parameter is then given by the Euclidian norm of its

derivative vector–this approximates the largest change of the posterior mean that can be

induced by changing the prior mean by a vector of unit length. In contrast to the scalar

case, however, this is no longer an appropriate prior informativeness measure. To see why,

suppose the parameter of interest is the sum of two parameters that are independent in

both the prior and the likelihood. If for one of them, the prior is not at all informative (a

derivative close to zero), and for the other one, the prior is very informative (a derivative

close to one), then the prior is also very informative for the sum. Alternatively, if the prior

is moderately informative for both, then this is also the case for the sum. Yet the prior

sensitivity measure–the Euclidian norm of the two derivatives–takes on similar values in

both cases.

To obtain a more suitable prior informativeness measure, we identify the unique function

of the derivative matrix that satisfies a set of reasonable axiomatic requirements. One of the

requirements is that the informativeness measure is compatible with the fraction of informa-

tion interpretation mentioned above. The end result are two easily computed statistics: the

prior sensitivity PS (approximately) measures the maximal change of the posterior mean

when the prior means are varied by the multivariate analogue of one standard deviation.

The prior informativeness measure PI ∈ [0, 1] summarizes the relative amount of prior infor-
mation in the posterior, and thus quantifies to which degree the posterior results are driven

by data information. The measure PI can thus also usefully be thought of as measuring

"identification strength" (with large values of PI indicating weak identification), although

"relative informativeness" of prior and likelihood seems a more accurate designation.

Example 1, ctd: Under the θ ∼ N (0, Ik) prior, the prior sensitivity measure for θ1 equals
PS = 0.160, and the prior informativeness measure equals PI = 0.973. Both indicate an
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important role for the prior in the posterior θ1|Y ∼ N (−0.158, 0.051): a change of the prior
mean of unit length can induce a change in the posterior mean of 0.160/

√
0.051 = 0.706

posterior standard deviations, and the prior informativeness measure PI is close to unity,

indicating a dominant role of the prior for the posterior of θ1. N
An application to the Smets andWouters (2007) DSGEmodel shows that the prior is very

informative for many of the structural parameters, and posterior results are quite sensitive

to prior mean changes. In contrast, the parameters describing the shock processes are much

more pinned down by the likelihood. Interestingly, the prior also plays only a moderate

role for the posterior results of key impulse responses and variance decompositions, at least

when an additional two structural parameters are fixed compared to the Smets and Wouters

(2007) specification. The reason is that to a large degree, the shock parameters determine

the value of both the impulse responses and variance decompositions, while the structural

parameters have a comparatively minor influence. Some of the important implications of

this DSGE model are thus not driven by the prior.

Although the measures PS and PI are based on the same derivative matrix and may

thus considered a natural pair, the two statistics are related to quite distinct literatures.

On the one hand, the prior sensitivity measure PS belongs to the large Bayesian robustness

literature that considers the effect of local changes of the prior distribution. Berger (1994),

Gustafson (2000) and Sivaganesan (2000) provide overviews and references. More specifically,

Basu, Jammalamadaka, and Liu (1996) and Perez, Martin, and Rufo (2006) study the local

sensitivity of the posterior mean in a parametric class of priors, which amounts to the

computation of the posterior mean derivative with respect to the prior hyperparameter.

The prior sensitivity measure PS thus essentially becomes a special case of their analyses.

The contribution of the present paper with regard to the measure PS merely consists of

the suggestion of the exponential family embedding, and of the normalization by the prior

derivative matrix.

The prior informativeness measure PI, on the other hand, does not seem to have a

close counterpart in the literature. Poirier (1998) observes that lack of identification of

some parameters entails that their conditional posterior distribution is always the same as

in the prior, but not necessarily their marginal posterior distribution. The measure PI,

however, does not take identification or lack thereof as a given, but summarizes the amount

of likelihood information about a specific parameter in a high dimensional model, relative to

the prior information. This property also distinguishes it from the very recent literature that,
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initiated by Canova and Sala (2009), discusses identification of modern DSGE models, such

as Iskrev (2010b) or Komunjer and Ng (2009). The differences to this literature go further,

though, as the frequentist notion of identification (or identifiability) as defined by Rothenberg

(1971) is neither necessary nor sufficient for low prior informativeness as measured by PI.

The remainder of the paper is organized as follows. Section 2 derives PS and PI for

both the scalar and vector parameter case. Section 3 discusses inequalities for PS and PI,

analogue measures for functions of the original parameters, implementation issues, a detailed

comparison with Rothenberg’s (1971) definition of identifiability, and the relationship to

McCulloch’s (1989) study of prior robustness. Section 4 contains the empirical results for

the Smets and Wouters (2007) model, and Section 5 concludes.

2 Derivation of Measures

2.1 Scalar Parameter

Denote the parameter of interest by θ, which is a scalar in this subsection. Let the prior

density be p, with mean μp = Ep[θ] and variance σ2p = Vp[θ], where here and below subscripts

of the expectation and variance indicate the measure of integration. The posterior density

π is derived from p and the likelihood function l via π(θ) = p(θ)l(θ)/
R
p(h)l(h)dh.

Now embed the prior density in a family pα with p0 = p, score function sα(θ) =

d ln pα(θ)/dα and prior mean
R
θpα(θ)dθ = μp + α. The posterior mean as a function of

α then equals μπ(α) =
R
θpα(θ)l(θ)dθ/

R
pα(θ)l(θ)dθ, and under weak regularity conditions

that justify differentiation under the integral (see, for instance, Perez, Martin, and Rufo

(2006) for details),
dμπ(α)

dα
|α=0 = Eπ[(θ −Eπ[θ])s0(θ)] (1)

which is recognized as the posterior covariance between θ and s0(θ). As explained in the

introduction, the idea is to use this derivative as a basis for measuring both prior sensitivity

and prior informativeness.

With a large sample size n and the true value of θ equal to θ0, the Bernstein-von Mises

Theorem yields that the posterior is approximately Gaussian, centered at the MLE θ̂ and

with variance of approximately σ2(θ0)/n, the inverse of second derivative of the likelihood

evaluated at θ0. From the first order Taylor expansion s0(θ) ≈ s0(θ̂) + (θ − θ̂)κ(θ̂) with

κ(θ) = ds0(θ)/dθ, (1) will usually be close to σ2(θ0)κ(θ̂)/n in large samples. As expected,
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(1) is of the order O(n−1) and thus small in large samples, but the exact value also depends

on κ(θ̂) ≈ κ(θ0). So even if σ2(θ01) = σ2(θ02) for some θ01 6= θ02, so that the amount of

likelihood information is identical for θ0 = θ01 and θ0 = θ02, the same prior can lead to very

different values of the derivative (1). This might be considered undesirable for a measure that

seeks to disentangle prior and likelihood information, as the amount of prior and likelihood

information are arguably the same for both values of θ0. A corresponding equality of (1) can

only be ensured if κ(θ) does not depend on θ. For this to happen, the function s0(θ) has to

be linear in θ, as in the exponential family embedding

pα(θ) = p(θ) exp
£
αθ/σ2p − C(α)

¤
, (2)

with cumulant function C(α) = log
R
p(θ) exp[αθ/σ2p]dθ and s0(θ) = (θ − μp)/σ

2
p. This is

a well defined family of densities for small enough |α| whenever the moment generating
function of p exists, at least in an open interval containing zero.1 For Gaussian p, (2) simply

corresponds to a normal with the same variance and mean shifted by α. More generally, the

derivative of the variance of pα at α = 0 under (2) equals Ep[(θ − μp)
3]/σ2p, which is small

compared to σ2p as long as p is not too skewed. Also, for α > 0, pα(θ) > p(θ) for all θ > μp,

and pα(θ) < p(θ) for all θ < μp (and vice versa for α < 0). The pivot of the exponential

tilting in (2) is thus always the original mean μp.

Under (2), a calculation yields

dμπ(α)

dα
|α=0 = J =

Vπ[θ]

σ2p
(3)

so that the derivative simply becomes the ratio of posterior to prior variance. A natural

measure for the prior sensitivity might be the linear approximation to the change of the

posterior mean that can be induced by a prior mean of one prior standard deviation. With

(3), this results in

PS = σpJ =
Vπ[θ]

σp
.

Typically, the derivative J takes on values between zero and one, in which case it usefully

measures the relative prior informativeness, PI = J : When the data perfectly pins down θ,

1If p is such that the moment generating function does not exist (as, for instance for the inverse Gamma

distribution), an alternative, less familiar embedding is given by pα(θ) = 2c(α)p(θ)/(1 + exp
£
−2αθ/σ2p

¤
)

where c(α) > 0 ensures that
R
pα(θ)dθ = 1 for all α. This embedding always exists as long as p has two

moments, and also leads to s0(θ) = (θ−μp)/σ
2
p, and therefore to an identical expression for dμπ(α)/dα|α=0.
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Figure 1: Example of posterior mean as function of prior mean

we have Vπ[θ] = 0, and correspondingly, prior informativeness is zero, PI = 0. In the other

extreme, with a perfectly flat likelihood, the posterior is equal to the prior, and PI = 1.

Values of J above unity are possible, though, as the posterior variance can be larger than

the prior variance. This poses no problem for the derivative interpretation of PS, but "more

than 100% prior importance" is much less compelling for a prior informativeness measure,

so we define

PI = min(J, 1). (4)

If PI = 1/3, say, then local changes of the prior mean are pushed through to the posterior

mean at the rate of 1/3. So in a loose sense, one might say that 1/3 of the location information

in the posterior stems from the location information in the prior, and the remaining 2/3 is

likelihood information. Somewhat more precisely, suppose that both the log-density and the

log-likelihood are quadratic in θ, i.e. l(θ) ∝ exp[−1
2
(θ− μl)/σ

2
l ] (as arising from observing θ

with Gaussian noise of variance σ2l ), and p0 ∼ N (μp, σ2p), so that pα ∼ N (μp + α, σ2p) under

(2). By a standard calculation, the posterior mean then satisfies

μπ(α) = w(μp + α) + (1− w)μl with w =
σ−2p

σ−2p + σ−2l
. (5)

With the precision σ−2p and σ−2l measuring the amount of information in the prior and likeli-

hood, we thus obtain a more explicit interpretation of PI = dμπ(α)/dα = w as the fraction of
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prior information for the posterior mean. If the log-prior and log-likelihood are approximately

quadratic, then this interpretation will typically remain a useful approximation. Figure 1

provides an illustration with pα ∼ N (μp+α, 0.36) with μp = 0 and a likelihood arising from

observing Y = 0.6, where Y ∼ N (θ−0.3, 0.02) with probability 0.4 and Y ∼ N (θ+0.2, 0.06)
with probability 0.6, so that E[Y ] = θ. Here w with σ2l = V [Y ] evaluates to w = 0.224,

and PI = Vπ[θ]/0.36 = 0.249 (with a range of PI ∈ [0.169, 0.252] for −1.5 ≤ μp ≤ 1.5),

even though the log-likelihood is far from quadratic. Intuitively, the posterior mean μπ(α)

is a weighted average of the likelihood, and thus reflects its global shape. Other plausible

measures for the informativeness of the data, such as the curvature of the likelihood at its

peak, instead merely summarize its local characteristics, which would be quite misleading in

the example of Figure 1. It is also worth noting that the value of PI is fully determined by

the likelihood and prior, so that it adheres to the likelihood principle. This desirable feature

is not shared by the Fisher Information, considered by Iskrev (2008, 2010a, 2010b), Traum

and Yang (2010) and Andrle (2010), which averages over the amount of sample information

in samples that did not realize.2

2.2 Vector Parameter

Let θ be the k × 1 vector of unknown parameters, denote by Vp[θ] the full-rank variance-

covariance matrix of the prior p on θ, and let π be the posterior density computed from the

likelihood l. It is useful to initially determine the prior sensitivity and prior informativeness

of the normalized parameter θ∗ = Gθ, where the k × k matrix G satisfies GVp[θ]G0 = Ik.

Denote the implied prior and posterior of θ∗ by p∗(θ∗) = |G|−1p(G−1θ∗) and π∗, respectively.
The first two moments of the prior on θ∗ then are Ep∗ [θ

∗] = GEp[θ] and Vp∗[θ∗] = Ik, so that

the prior scale of the elements in θ∗ is identical. In analogy to (2), consider the exponential

tilting

p∗α(θ
∗) = exp[α∗0θ∗ − C(α∗)]p∗(θ∗) (6)

with cumulant function C(α∗) = ln
R
exp[α∗0θ∗]p(θ∗)dθ∗, which exists for small enough ||α∗||

whenever the moment generating function of p exists, at least in a neighborhood of zero.

Note that the mean of θ = G−1θ∗ under (6) equals Ep[θ] + G−1α∗. One might worry that

2In the example of Figure 1, suppose that in addition to Y , we observe from which of the two Gaussians

Y was drawn. The log-likelihood then is quadratic in either case, and PI = w exactly with σ2l = 0.02 or

σ2l = 0.06. The statistic PI thus reflects the actual amount of information we obtained about θ. In contrast,

the Fisher Information in this experiment is the probability weighted average of these two values for σ−2l .
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the implied density for θ∗ depends on the exact choice of the matrix G, because in general,

changing the means of a random vector and rotating it or changing the means of the rotated

vector does not amount to the same transformation of the density. A further advantage of

(6) is that these operations commute in the exponential family embedding: If two matrices

G1 and G2 both satisfy GiVp[θ]G
0
i = Ik, i = 1, 2, then G2 = QG1 for an orthogonal matrix

Q, and the density of θ implied by (6) with G = G1 and α∗ = α∗1 is the same as that implied

by G = G2 and α∗ = Qα∗1.
3

Let μ∗π(α
∗) be the posterior mean of θ∗ under the prior (6). The k × k derivative matrix

then is the symmetric matrix

J∗ =
∂μ∗π(α

∗)

∂α∗0
|α∗=0 = Vπ∗[θ

∗] = GVπ[θ]G
0.

Consider first the prior sensitivity for a particular linear combination of the normalized

parameters v∗0θ∗, with posterior mean derivative relative to α∗0 equal to v∗0J∗. The largest

rate of change of the posterior mean is (cf. Corollary 1 of Basu, Jammalamadaka, and Liu

(1996))

PS = max
||α∗||=1

v∗0J∗α∗ =
√
v∗0J∗2v∗

with the worst-case direction α∗ = J∗v∗/||J∗v∗||. So if the interest is in the linear combina-
tion v0θ in the original parametrization, then v0θ = (G−10v)0θ∗ yields

PS =
√
v0G−1J∗2G−10v =

q
v0Vπ[θ]Vp[θ]−1Vπ[θ]v. (7)

This is alternatively recognized as the local approximation to the largest change in the

posterior mean of θ that can be induced by varying the prior mean α = G−1α∗ by one unit

in the Mahalanobis metric
p
α0Vp[θ]−1α, the multivariate analogue of "one prior standard

deviation", with worst-case direction

α =
G−1J∗v∗

||J∗v∗|| =
Vπ[θ]vp

v0Vπ[θ]Vp[θ]−1Vπ[θ]v
. (8)

Now turn to measuring prior informativeness in the vector case. Let’s first consider

the straightforward case where the linear combination v∗0θ∗ of interest is independent of all

other parameters w∗0θ∗ with w∗0v∗ = 0 in both the the likelihood and the prior p∗. The

3If the moment generating function does not exist, one can again define an alternative embedding analo-

gously to the scalar case, with identical ∂ ln p∗α(θ)/∂α
∗|α∗=0, and rotation and mean change still commute.
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independence then also holds in the prior (6) with α∗ = a · v∗, and the derivative of the
posterior mean of θ∗ with respect to the scalar a satisfies

J∗v∗ = λv∗ (9)

because prior mean changes in the direction of v∗ only affects the posterior of v∗0θ∗ (but not

the posterior of w∗0θ∗, for any w∗0v∗ = 0). Given the independence, the prior informativeness

measure of v∗0θ∗ should not depend on properties of the prior and likelihood of w∗0θ∗. The

problem is thus effectively one-dimensional, andmin(λ, 1) is the natural measure for the prior

informativeness of v∗0θ∗, in accordance with the discussion in Section 2.1. More generally,

whenever v∗ is an eigenvector of J∗ as in (9), a local prior mean change yields a local

posterior mean change in the same direction, and it makes sense to use the eigenvalue (the

"push through" rate) as the measure of prior informativeness of v∗0θ∗.

Since J∗ is symmetric, it has a spectral decomposition J∗ =
Pk

i=1 λiqiq
0
i, where the eigen-

vectors qi are linearly independent and of unit length. Any vector v∗ can be re-expressed in

the coordinate system defined by the qi, v∗ =
Pk

i=1 ωiqi. By the argument above, min(λi, 1)

is the prior informativeness for the k axes, but it remains to determine an appropriate value

for PI for non-degenerate directions ω = (ω1, · · · , ωk)
0. We approach this issue by imposing

conditions on potential functions PIk that map {ωi, λi, qi}ki=1 to a measure of prior informa-
tiveness.

Condition 1 For any integers k and m < k, and any values of {{ωi, λi, qi}ki=1}:
(a) PIk((ω1, λ1, q1), · · · , (ωk, λk, qk)) = PIk

µµ
ω21
λ1

¶
, · · · ,

µ
ω2k
λk

¶¶
;

(b) PIk

µµ
ω21
λ1

¶
, · · · ,

µ
ω2k
λk

¶¶
= PIk

µµ
ω2p(1)
λp(1)

¶
, · · · ,

µ
ω2p(k)
λp(k)

¶¶
for any permutation p of

the first k natural numbers;

(c) PI1

µµ
ω21
λ1

¶¶
= min(λ1, 1);

(d) PIk+1

µµ
ω21
λ1

¶
, · · · ,

µ
ω2k
λk

¶
,

µ
0

λk+1

¶¶
= PIk

µµ
ω21
λ1

¶
, · · · ,

µ
ω2k
λk

¶¶
;

(e) PIk

µµ
ω21
λ1

¶
, · · · ,

µ
ω2k
λk

¶¶
has range [0, 1], is weakly increasing in λ1, and, for ω21 > 0

and maxi≤k λi < 1, is continuous in (ω21, λ1) and strictly increasing and differentiable in λ1;

(f) PIk

µµ
ω21
λ1

¶
, · · · ,

µ
ω2k−2
λk−2

¶
,

µ
ω2k−1
λk

¶
,

µ
ω2k
λk

¶¶
= PIk

µµ
ω21
λ1

¶
, · · · ,

µ
ω2k−2
λk−2

¶
,

µ
ω2k−1 + ω2k

λk

¶
,

µ
0

λk

¶¶
;
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(g) PIk

µµ
ω21
λ1

¶
, · · · ,

µ
ω2k
λk

¶¶
= PIk

µµ
ω21
λ̄m

¶
, · · · ,

µ
ω2m
λ̄m

¶
,

µ
ω2m+1
λm+1

¶
, · · · ,

µ
ω2k
λk

¶¶
for λ̄m =

PIm

µµ
ω21
λ1

¶
, · · · ,

µ
ω2m
λm

¶¶
.

Parts (a)-(e) are probably uncontroversial: part (a) impose that PIk does not vary with

either the sign of ωi or the eigenvectors qi; part (b) imposes permutation invariance relative

to the order of the eigenvalue/eigenvector pairs; part (c) says that min(λ1, 1) is the prior

informativeness for the first axis; part (d) asserts that zero weight on some axis amounts to

a dimension reduction; part (e) imposes continuity, differentiability and monotonicity in the

prior informativeness measures of the k axes. For part (f), if the prior is equally informative

in two orthogonal directions, then the relative loading on the two should not matter for the

overall prior informativeness. Finally, part (g) is an internal consistency requirement: if λ̄m
accurately summarizes prior informativeness of the direction (ω1, · · · , ωm, 0, · · · , 0)0 (which
may equivalently be computed via PIm, using repeatedly the second part of condition (d)),

then the prior informativeness of the direction (ω1, · · · , ωm, ωm+1, · · · , ωk)
0 should remain

unchanged when λ1, · · · , λm are all replaced by λ̄m.
As an additional constraint, one might find it desirable if PIk was compatible with the

fraction of information interpretation of PI discussed at the end of Section 2.1. Specifically,

suppose k = 2 with θ∗ = (θ∗1, θ
∗
2)
0, θ∗1 and θ

∗
2 are independent in both the prior and likelihood,

and the log-prior density and log-likelihood of θ∗1 are (at least approximately) quadratic. The

prior informativeness λ1 of θ∗1 then has the interpretation of the fraction of prior information

for the posterior mean, λ1 = 1/(1 + σ−21l ) < 1, where σ−21l is the (approximate) leading

coefficient in the log-likelihood of θ∗1, as in the example of Figure 1. Further, assume that θ
∗
2

is perfectly identified through the likelihood, λ2 = 0. The likelihood information about the

parameter θ̄∗12 = θ∗1+θ∗2 then is as good as that about θ
∗
1 (the log-likelihood of θ̄

∗
12 is identical

to that of θ∗1, which is approximately quadratic with coefficient σ
−2
1l ). At the same time, with

the prior variances of θ∗1 and θ∗2 normalized to unity, the prior information (=precision) on

θ̄
∗
12 is equal to 1/2. The ratio of prior information and posterior information thus becomes

1/2

1/2 + σ−21l
=

λ1
2− λ1

leading to the following condition on PI2.

Condition 2 For λ1 < 1, PI2

µµ
1

λ1

¶
,

µ
1

0

¶¶
=

λ1
2− λ1

.
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The following Theorem identifies the unique function that satisfies Conditions 1 and 2.

Theorem 1 Under Conditions 1 and 2,

PIk((ω1, λ1, q1), · · · , (ωk, λk, qk)) =

⎧⎪⎨⎪⎩
1 if (maxi≤k ω2i1[λi ≥ 1]) > 0

1−
Pk

i=1 ω
2
iPk

i=1
ω2i
1−λi

= 1− v∗0v∗

v∗0(Ik − J∗)−1v∗
otherwise

Theorem 1 essentially follows from combining the implication of Condition 1 as derived

in Kitagawa (1934), whose result builds on the classic results of Kolmogorov (1930) and

Nagumo (1930) on axiomatic foundations for quasi-arithmetic means, with Condition 2 and

the differentiability assumption in Condition 1 (e). See the appendix for details.

From now on, we use PI to denote the prior informativeness measure derived in Theorem

1. Note that PI = 1 whenever v∗ =
Pk

i=1 ωiqi has positive weight on any qi with eigenvalue of

one or larger. This makes intuitive sense: if posterior results for q0iθ
∗ are wholly determined

by the prior for some i, then so are the posterior results for any linear combination v∗0θ∗

that involves q0iθ
∗. This motivates the following definition.

Definition 2 A prior is of limited overall informativeness if λmax = maxi≤k λi < 1, that is
if the largest eigenvalue λmax of Vp[θ]−1Vπ[θ] is smaller than unity.

Under overall limited prior informativeness in the sense of Definition 2, PI can alterna-

tively be written as

PI =
v∗0J(Ik − J∗)−1v∗

v∗0(Ik − J∗)−1v∗
=

v∗0J∗α∗

v∗0α∗
(10)

where α∗ = (Ik − J∗)−1v∗. It can therefore also be viewed as a ratio of the derivative of

the posterior mean of v∗0θ∗ and the derivative of the prior mean of v∗0θ∗. In this ratio, the

direction α∗ = (Ik−J∗)−1v∗ of the change of the prior mean of θ∗ is such that for all nuisance
parameters w∗0θ∗ with w∗0v∗ = 0, the ratio is equal to one, w∗0J∗α∗/w∗0α∗ = 1. So PI also

has the interpretation of the push-through rate of local changes of the prior mean of v∗0θ∗ to

changes in the posterior mean of v∗0θ∗, where the prior mean is changed in a direction that

ensures that all "resistance" exclusively stems from the direction of interest v∗.

If the parameter of interest is expressed in the original parameterization v0θ, we obtain

PI = 1− v0Vp[θ]v

v0Vp[θ](Vp[θ]− Vπ[θ])−1Vp[θ]v
(11)

12



via v0θ = (G−10v)0θ∗ under limited overall prior informativeness. Also, a linear combination

v∗0θ∗ corresponds to v0θ in the original parameterization, where v = G0θ∗. Thus, if v∗ is an

eigenvector of J∗, as in (9), then J∗ = GVπ[θ]G
0 implies

Vp[θ]
−1Vπ[θ]v = λv (12)

for this v. The eigenvectors v∗ of J∗ thus correspond to the eigenvectors of Vp[θ]−1Vπ[θ] in

the original parameterization. In particular, under overall limited prior informativeness, the

prior plays the relatively most dominating role for the linear combination v0θ with v the

eigenvector corresponding to the largest eigenvalue of Vp[θ]−1Vπ[θ]. Finally, the direction

α∗ = (Ik − J∗)−1v∗ in (10) corresponds to

α = (Ik − Vp[θ]
−1Vπ[θ]Vp[θ]

−1)−1v (13)

in the original parameterization.

Example 2: Suppose Y ∼ N (θ,Σ) with Σ positive definite and known, and the prior on θ
is Gaussian θ ∼ N (μp, Vp[θ]). Then Vπ[θ] = Vp[θ]−Vp[θ](Σ+Vp[θ])−1Vp[θ] = (Vp[θ]−1+Σ−1)−1,
and the prior has overall limited informativeness, since (Vp[θ]−1 + Σ−1)−1Vp[θ]

−1 = (Ik +

Vp[θ]
1/2Σ−1Vp[θ]

1/2)−1 has all eigenvalues smaller than one. Further, the prior informativeness

of v0θ is

PI =
v0Σv

v0(Σ+ Vp[θ])v
.

This is recognized as the prior informativeness in the scalar experiment with data Yv ∼
N (θv, v0Σv) and prior θv ∼ N (v0μp, v0Vp[θ]v). Intuitively, in absence of knowledge of θ, the
likelihood information about v0θ is given by Yv = θ0Y ∼ N (v0θ, v0Σv), and the prior on v0θ

is N (v0μp, v0Vp[θ]v). N

3 Discussion and Extensions

3.1 Inequalities

The following 7 inequalities follow from the definitions of PS and PI in Section 2. See the

Appendix for details. Recall that λmax of Definition 2 is the largest eigenvalue of Vp[θ]−1Vπ[θ].

1. For any v,

PS ≤
p
λmax

p
v0Vπ[θ]v,

13



that is the sensitivity measure of v0θ is at most
√
λmax posterior standard deviations.

In other words, the (linear approximation of) the largest change in the posterior mean

that can be induced by unit change of the the prior mean in the metric
p
α0Vp[θ]−1α,

is never larger than
√
λmax posterior standard deviations.

2. For any v,

PS ≤ λmax

q
v0Vp[θ]v,

that is the sensitivity measure of v0θ is at most λmax prior standard deviations. If all

eigenvalues of Vp[θ]−1Vπ[θ] are small, then the (linear approximation of) the largest

change in the posterior mean that can be induced by unit change of the prior mean in

the metric
p
α0Vp[θ]−1α, is small relative to the prior standard deviation.

3. For any v,
PSp

v0Vπ[θ]v
≥
p
v0Vπ[θ]vp
v0Vp[θ]v

that is the sensitivity measure of v0θ, expressed in multiples of posterior standard

deviations, is never smaller than the ratio of posterior and prior deviations.

4. For any v,

PI ≥ min(v
0Vπ[θ]v

v0Vp[θ]v
, 1)

that is the ratio of posterior and prior variance provides a lower bound for the prior

informativeness of v0θ, provided it is smaller than one. A large posterior variance

relative to the prior variance is sufficient for a dominating role of the prior as measured

by PI.

5. For any v,

PI ≤ λmax

that is if all eigenvalues of Vp[θ]−1Vπ[θ] are small, then the prior is not dominant as

measured by PI for all parameters v0θ.

6. For any v, if λmax ≤ 1/3, then
PI ≤ PSp

v0Vp[θ]v

14



that is if the prior is at most moderately informative all parameters, then a small prior

sensitivity PS relative to the prior standard deviation is sufficient for a small prior

informativeness of a particular parameter.

7. For any v, if λmax ≤ 1, then
PSp
v0Vp[θ]v

≤
q

3
2
PI

that is small prior informativeness of a particular parameter is sufficient for a small

prior sensitivity PS relative to the prior standard deviation.

The most remarkable of these relations might be Inequality 1: Under overall limited

prior informativeness, the maximal variation of the posterior mean that can be induced by

varying the prior mean by the multivariate analogue of a prior standard deviations is never

larger than a posterior standard deviations. A highly significant posterior result, that is a

posterior mean that is several posterior standard deviations different from zero, can never

be overturned by a variation α in the prior mean that is small in terms of the
p
α0Vp[θ]−1α

metric (at least under the linear approximation based on the derivative).

3.2 Functions of Parameters

In many applications, there is interest not only in the unknown k× 1 parameters θ, but also
in particular functions of them. Let γ = Γ(θ), where Γ : Rk 7→ R. In the notation of Section
2.2, the derivative of the posterior mean of γ with respect to the prior mean of θ in (6) is,

under weak regularity conditions, the 1× k vector

Jγ = Eπ[Γ(θ)(θ −Eπ[θ])
0]Vp[θ]

−1

where Eπ[Γ(θ)(θ −Eπ[θ])
0] is the posterior covariance between γ and θ.

In analogy to PS, define PSγ as the largest (linear approximation to the) change of the

posterior mean of γ that can be induced by a unit change α of the prior mean in the metricp
α0Vp[θ]−1α,

PSγ = max
α0Vp[θ]−1α=1

Jγα (14)

=
q
J 0γVp[θ]Jγ

=
q
Eπ[Γ(θ)(θ −Eπ[θ])0]Vp[θ]−1Eπ[Γ(θ)(θ −Eπ[θ])].
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The measure PSγ is alternatively recognized as the sensitivity measure PS of the linear

combination v0θ with

v = vγ = Vπ[θ]
−1Eπ[Γ(θ)(θ −Eπ[θ])]. (15)

This ensures that whenever Γ is linear, Γ(θ) = cγ + v0θ, PSγ = PS. Also, since the posterior

covariance matrix of (θ0, γ)0 is non-negative definite, and Eπ[Γ(θ)(θ−Eπ[θ])] is the posterior

covariance between γ and θ, Vπ[Γ(θ)] ≥ v0γVπ[θ]vγ. The analogue of Inequality 1 of the last

subsection, PSγ ≤
√
λmax

p
Vπ[Γ(θ)] thus still holds for any Γ with finite posterior variance.

Similarly, define the prior informativeness PIγ of γ as the prior informativeness measure

PI of the linear combination v0θ with the same derivative of the posterior mean as γ, that is

with v = vγ. Under overall limited prior informativeness, we obtain

PIγ = 1−
v0γVp[θ]vγ

v0γVp[θ](Vp[θ]− Vπ[θ])−1Vp[θ]vγ
. (16)

This definition again ensures agreement with PI for linear Γ, and also Inequality 4 of the

last section holds for PIγ, PIγ ≤ λmax. What is more, even if Γ(θ) is non-linear, but can be

written as a function of v0θ alone, then PIγ is still equal to the prior informativeness measure

PI of v0θ as long as Eπ[Γ(θ)(θ − Eπ[θ])] 6= 0 and v0θ is independent of all other parameters

w0θ with w0v = 0 in the posterior.

For highly non-linear Γ, however, one might worry about the general appropriateness of

equating the prior informativeness of γ with that of v0γθ. A useful statistic in that regard is

the R2γ of a linear regression of γ = Γ(θ) on θ in the posterior,

R2γ =
v0γVπ[θ]vγ

Vπ[Γ(θ)]
=

Eπ[Γ(θ)(θ −Eπ[θ])
0]Vπ[θ]

−1Eπ[Γ(θ)(θ −Eπ[θ])]

Vπ[Γ(θ)]
. (17)

Values of R2γ close to one indicate a very similar posterior behavior of γ and v
0
γθ, so that PIγ

becomes a more compelling measure for the prior informativeness of γ. In large samples,

the Bernstein-von Mises Theorem ensures convergence of the posterior of θ to a Gaussian

with vanishing variance, so that a Delta-method type argument applied to γ = Γ(θ) yields

R2γ → 1 with probability converging to one for differentiable, sample size independent Γ.

It is not necessary that the function γ is a function of θ alone, but it may also depend

on the realized data (so that formally, Γ is indexed by the data). For example, PSγ and PIγ
might be applied to learn about the role of the prior for a forecast, which is a function of

both the model parameters θ and the realized data. As an illustration, consider a one-step

ahead forecast in a AR(1) model yt − μ = ρ(yt−1 − μ), where the last observation is yT and
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θ = (μ, ρ). Here γ = Γ(θ) = μ+ ρ(yT − μ). If yT takes on a value far away from the sample

mean ȳ (and thus the approximate posterior mean of μ), then ρ is relatively more influential

relative to μ, which is properly reflected in the measures PSγ and PIγ.

3.3 Implementation and Interpretation

It is entirely straightforward to implement the suggested statistics PS, PI, PSγ, PIγ and

R2γ from standard MCMC output by replacing the expectation Eπ and variance Vπ by the

MCMC sample mean Êπ and variance V̂π. The prior mean Ep and variances Vp are typically

known in closed form, but could also be calculated by Monte Carlo simulation if necessary.

Monte Carlo estimates always contain some degree of estimation error. This means that

even if v0θ is exactly independent of w0θ in the posterior, their (unconstrained) estimated

posterior covariance is never exactly zero. Whenever the prior has unlimited informativeness

in the sense of Definition 2, PI of v0θ computed with (Eπ, Vπ) replaced by (Êπ, V̂π) thus equals

unity even if v is orthogonal to all true eigenvectors corresponding to eigenvalues larger or

equal to unity. As a practical matter it therefore makes sense to restrict computation of

PI (and PIγ) to cases where the prior has overall limited informativeness. What is more, it

probably also does not makes sense to compute PI if the largest eigenvalue of Vp[θ]−1V̂π[θ]

is only marginally below unity. One the one hand, the appearance of limited overall infor-

mativeness might simply be due to estimation error in V̂π[θ]. On the other hand, inspection

of the formula in Theorem 1 shows that PI becomes very sensitive to the exact value of

the eigenvalues λi once they are close to unity. The difference between, say, λ = 0.99 and

λ = 0.96 for a particular eigenvector might well reflect details of the choice of prior shape,

etc., rather than a fourfold difference in the relative amount of likelihood information as

implied by the formula in Theorem 1. In practice, it therefore seems sensible to adopt a

rather conservative view of overall limited prior informativeness and to demand that the

largest eigenvalue of Vp[θ]−1V̂π[θ] is no larger than, say, 0.90 (and to conclude that otherwise,

prior information plays a potentially dominant role for all parameters).

Typically, the elements θ1, · · · , θk of θ are of direct interest. Letting v equal to the ith
column of Ik, one obtains via (7) and (11) a prior robustness measure PS and an prior

informativeness measure PI for each θi. As discussed above, the interpretation of PS is that

the interval with endpoints Eπ[θi] ± aPS is an approximation to the set of posterior mean

values that can be obtained through changes of the prior mean by the multivariate analogue

of a prior standard deviations. The natural comparison is a purely marginal prior sensitivity
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analysis where only the prior mean of θi (but not of θj with j 6= i) is varied by a prior standard

deviations, which leads to the interval with endpoints Eπ[θi] ± aVπ[θi]/
p
Vp[θi] (cf. (3) of

the univariate analysis). By inequality 3 of Section 3.1 above, the former interval always

contains the latter. Further, PI can at least loosely be interpreted as the fraction of prior

information in the posterior mean Eπ[θi]. Here the comparison is the derivative Vπ[θi]/Vp[θi]

(cf. (4) of the univariate analysis) of a purely marginal analysis that only considers the effect

of changes in the prior mean of θi. For both PS and PI, the difference to such a marginal

analysis becomes potentially large if the correlation pattern in the posterior is substantially

different from the correlation pattern in the prior.

This "joint" multivariate analysis by PS and PI requires that changes of parameter values,

standardized by prior standard deviations, are comparable across different parameters that

are uncorrelated in the prior. In particular, the choice of a very vague prior for some, but

not all parameters (maybe based on the rationale that the likelihood is likely to be very

informative for those parameters) make PS and PI difficult to interpret. To illustrate the

point, suppose θ = (θ1, θ2)0 with data Y ∼ N (θ, I2). Under the prior θ ∼ N (0, diag(1, 100))
an analysis using PI indicates a much smaller role for the prior for θ2 compared to θ1, and

thus a correspondingly more dominant role of the likelihood. This only makes sense if the

actual prior uncertainty about θ2 is much larger compared to θ1, so that PI correctly reflects

the relatively more pronounced reduction of prior uncertainty about θ2 through the likelihood

information (and accordingly, in terms of the the normalize parameter θ∗ = (θ1, θ2/10)0, the

likelihood Y ∗ = (Y1, Y2/10)
0 ∼ N (θ∗,diag(1, 1/00)) is more informative about θ∗2).

Note that neither PS nor PI are invariant to nonlinear transformations of θ in general.

Also from this perspective it is therefore important that prior standard deviations form a

meaningful yardstick for prior uncertainty. Under an absolutely continuous product prior,

one could in principle ensure invariance at least to arbitrary one-to-one transformations of

the scalar individual parameters by always letting θ of Section 2.1 to be the unique element-

by-element monotone increasing transformation of the original parameter vector that leads

to a N (0, Ik) prior, and by computing PS and PI of the original parameter by the formulas
developed in Section 3.2 above. A change of the prior mean of θi could then be interpreted

via the implied quantile shifts of the prior on the ith original parameter. In practice, though,

there will often exist a parameterization in which the elements of θ have directly meaningful

units, and it might well be easier to think about changes in the prior mean in those units,

standardized by the prior standard deviation.
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One can also go beyond the scalar measures PS and PI and examine key directions in

the k dimensional parameter space. Two approaches come to mind. First, for a given

parameter of interest θi, it is instructive to compute the directions of prior mean changes

that underlie the values of PS and PI. By (8), the ith column of Vπ[θ] is the direction that

induces the largest change of the posterior mean of θi. Similarly, by (13), the ith column

of (Ik − Vp[θ]
−1Vπ[θ]Vp[θ]

−1)−1 induces the push-through rate PI of prior mean changes of θi
to posterior mean changes of θi (and a push-through rate of one for θj, j 6= i). Second, one

can ask for what linear combination of the parameters is the prior most dominant, or which

direction is most sensitive to prior mean changes. Both of these questions lead to the same

direction: the eigenvector of Vp[θ]−1Vπ[θ] that corresponds to the largest eigenvalue.

3.4 Relationship to Frequentist Identification

Denote the density of the observables Y ∈ Y by f(y; θ), where the parameter is θ ∈ Θ.

Rothenberg (1971) defines θ0 ∈ Θ to be identifiable if f(y; θ) = f(y; θ0) for all y ∈ Y implies
θ = θ0.4 The likelihood function l is, of course, simply given by l(θ) = f(y; θ) after observing

Y = y. Thus, if θ0 is such that l(θ) = l(θ0) implies θ = θ0, then θ0 is identifiable. In

particular, the existence of a unique maximizer θ̂ of l is sufficient for identifiability of the

parameter value θ = θ̂.

The converse is not true, though: even if l(θ) = l(θ0) for θ 6= θ0 and l(θ) = f(y; θ), there

might well exist y0 6= y for which f(y0; θ) 6= f(y0; θ0). In particular, even an entirely flat

likelihood l does not imply lack of identifiability–it could be that for some other draw of

the data, the likelihood does contain information. For instance, think of a state dependent

model with observed states. If one of the states never occurs in the observed data, then the

likelihood of the model parameters in that state is completely flat, yet all parameters of the

model could well be identifiable in the sense of Rothenberg. An entirely flat likelihood would

always lead to a prior informativeness measure PI of unity, as discussed in Section 2.1. One

might well argue that in this example, this is the "right" answer for communicating empirical

results–the data that was observed does not contain information about the parameter of

interest, and the possibility that other potential data would have contained information does

not mitigate this fact.

4Rothenberg (1971) further defines a parameter point θ = θ0 to be locally identifiable if it there exists an

open neighborhood Θ0 of θ0 so that θ0 is identifiable with the parameter space restricted to Θ = Θ0.
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Rothenberg’s (1971) definition is useful for the more theoretical question of whether

model parameters could in principle be told apart by empirical studies. But it also implies

something about the shape of the likelihood: if θ0 is not identifiable because f(y; θ) = f(y; θ0)

for all y ∈ Y for some θ 6= θ0, then also l(θ) = l(θ0), for all possible observations.5 In

particular, if there exists a hyperplane Θhp so that f(y; θ) = f(y; θ0) for all θ, θ0 ∈ Θhp and

y ∈ Y, then l is constant on that hyperplane. The prior informativeness measure PI will

then equal unity for any linear combination of θ that is not orthogonal to this hyperplane,

and λmax ≥ 1. An empirical finding of limited overall prior informativeness in the sense of
Definition 2 (i.e. that λmax < 1) thus rules out at least this hyperplane form of the lack

of identifiability. At the same time, if f(y; θ) = f(y; θ0) for all θ, θ0 ∈ Θ0, but Θ0 does not

contain a hyperplane, then λmax might still be smaller than unity. Whether or not this

is the "right" answer depends on Θ0–if Θ0 is "small", then lack of identifiability does not

imply that nothing useful can be learned about θ. For an extreme illustration, suppose

Y ∼ N (r(θ), 1), θ ∈ R, and r : R 7→ R rounds its inputs to 7 digits. Then no value of θ is
identifiable, and the likelihood is a step function. But almost no information is lost relative

to the experiment Y ∼ N (θ, 1). Accordingly, PI will behave almost the same way in both
models, as the global shape of the likelihood is almost identical.

An important practical advantage of PI is that it quantifies prior and likelihood infor-

mativeness, in contrast to the binary "identifiable or not" of Rothenberg’s definition. Many

DSGE models, for instance, may well have identifiable parameter values in the sense of

Rothenberg, although the information in the data about parameters of interest might be

very limited (cf. the discussion of weak identification in Canova and Sala (2009)).

In summary, the concept and appeal of the prior informativeness measure PI is quite dis-

tinct from the standard frequentist definition of identification. The approach pursued here is

thus largely complementary to the recent results on identification in DSGE models by Iskrev

(2010a, 2010b), Komunjer and Ng (2009) and Andrle (2010) that build on Rothenberg’s

(1971) definition.

5Lack of local identifiability at the MLE θ = θ̂ implies a singular hessian matrix at θ̂ (assuming l

admits two derivatives). As a consequence, a numerical finding of a non-singluar hessian at θ̂ implies local

identifiability of θ = θ̂ in the sense of Rothenberg (1971).
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3.5 Relationship to McCulloch (1989)

McCulloch (1989) investigates the local influence of a particular prior distribution (or model)

on posterior results. In particular, he studies local changes δ of a general prior hyperpara-

meter, and studies its impact on the prior and posterior distributions relative to the baseline

specification, with distributional changes measured by the Kullback-Leibler divergence. The

hyperparameter is deemed influential if small distributional changes of the prior lead to a

large distributional change of the posterior. By a second-order Taylor expansion, McCul-

loch (1989) shows that the change of the Kullback-Leibler divergence is approximated by

quadratic forms in δ around the Fisher-Information matrices Ip and Iπ of the prior and

posterior distributions, respectively. This implies that the overall influence of δ is usefully

measured by the largest eigenvalue λI of I−1p Iπ.

The parameter α in the exponential family embedding (6) can, of course, be viewed as a

hyperparameter, with the baseline specification α = 0. A straightforward calculation further

shows that the Fisher information of α in the prior and posteriors are given by Ip = Vp[θ]
−1

and Iπ = Vp[θ]
−1Vπ[θ]Vp[θ]

−1 at α = 0. Thus, in the exponential family embedding (6),

IπI
−1
p = Vπ[θ]Vp[θ]

−1, and λI = λmax of Definition 2 in Section 2.2. The upper bound

λmax on prior informativeness PI (cf. Inequality 4) therefore also has the interpretation as

the largest Kulback-Leibler difference between the posterior distribution from its baseline,

relative to the Kullback-Leibler difference between the prior and its baseline, that can be

induced by local variation of the prior mean.

4 Application to Smets and Wouters (2007)

In an influential paper, Smets and Wouters (2007) use Bayesian MCMC techniques to es-

timate a log-linearized DSGE model on US postwar data. The underlying economic model

features sticky prices and wages, habit formation in consumption, variable capital utilization

and investment adjustment costs. Table 1 summarizes the dynamics of the seven structural

shocks εt, which are driven by independent Gaussian innovations ηt. In total, the model has

14 endogenous variables (output, consumption, investment, utilized and installed capital, ca-

pacity utilization, hours worked, real wage, rental rate of capital, inflation, nominal interest

rate, Tobin’s q, and price and wage markups) and is estimated with Dynare using quarterly

data on output growth, consumption growth, investment growth, real wage growth, inflation,

hours worked and nominal interest rate. We refer to Smets and Wouters (2007) for further
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Table 1: Dynamic Specification of Structural Shocks

productivity εat = ρaε
a
t−1 + ηat ηat ∼ iidN (0, ω2a)

risk premium εbt = ρbε
b
t−1 + ηbt ηbt ∼ iidN (0, ω2b)

exogenous spending εgt = ρgε
g
t−1 + ηgt + ρgaη

a
t ηgt ∼ iidN (0, ω2g)

investment εit = ρiε
i
t−1 + ηit ηit ∼ iidN (0, ω2i )

monetary policy εrt = ρrε
r
t−1 + ηrt ηrt ∼ iidN (0, ω2r)

price markup εpt = ρpε
p
t−1 + ηpt − μpη

p
t−1 ηpt ∼ iidN (0, ω2p)

wage markup εwt = ρwε
w
t−1 + ηwt − μwη

w
t−1 ηwt ∼ iidN (0, ω2w)

details on the model and the log-linearization.

In their estimation, Smets and Wouters fix 5 of the 41 parameters: the depreciation rate

(0.025 on a quarterly basis), the GDP ratio of steady state exogenous spending (18 percent),

the steady-state markup in the labor market (1.5) and the two Kimball aggregators in the

goods and labor markets (both 10). The shock processes of Table 1 are parametrized by

a total of 17 parameters (the "shock" parameters), and the remaining 19 parameters are

listed in Table 2 (the "structural" parameters). We adopt the same independent prior on

these 36 parameters as Smets and Wouters (2007), except for the 7 standard deviations ω of

Table 1. There we choose the Gamma distribution on the precision 1/ω2 so that the implied

mean and standard deviation of ω is 0.3 and 0.2, respectively, compared to 0.1 and 2.0 of

Smets and Wouters (2007). Our tighter prior seems more in line with the degree of prior

uncertainty for the other estimated parameters,6 which facilitates the interpretation of the

prior sensitivity and prior informativeness measures, as discussed in Section 3.3.

Estimation of the model with Dynare version 4.0.4 using 4 independent chains with

200,000 draws each essentially reproduces the posterior results in Smets and Wouters (2007).

The three largest eigenvalues of Vp[θ]−1Vπ[θ] are 1.25, 0.90 and 0.68, so that the prior has

overall unlimited informativeness in the sense of Definition 2. Inspection of the eigenvector

(normalized to unit length) associated with the largest eigenvalue shows a loading of 0.94

on the steady state inflation rate π̄. What is more, the ratio of posterior to prior standard

deviation of π̄ is equal to 1.07. The likelihood thus seems entirely uninformative about π̄.

To proceed further, we set π̄ equal to its prior mean 0.625, and exclude it from estimation.

6There might have been some confusion about Dynare’s interpretation of the "inverse Gamma distribu-

tion" parameters for standard deviations, as the verbal description of the prior on ω on page 592 of Smets

and Wouters (2007) (σ in their notation) does not match their actual choice reported in their Table 1B.
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Table 2: Structural Parameters of Smets and Wouters (2007)

ϕ elasticity of capital adjustment cost function

σc elasticity of intertemporal substitution

h external habit formation

ξw calvo probability in labor market

σl elasticity of labor supply with respect to real wage

ξp calvo probability in goods market

ιw degree of wage indexation

ιp degree of price indexation

ψ normalized elasticity of capital utilization adjustment cost function

Φ fixed cost of intermediate good producers

rπ inflation coefficient in monetary policy reaction function

ρ interest rate smoothing in monetary policy reaction function

ry output gap coefficient in monetary policy reaction function

r∆y short-run feedback of change in output gap in monetary policy function

π̄ steady state inflation rate

100(β−1 − 1) normalized household discount factor

l̄ steady state hours worked

γ̄ steady state quarterly growth rate

α capital share in production

Table 3: Prior and Posterior of Selected Parameters with π̄ fixed
Prior Posterior

ev μp σp μπ σπ σ2π/σ
2
p PS PI

ξw 0.54 B 0.50 0.10 0.70 0.07 0.45 0.06 0.94
σl 0.55 N 2.00 0.75 1.82 0.57 0.58 0.50 0.94
ξp 0.28 B 0.50 0.10 0.65 0.06 0.35 0.04 0.82
ιw -0.39 B 0.50 0.15 0.56 0.13 0.70 0.11 0.91
ψ -0.29 B 0.50 0.15 0.55 0.11 0.56 0.09 0.85
Notes: B and N are Beta and Normal prior distributions with mean and
variance μp and σ2p. The "ev" column reports the elements of the eigenvector
corresponding to the largest eigenvalue of Vp[θ]−1Vπ[θ].
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Re-estimation with π̄ fixed at 0.625 yields the three largest eigenvalues equal to 0.98, 0.71

and 0.69. Table 3 shows the prior and posterior results for the 5 parameters with a loading

of the eigenvector corresponding to the largest eigenvalue of more than 0.15 in absolute value

(these are very close to the loadings of the eigenvector corresponding to the second largest

eigenvalue in the estimation including π̄). A comparison of marginal prior and posterior

distribution might suggest that the likelihood determines these 5 parameters at least to

some degree, with a reduction of the prior variance of at least 30% for all parameters. But

the values of PI show that this is misleading and instead point to an essentially dominating

role of the prior, qualitatively similar to (although much less extreme than) Example 1 of

the introduction. To make further progress, we also fix σl at its prior mean σl = 2.00.

With π̄ and σl fixed, the three largest eigenvalues of Vp[θ]−1Vπ[θ] become 0.78, 0.68

and 0.60. Table 4 reports the full set of prior and posterior results for the remaining 34

estimated parameters. For all shock parameters, the role of the prior is quite limited, with

PI of at most 0.21, and often much below. In contrast, 10 of the 17 structural parameters

have PI ≥ 1/3, indicating that to a substantial degree, posteriors reflect prior information.
Similarly, if one were uncertain about the appropriate prior means, then this would lead

to substantially more additional variability in the posterior mean results for the structural

parameters compared to the shock parameters, as indicated by PS. On the whole the entries

for σ2π/σ
2
p are quite close to those for PI. In this application the likelihood information about

the different parameters does not seem to be highly correlated, approximately matching the

product prior specification. Notable exceptions are ρp, ρ and ry, where the relatively smaller

ratios σ2π/σ
2
p substantially understate the role of the prior.

Tables 5 and 6 contain prior and posterior results for key impulse responses and variance

decompositions of output forecasts. For some of the impulse responses with long horizon,

the ratio of posterior to prior variance is much larger than PIγ (which is impossible for PI

by Inequality 4 of Section 3.1), and sometimes substantially above one. Intuitively, in an

AR(1) model with coefficient ρ, the 16 period ahead impulse response is ρ16. With, say, a

uniform prior on [0, .95] for ρ, ρ16 is very small with high prior probability. If the likelihood

strongly favors values of ρ close to 0.90, say, but without being very informative, then larger

values of ρ16 are more likely under the posterior compared to the prior, yielding a relatively

larger posterior variance. In this example, the highly nonlinear transformation results in a

very fat-tailed prior distribution on ρ16, and one prior standard deviation of ρ16 describes

a very different degree of prior uncertainty than one prior standard deviation of ρ. It is

24



Table 4: Prior and Posterior of Parameters with π̄ and σl fixed
Prior Posterior
μp σp μπ σπ σ2π/σ

2
p PS PI

ωa IG 0.30 0.20 0.46 0.03 0.02 0.01 0.02
ωb IG 0.30 0.20 0.24 0.02 0.01 0.01 0.02
ωg IG 0.30 0.20 0.53 0.03 0.02 0.01 0.02
ωi IG 0.30 0.20 0.46 0.05 0.06 0.02 0.07
ωr IG 0.30 0.20 0.25 0.02 0.01 0.00 0.01
ωp IG 0.30 0.20 0.15 0.02 0.01 0.01 0.01
ωw IG 0.30 0.20 0.25 0.02 0.01 0.01 0.02
ρa B 0.50 0.20 0.96 0.01 0.00 0.00 0.00
ρb B 0.50 0.20 0.21 0.08 0.18 0.04 0.19
ρg B 0.50 0.20 0.97 0.01 0.00 0.00 0.00
ρi B 0.50 0.20 0.70 0.06 0.09 0.03 0.11
ρr B 0.50 0.20 0.15 0.06 0.10 0.02 0.11
ρp B 0.50 0.20 0.90 0.05 0.06 0.03 0.10
ρw B 0.50 0.20 0.97 0.01 0.00 0.00 0.00
μp B 0.50 0.20 0.74 0.09 0.18 0.05 0.21
μw B 0.50 0.20 0.86 0.05 0.07 0.03 0.10
ρga N 0.50 0.25 0.52 0.09 0.13 0.03 0.13
ϕ N 4.00 1.50 5.73 1.04 0.48 0.75 0.51
σc N 1.50 0.38 1.39 0.13 0.12 0.07 0.16
h B 0.70 0.10 0.72 0.04 0.17 0.02 0.22
ξw B 0.50 0.10 0.72 0.05 0.29 0.04 0.38
ξp B 0.50 0.10 0.65 0.06 0.34 0.04 0.47
ιw B 0.50 0.15 0.56 0.13 0.70 0.11 0.73
ιp B 0.50 0.15 0.26 0.09 0.35 0.06 0.38
ψ B 0.50 0.15 0.54 0.11 0.53 0.08 0.59
Φ N 1.25 0.13 1.61 0.08 0.38 0.05 0.41
rπ N 1.50 0.25 2.04 0.17 0.48 0.14 0.58
ρ B 0.75 0.10 0.81 0.02 0.06 0.01 0.09
ry N 0.13 0.05 0.10 0.02 0.20 0.02 0.31

r∆y N 0.13 0.05 0.22 0.03 0.30 0.02 0.34
100(β−1 − 1) G 0.25 0.10 0.17 0.06 0.33 0.03 0.34

l̄ N 0.00 2.00 1.36 0.90 0.20 0.44 0.22
γ̄ N 0.40 0.10 0.44 0.01 0.02 0.00 0.02
α N 0.30 0.05 0.19 0.02 0.12 0.01 0.14

Notes: N , B and G are Normal, Beta and Gamma prior distributions with mean
and variance μp and σ

2
p, and IG is a Gamma prior distribution on 1/ω2 that implies

a mean and variance of μp and σ2p on ω.
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Table 5: Prior and Posterior Description of Impulse Responses with π̄ and σl fixed
Prior Posterior

series hor. μp σp μπ σπ σ2π/σ
2
p PSγ PIγ R2γ rsh

Responses to Productivity Shock
output 1 0.45 0.36 0.73 0.10 0.07 0.04 0.06 1.00 0.97
output 4 0.35 0.25 1.27 0.12 0.23 0.07 0.02 0.99 0.98
output 16 0.03 0.10 1.20 0.15 2.46 0.04 0.00 0.99 1.00
hours 1 -0.76 0.34 -0.62 0.07 0.05 0.03 0.08 0.99 0.96
hours 4 0.07 0.12 -0.15 0.07 0.35 0.04 0.19 0.98 0.76
hours 16 -0.01 0.01 0.08 0.04 8.80 0.02 0.01 0.92 0.99

inflation 1 -0.25 0.14 -0.12 0.03 0.04 0.02 0.18 0.98 0.75
inflation 4 0.00 0.07 -0.09 0.02 0.05 0.01 0.08 0.93 0.89
inflation 16 -0.01 0.01 0.00 0.00 0.31 0.00 0.15 0.86 0.83

interest rate 1 -0.20 0.09 -0.14 0.02 0.03 0.01 0.02 0.97 0.96
interest rate 4 -0.09 0.09 -0.16 0.02 0.05 0.01 0.01 0.94 0.97
interest rate 16 0.00 0.01 -0.02 0.01 0.65 0.00 0.18 0.88 0.82

Responses to Monetary Policy Shock
output 1 -0.14 0.15 -0.11 0.02 0.01 0.01 0.01 0.91 0.93
output 4 -0.20 0.39 -0.34 0.05 0.01 0.02 0.01 0.83 0.96
output 16 -0.01 0.11 -0.24 0.08 0.58 0.03 0.01 0.82 0.98
hours 1 -0.07 0.08 -0.05 0.01 0.02 0.01 0.04 0.95 0.87
hours 4 -0.13 0.24 -0.19 0.03 0.02 0.02 0.02 0.88 0.96
hours 16 0.00 0.05 -0.10 0.04 0.67 0.01 0.02 0.82 0.98

inflation 1 0.30 0.24 0.25 0.02 0.00 0.00 0.00 0.84 0.99
inflation 4 -0.03 0.10 0.06 0.02 0.03 0.01 0.01 0.82 0.98
inflation 16 0.00 0.02 0.00 0.01 0.28 0.00 0.12 0.71 0.87

interest rate 1 0.09 0.14 0.07 0.01 0.00 0.00 0.01 0.95 0.90
interest rate 4 0.02 0.10 0.07 0.01 0.02 0.00 0.01 0.85 0.94
interest rate 16 0.00 0.03 0.00 0.01 0.07 0.00 0.09 0.72 0.87
Notes: The column "hor." is the forecast horizon in quarters. rsh measures the relative
importance of the shock parameters for the posterior results. The prior mean and variances
are estimated from 10,000 independet draws from the prior (diregarding the approximately
3% of the prior draws for which the log-linearized model does not admit a unique solution).

26



Table 6: Prior and Posterior Description of Variance Deomposition of Output Forecasts with

π̄ and σl fixed
Prior Posterior

μp σp μπ σπ σ2π/σ
2
p PSγ PIγ R2γ rsh

one quarter ahead forecast
productivity 0.03 0.06 0.16 0.04 0.43 0.02 0.04 0.99 0.97
risk premium 0.60 0.27 0.27 0.03 0.02 0.01 0.01 0.98 0.98
exogenous spending 0.11 0.13 0.36 0.04 0.09 0.01 0.02 0.99 0.99
investment 0.05 0.07 0.13 0.03 0.15 0.01 0.05 0.96 0.91
monetary policy 0.19 0.23 0.05 0.01 0.00 0.01 0.02 0.97 0.88
price markup 0.02 0.06 0.02 0.00 0.01 0.00 0.01 0.89 0.93
wage markup 0.00 0.01 0.00 0.00 0.08 0.00 0.04 0.79 0.92

four quarter ahead forecast
productivity 0.02 0.05 0.24 0.05 0.70 0.02 0.03 0.98 0.97
risk premium 0.55 0.31 0.14 0.03 0.01 0.01 0.02 0.96 0.95
exogenous spending 0.05 0.07 0.18 0.03 0.15 0.01 0.04 0.97 0.97
investment 0.06 0.10 0.23 0.05 0.21 0.02 0.04 0.95 0.94
monetary policy 0.26 0.27 0.09 0.02 0.01 0.01 0.03 0.96 0.87
price markup 0.05 0.11 0.06 0.02 0.02 0.01 0.01 0.82 0.96
wage markup 0.02 0.06 0.05 0.03 0.22 0.02 0.03 0.90 0.94

sixteen quarter ahead forecast
productivity 0.03 0.07 0.32 0.05 0.68 0.02 0.01 0.90 0.99
risk premium 0.50 0.31 0.03 0.01 0.00 0.00 0.02 0.90 0.96
exogenous spending 0.04 0.07 0.06 0.02 0.05 0.01 0.02 0.92 0.99
investment 0.07 0.12 0.13 0.05 0.15 0.02 0.04 0.91 0.98
monetary policy 0.26 0.27 0.04 0.02 0.01 0.01 0.06 0.89 0.86
price markup 0.06 0.13 0.10 0.03 0.05 0.01 0.01 0.77 0.98
wage markup 0.04 0.12 0.31 0.08 0.48 0.04 0.01 0.81 0.98
Notes: rsh measures the relative importance of the shock parameters for the posterior
results. The prior mean and variances are estimated from 10,000 independet draws from
the prior (diregarding the approximately 3% of the prior draws for which the log-linearized
model does not admit a unique solution).
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thus quite reasonable to measure prior informativeness of ρ with its prior standard deviation

as a yardstick, and to then assign the same prior informativeness to ρ16, disregarding the

prior (and posterior) standard deviation of ρ16. Correspondingly, PIγ in Tables 5 and 6 is

not a function of either prior or posterior standard deviations of the impulse responses and

variance decompositions, but rather equals the prior informativeness PI of the corresponding

linear function of θ, as explained in Section 3.2 above.

The consistently high R2γ shows that these linear functions are good approximations of

the posterior relationship between θ and the impulse responses and variance decompositions.

It is striking how informative the likelihood is for the impulse responses and variance de-

compositions compared to the structural parameters in Table 4. The reason is that they are

largely determined by the relatively well pinned down shock parameters: Let cγ + v0γθ be

the linear approximation in the posterior of a given impulse response or variance decompo-

sition (cf. (15)), and partition vγ and θ into shock and structural parameters, respectively,

vγ = (v0γ sh, v
0
γ st)

0 and θ = (θ0sh, θ
0
st)
0. If the range of plausible values for the parameters is

proportional to the respective prior standard deviations, then the relative importance of the

shock and structural parameters is usefully measured by rsh = ||Vp[θsh]1/2vγ sh||/||Vp[θ]1/2vγ||
and rst = ||Vp[θst]1/2vγ st||/||Vp[θ]1/2vγ||, respectively, where rsh + rst = 1. The last column

of Tables 5 and 6 reports rsh, which is never below 0.75 and mostly very close to one.7 It

thus seems that the DSGE model of Smets and Wouters (2007) determines in which rotation

and magnitude the structural shocks enter the reduced form VAR largely independently of

the structural parameters, and also the dynamics are mostly driven by the autocorrelations

of the shock processes.8 Of course, one could easily imagine that the structural parameters

enter other functions of θ of interest, such as the welfare effects of alternative monetary pol-

icy regimes, in a more prominent way, and the important role of the prior for the structural

parameters would then translate into a correspondingly important role for the posterior of

such functions.
7With the Smets and Wouters (2007) prior on the standard deviations ω of the shock processes, these

results become even more pronounced: First, the increase in prior variance directly leads to smaller prior

informativeness. Second, the corresponding elements in Vp[θsh] become larger, further increasing the value

of rsh, and thus decreasing PIγ (cf. equation (16) in Section 3.1).
8Alternatively, one might replace vγ by the derivative of γ = Γ(θ) with respect to θ at, say, the posterior

mode of θ, and unreported results show that this leads to almost identical results for the analogue of rsh.
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5 Conclusion

The paper develops prior sensitivity and prior informativeness measures that shed some light

on the role of the prior and likelihood for posterior results in large Bayesian models. Both

measures are based on the derivative matrix of the posterior mean relative to a specific

parametric variation in the prior distribution, which turns out to be a simple function of the

posterior and prior covariance matrices. It is thus entirely straightforward to compute the

two statistics from MCMC output.

The two suggested measures are scalar summary statistics. By definition, they cannot

reflect all features of the high-dimensional likelihood and its interaction with the prior, and

one can imagine other useful summary statistics that highlight different aspects. At the same

time, with a starting point of the derivative of the posterior mean with respect to the prior

mean, it is shown that reasonable restrictions on the properties of such summary statistics

naturally lead to the suggested measures.
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A Appendix

Proof of Theorem 1:
By Condition 1 (b) and (d), we can restrict attention to the case where ω2i > 0 for

all i = 1, · · · , k. Consider first the case of overall limited prior informativeness in the

sense of Definition 2. We start by showing that Condition 1 implies the four Axioms

of Kitagawa (1934), with PIk, k and (ω2i , λi) playing the role of Mn, n and (wi, xi) in

Kitagawa’s notation. Condition 1 (b) implies Axiom 1. Condition 1 (e) implies Ax-

iom 2. Repeated application of Condition 1 (f) yields PIk

µµ
ω21
λk

¶
,

µ
ω22
λk

¶
, · · · ,

µ
ω2k
λk

¶¶
=

PI1

ÃµPk
i=1 ω

2
i

λk

¶!
, which equals min(λk, 1) = λk by Condition 1 (c). This shows that Ax-

iom 3 is satisfied. Finally, for Axiom 4, note that applying Condition 1 (g), (b), (f) (repeat-

edly) yields PIk

µµ
ω21
λ1

¶
, · · · ,

µ
ω2k
λk

¶¶
= PIk

µµ
ω21
λ̄m

¶
, · · · ,

µ
ω2m
λ̄m

¶
,

µ
ω2m+1
λm+1

¶
, · · ·

µ
ωk

λk

¶¶
=

PIk−m+1

µµ
ω2m+1
λm+1

¶
, · · · ,

µ
ω2k
λk

¶
,

µPm
i=1 ω

2
m

λ̄m

¶¶
, so that Axiom 4 follows from another appli-

cation of Condition 1 (b), with Kitagawa’s w∗r equal to w∗r =
Pr

i=1wi. Thus, Kitagawa’s

results are applicable and imply that PIk is of the form

PIk

µµ
ω21
λ1

¶
, · · · ,

µ
ω2k
λk

¶¶
= g−1

ÃPk
i=1 ω

2
i g(λi)Pk

i=1 ω
2
i

!

where g : [0, 1) 7→ R is a strictly monotone increasing, continuous function with strictly

monotone increasing and continuous inverse g−1 (the continuity is not asserted by Kitagawa,

but follows from Kolmogorov’s (1930) Theorem invoked in Kitagawa’s proof). Without loss

of generality, normalize g(0) = 1.

We now show that g is differentiable at 0. This is obvious if g is constant, so suppose it

is not. Recall that every strictly monotone function is Lebesgue almost everywhere differen-

tiable. Thus, the two [0, 1) 7→ R functions f(λ) = 1
2
g(0) + 1

2
g(λ) and g−1(f(λ)) are almost

everywhere differentiable. Pick λ0 > 0 such that both are differentiable at λ = λ0. We first

argue that this implies that g−1 is differentiable at x0 = f(λ0). Let hn be arbitrary nonzero

reals converging to zero as n→∞. By continuity and monotonicity of f , there exist, for all
large enough n, h0n 6= 0 such that hn = f(λ0 + h0n)− f(λ0). Thus

∆ = lim
n→∞

g−1(x0 + hn)− g−1(x0)

hn
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= lim
n→∞

g−1(f(λ0 + h0n))− g−1(f(λ0))

f(λ0 + h0n)− f(λ0)

= lim
n→∞

g−1(f(λ0 + h0n))− g−1(f(λ0))

h0n
· h0n
f(λ0 + h0n)− f(λ0)

=
dg−1(f(λ))

dλ
|λ=λ0/

df(λ)

dλ
|λ=λ0

by the product rule for limits, and by the continuity of g at 0,

g−1
¡
1
2
g(hn) +

1
2
g(λ0)

¢
− g−1(1

2
g(0) + 1

2
g(λ0))

hn
= 1

2
∆
g(hn)− g(0)

hn
+ ξ(hn)

where ξ(hn) → 0. Now by Condition 1 (e), PI2

µµ
1

λ1

¶
,

µ
1

λ0

¶¶
= g−1

¡
1
2
g(λ1) +

1
2
g(λ0)

¢
is

differentiable in λ1 at λ1 = 0. Thus,

lim
n→∞

1
2
∆
g(hn)− g(0)

hn
+ ξ(hn)

exists and doesn’t depend on hn, which implies differentiability of g at 0.

Now by Condition 2,

PI2

µµ
1

λ1

¶
,

µ
1

0

¶¶
= g−1

¡
1
2
g(λ1) +

1
2
g(0)

¢
=

λ1
2− λ1

so that g(λ1) + g(0) = 2g(λ1/(2− λ1)) for all λ1 ∈ [0, 1). Define the continuous and strictly
monotone increasing function ϕ : [0, 1) 7→ R as ϕ(λ) = 1/(1− λ), and let h : R 7→ R be the
monotone increasing function such that g(λ) = h(ϕ(λ)). Then h(x) has a positive derivative

at x = 1, h(1) = 1, and

h

µ
1

1− λ1

¶
+ h(1) = 2h

µ
2− λ1
2− 2λ1

¶
.

With λ1 = 1 − 1/x, we obtain h(x) + 1 = 2h((x + 1)/2) for all x ∈ [1,∞). Repeated
substitution yields h(x) − 1 = 2jh(2−jx + (1 − 2−j)1) − 2j for all integer j, so that for
x1, x2 ∈ (1,∞)

h(x1)− 1
h(x2)− 1

=
h(1 + 2−j(x1 − 1))− 1
h(1 + 2−j(x2 − 1))− 1

=
dh(x)/dx|x=1
dh(x)/dx|x=1

= 1.

Thus h is linear function, and the result follows.

Finally, consider the case where λi ≥ 1 for some i. Let λ̃i(n) = 1−hn if λi ≥ 1 and λ̃i(n) =
λi otherwise, where hn is a positive sequence converging to zero. Applying the result for the
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overall identified case, we obtain limn→∞ PIk

µµ
ω21

λ̃1(n)

¶
, · · · ,

µ
ω2k

λ̃k(n)

¶¶
= 1. Furthermore,

by Condition 1 (b) and (e), PIk

µµ
ω21
λ1

¶
, · · · ,

µ
ω2k
λk

¶¶
≥ PIk

µµ
ω21

λ̃1(n)

¶
, · · · ,

µ
ω2k

λ̃k(n)

¶¶
for

all n, so that the result follows from the range upper bound in Condition 1 (e).

Inequalities: Note that for any vector v∗ = G−10v =
Pk

i=1 ωiqi, we have v0Vp[θ]v = v∗0v∗ =Pk
i=1 ω

2
i , v

0Vπ[θ]v = v∗0J∗v∗ =
Pk

i=1 ω
2
iλi, v

0Vπ[θ]Vp[θ]
−1Vπ[θ]v = v∗0J∗2v∗ =

Pk
i=1 ω

2
iλ
2
i and

PI = ϕ−1(
Pk

i=1 ω
2
iϕ(λi)/

Pk
i=1 ω

2
i ) with ϕ(λ) = 1/(1− λ).

1. Follows from
Pk

i=1 ω
2
iλ
2
i ≤ λmax

Pk
i=1 ω

2
iλi.

2. Follows from
Pk

i=1 ω
2
iλ
2
i ≤ λ2max

Pk
i=1 ω

2
i .

3. Follows from
Pk

i=1 ω
2
iλ
2
i /
Pk

i=1 ω
2
i ≤ (

Pk
i=1 ω

2
iλi/

Pk
i=1 ω

2
i )
2 by convexity.

4. Follows from
Pk

i=1 ω
2
iϕ(λi)/

Pk
i=1 ω

2
i ≥ ϕ(

Pk
i=1 ω

2
iλi/

Pk
i=1 ω

2
i ) by convexity of ϕ.

5. Follows from
Pk

i=1 ω
2
iϕ(λi) ≤

Pk
i=1 ω

2
iϕ(λmax) for λmax ≤ 1, and inequality is trivial

otherwise.

6. Note that PS /
p
v0Vp[θ]v = ϕ−1PS(

Pk
i=1 ω

2
iϕPS(λi)/

Pk
i=1 ω

2
i ) with ϕPS(x) = x2. Both

PI and PS /
p
v0Vp[θ]v can thus be considered the certainty equivalence of an expected utility

maximizer with utility function ϕ and ϕPS, respectively, facing a lottery with payoff’s {λi}ki=1
with probabilities {ω2i /

Pk
j=1 ω

2
j}ki=1. The result now follows from Pratt’s (1964) Theorem

1, since a calculation shows that ϕ has a weakly larger (negative) coefficient of absolute risk

aversion than ϕPS on the interval [0, 1/3].

7. Follows from v∗0(Ik − J∗)−1v∗ = v∗0
P∞

i=1(J
∗)iv∗ ≥ v∗0(I + J∗ + J∗2)v∗, so that PI =

1− v∗0v∗/v∗0(Ik − J∗)−1v∗ ≥ v∗0(J∗ + J∗2)v∗/v∗0(I + J∗ + J∗2)v∗ ≥ 2
3
v∗0J∗2v∗/v∗0v∗.
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