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Abstract

I characterize cyclical fluctuations in the cross-sectional dispersion of firm-level productivity,

and I characterize cyclical fluctuations in aggregate leverage ratios, along with the debt and

equity components separately, in the U.S. non-financial corporate sector. Using the estimated

dispersion, or “risk,” stochastic process as an input to a baseline DSGE financial-accelerator

model, I assess how well the model explains business-cycle movements in the financial conditions

of non-financial firms. In the model, risk shocks calibrated to micro data induce large fluctuations

in leverage, a financial measure typically thought to be closely associated with real activity. In

terms of aggregate quantities, however, pure risk shocks account for only a small share of GDP

fluctuations in the model, less than two percent. Instead, it is standard TFP shocks that explain

virtually all of the model’s real fluctuations. Hence, the results suggest a type of dichotomy

present at the core of a standard class of DSGE financial frictions models: risk shocks lead to

large financial fluctuations, but these are largely isolated from macro fluctuations.
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1 Introduction

In this paper, I modify an existing class of general-equilibrium financial accelerator models in a way

that leads to empirically-relevant fluctuations in firms’ leverage ratios, along with other measures

of their financial conditions. Specifically, I show that dispersion, or “risk,” shocks can usefully be

employed in a baseline DSGE model of financial frictions to explain financial fluctuations. Such

shocks, through their effects on leverage, also have the potential to cause fluctuations in aggregate

macroeconomic quantities, completely independently from standard TFP and other “first-moment

shocks” common in macro models. However, risk shocks are not treated as a free parameter.

The empirical discipline brought to bear on the model relates to and contributes to a distinct

recent literature that has studied how time-variation in the cross-sectional distribution of firm-level

outcomes — “risk shocks” — may in and of themselves drive business cycles.

There are four main results, two from empirical work and two from the theoretical model

that quantifies the link between the main empirical findings. First, I characterize business-cycle

fluctuations in firm-level dispersion using U.S. micro data for the period 1974-1988. Specifically,

based on data constructed by Cooper and Haltiwanger (2006), I characterize the time variation

in the cross-sectional dispersion of firm-level productivity. This time variation is identified as risk

fluctuations. This measure of firm risk is strongly countercyclical with respect to GDP, consistent

with the findings of Bloom, Floetotto, and Jaimovich (2009) and Bachmann and Bayer (2009).

Firm risk is quite volatile over the business cycle: measured by the ratio of the standard deviation

of innovations in risk to average risk, the volatility of annual firm risk is 17 percent. By this metric,

volatility of firm risk is similar to that measured by Bloom, Floetotto, and Jaimovich (2009), but

substantially larger than that measured by Bachmann and Bayer (2009). The estimated risk shock

process is used as an input to the theoretical model.

Second, using Compustat data, I construct cyclical measures of the aggregate leverage ratio in

the U.S. non-financial business sector, which constitutes a large share of the demand side of credit

markets. Because basic statistics on the cyclical properties of aggregate leverage — most notably

its cyclical volatility — are largely lacking in the macro literature, constructing these statistics

seems to be of interest in its own right.1 Using non-financial firms selected from Compustat, I

find that cyclical fluctuations in aggregate leverage were much larger during 1989-2009 than during

1Some empirical studies that speak to the same sorts of issues I examine in this paper are Levin, Natalucci, and

Zakrajsek (2004), Covas and den Haan (2006), Korajczyk and Levy (2003), Hennessy and Whited (2007), and Levy

and Hennessy (2007). With the exception of Covas and den Haan (2006), none of these papers presents business-cycle

statistics on the aggregate leverage ratio, although in principle they each could given the data they study. In the

online Appendix of their paper, Covas and den Haan (2006) present the cyclical correlation of firms’ leverage with

GDP, although not its cyclical volatility. As described further below, the results I find corroborate their finding

regarding correlation with GDP.
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1974-1988: the volatility of leverage relative to that of GDP rose from less than two to nearly five.2,3

The relative volatilities of the underlying debt and equity measures, on the other hand, rose much

less sharply between the two time periods. Regardless of sample period, leverage is moderately

countercyclical with respect to GDP. The cyclical properties of leverage, along with those of debt

and equity separately (which are also mildly countercyclical), provide metrics against which the

performance of the theoretical model is assessed. More broadly, these basic stylized facts may

provide guidance to other business-cycle modeling efforts in which financial frictions and leverage

fluctuations potentially play a prominent role.

The other two contributions of the paper are theoretical. The first main result from the model

is that empirically-relevant risk shocks drive virtually all of the business-cycle volatility of the

model’s financial-market aggregates. The quantitative fit of the model is especially tight in its

predictions regarding fluctuations in leverage, which is often thought to play a central role in

connecting financial and real activity. In the model, leverage fluctuations have the potential to

drive, or at least be associated with, real fluctuations. Such “leverage-based business cycles” could

arise through fluctuations in firms’ balance-sheet conditions that are induced by risk shocks. Hence,

the transmission channel that the model emphasizes is explicitly a financial channel: if there were

no financial frictions, there is no channel by which risk shocks could affect real fluctuations at all.

This latter aspect of the model is similar to the qualitative business-cycle model of Williamson

(1987) and the quantitative model of Dorofeenko, Lee, and Salyer (2008).

However, the second main result from the theoretical model is that pure risk shocks, in which

average TFP is held constant, lead to very small fluctuations of standard macro aggregates such

as GDP. The volatility of GDP conditional on risk shocks alone is less than two percent of GDP

volatility conditional on shocks to average TFP alone. Thus, risk shocks and the “leverage-based

business cycles” they have the potential to cause do not seem to be an important phenomenon when

viewed through the lens of a baseline financial-accelerator model calibrated to firm-level data. This

result emerges despite the fact that the underlying risk shocks in the model are fairly large compared

to other micro evidence on risk fluctuations. The results from the theoretical model thus suggest a

type of dichotomy present at the core of a standard class of DSGE financial frictions models: risk

shocks lead to large financial fluctuations, but these are largely isolated from macro fluctuations.

Bloom, Floetotto, and Jaimovich (2009) and Bachmann and Bayer (2009) — henceforth, BFJ

and BB, respectively — are two prominent studies in the recent risk shocks literature. Regarding

theory, the main question I take up in this paper is broadly similar to theirs: studying the extent

21974-1988 is chosen as a (sub-)sample period for the analysis of financial fluctuations because it is the period for

which the firm-level risk analysis is conducted.
3I define the leverage ratio as total end-of-quarter book-value of debt to total end-of-quarter book-value of equity

for all non-financial firms in Compustat.
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to which changes over time in cross-sectional dispersion of productivity can lead to aggregate

fluctuations. However, the focus in this paper is on quantifying the role of financial factors per

se in transmitting risk shocks to economic activity. In the model I present, the only way for risk

shocks to possibly transmit into fluctuations of GDP and other macro aggregates is through leverage

— hence the terminology “leverage-based business cycles.” In contrast, the transmission channels

in the models of BFJ and BB are non-financial; their models feature no financial frictions and

instead emphasize the role of firm-level factor adjustment costs in transmitting risk fluctuations

into aggregate quantities.

In studying the joint business-cycle dynamics of real and financial outcomes, this paper con-

tributes to a large emerging literature. For example, Jermann and Quadrini (2009) also aim to

jointly explain some salient facts regarding real and financial fluctuations. In their empirical work,

Jermann and Quadrini (2009) document the cyclical properties of flows of firms’ equity and debt

issuance. However, they do not report the cyclical behavior of the debt-to-equity (leverage) ratio,

which is one point of focus of this paper.4 The medium-scale monetary policy model of Christiano,

Motto, and Rostagno (2009) also employs the risk shock highlighted in this paper, but they esti-

mate the parameters of the process based on aggregate macro and financial data, rather than using

direct firm-level evidence. In terms of main results, while I find that a miniscule share of GDP

fluctuations can be attributed directly to risk shocks, Christiano, Motto, and Rostagno (2009) find

that nearly 20 percent of GDP fluctuations stem from risk shocks. Much of the difference in results

seems due to their much larger macro-estimates of risk fluctuations than micro evidence indicates.5

As well, some of the difference may also be due to the host of nominal rigidities, real rigidities, and

“news shock” events present in their model, from which I abstract in order to isolate the role of

risk shocks.

It is clear that in order to consider fluctuations in cross-sectional dispersion, the model must

have some notion of heterogeneity and cannot be a strict representative-agent economy. In the

Bernanke and Gertler (1989), Carlstrom and Fuerst (1997, 1998), and Bernanke, Gertler, and

Gilchrist (1999) class of models on which I build, the heterogeneity is in borrowers’ idiosyncratic

ability to repay their loans, which in turn stems from idiosyncratic productivity. This feature is

central in these models because with no cross-sectional heterogeneity of borrowers’ ability to repay,

there is no risk at all from the point of view of lenders, and hence no financial friction. In typical

quantitative analysis of these models, parameters for the distribution are chosen based on evidence

4Jermann and Quadrini (2009) use financial data from the Flow of Funds Accounts of the Federal Reserve Board,

whereas I use Compustat data.
5To be clear, the magnitude of risk fluctuations I find in the Cooper and Haltiwanger (2006) micro data is large

compared to the micro evidence of studies such as BFJ and BB, but it is small compared to the macro evidence of

studies such as Christiano, Motto, and Rostagno (2009).
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on long-run risk premia or other financial measures, but then the distributional aspect of the model

invariably fades into the background.

I instead place this feature of the model in the foreground by emphasizing the time-variation

in cross-sectional dispersion of firms’ productivity, using firm-level evidence to discipline the cal-

ibration. Fluctuations in firm-level risk presents lenders with time-varying risk of their overall

loan portfolios, and hence leads them to extend more or less credit to borrowers — i.e., extend

more or less leverage. While risk shocks turn out to account quite well for financial fluctuations

in the model, risk-induced financial fluctuations are almost completely isolated from real fluctua-

tions. Dorofeenko, Lee, and Salyer (2008) also find this dichotomy result in a closely-related study.

These results are perhaps unsettling because the agency-cost setup is a common building block of

richer DSGE models of financial frictions, such as Christiano, Motto, and Rostagno (2009). The

results obtained here suggest that in richer agency-cost models that do find important connec-

tions between financial fluctuations and real fluctuations, the linkages are not driven by the basic

agency-cost friction itself, but rather by other features of the model that interact with the friction.

In terms of broader motivation, a widespread recent view is that the cyclical behavior of lever-

age may be important to both empirical and theoretical understanding of how financial and real

outcomes co-move along the business cycle. Geanakoplos (2009), Adrian and Shin (2008), and

others have stressed the cyclical behavior of leverage in the financial sector. Mimir (2010) tabu-

lates the cyclical properties of leverage in the financial sector using standard business-cycle filtering

tools. Given recent events, a focus on leverage in the financial sector is natural. However, a long

tradition in both macro and finance has emphasized leverage in the non-financial corporate sector

as being important for aggregate fluctuations, which is the channel studied in this paper.6 Lately,

there have been hints of evidence that as balance-sheet conditions of financial firms have stabilized,

credit demand by and credit supply available to the non-financial sector may soon again be central

for aggregate conditions. This paper can be viewed as measuring the extent to which fluctuations

in the financial conditions of non-financial firms are related to fluctuations in real activity — the

main answer is that it matters little, conditional on risk shocks, in a baseline model of financial

frictions.

Finally, a few words regarding terminology are in order. As should be clear from the discussion

so far, the idea of “risk shocks” in this paper is variations over time in the cross-sectional standard

deviation of firm-level productivity, holding constant average (aggregate) productivity. This is the

same notion of “second-moment shocks” that BFJ, BB, and Dorofeenko, Lee, and Salyer (2008)

study. However, it is distinct from another recent conceptualization of “second-moment shocks”

6Bernanke, Campbell, and Whited (1990) is an early empirical study suggesting the importance of non-financial

sector leverage in aggregate fluctuations.
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emphasized by Justiniano and Primiceri (2008), Fernández-Villaverde and Rubio-Ramirez (2007),

and others, in which the standard deviation of the innovations affecting standard macro driving

processes such as aggregate TFP, monetary disturbances, etc., vary over time. Crucial in this

latter group of studies is that they are all representative-agent economies, so there is no meaningful

concept of cross-sectional dispersion and hence of course no possibility of changes in cross-sectional

dispersion over time. Focusing on the cross section is the main idea in BFJ, BB, Dorofeenko, Lee,

and Salyer (2008), and this paper. Gourio (2008) and Christiano, Motto, and Rostagno (2009)

also employ the same idea of “firm-level risk” and “risk shocks.” I use the terms “risk shocks,”

“firm-level risk,” “second-moment shocks,” and “dispersion shocks” interchangeably.

The rest of the paper is organized as follows. Section 2 presents new empirical evidence on firm-

level risk and its business cycle properties. This evidence serves as quantitative input to the model.

Section 3 then documents the business cycle behavior of an aggregate measure of the leverage ratio,

along with the underlying debt and equity measures, in the U.S. non-financial business sector. This

evidence serves as one of the main metrics against which I judge the output of the model. Section 4

presents the baseline model, in which shocks to average TFP and risk shocks are independent from

each other. Section 5 intuitively describes why leverage in the model should respond to changes in

risk. Section 6 presents quantitative results. Section 7 presents and studies a model extension that

features “bundled aggregate shocks,” in which risk fluctuations are correlated with average TFP

shocks. Section 8 concludes.

2 Risk Fluctuations

The main goal of this section is to document the properties of business-cycle fluctuations in firm-

level dispersion. The analysis is based on a balanced panel, constructed by Cooper and Haltiwanger

(2006), from the Longitudinal Research Database (LRD). The data are annual observations of plant-

level measures such as revenue, materials and labor costs, and investment at approximately 7,000

large U.S. manufacturing plants over the period 1974-1988. The starting point for my analysis is

Cooper and Haltiwanger’s (2006) measures of plant-level profitability residuals from this panel.7

Briefly, Cooper and Haltiwanger (2006) compute for each plant i in year t a residual Ait that

reconciles exactly the observations of plant i’s profits and capital stock in year t when described by

a profit function that depends only on the capital stock.8 The year-specific aggregate residual ωmt

is computed as the mean of Ait across firms in year t. Plant i’s profit function in year t is viewed as

being shifted by both the aggregate shock ωmt and an idiosyncratic shock ωit ≡ Ait/ωmt. In each

year, there is thus a cross-sectional distribution of ωit. Denote by σωt the cross-sectional standard

7I thank John Haltiwanger for providing their aggregative data on profitability residuals.
8The Appendix in Cooper and Haltiwanger (2006) describes in detail the construction of the data and the residuals.
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deviation in year t of the idiosyncratic component of profitability ωit. I make three identifying

assumptions regarding ωit and thus the interpretation of its cross-sectional dispersion σωt . These

assumptions align the analysis of the data with the model into which they will be an input.

First, although σωt measures cross-firm dispersion, I treat it as measuring true cross-firm risk.9

The two concepts are identical only if each firm’s idiosyncratic component ωit has zero persistence.

Cooper and Haltiwanger (2006, p. 622-623) estimate an AR(1) coefficient of the idiosyncratic

component of 0.885, hence ωit is actually quite persistent (recall the data are annual). However, it

is computationally very difficult to handle persistent idiosyncratic shocks in the theoretical model

developed below, so the model assumes iid idiosyncratic shocks.10 To align the empirical analysis

of σωt with its role in the model, I thus proceed by assuming zero idiosyncratic persistence. There

are both advantages and drawbacks of this approach. An advantage is that the dispersion of firm-

level outcomes in the model are thus calibrated to the data. An obvious drawback is that σω is

thus an overestimate of firm-level risk, which, when input as an exogenous process to the model,

in principle gives risk shocks the largest possible role in driving the model’s fluctuations. As the

results in Section 4 show, however, even though this overestimate of risk enables the model to

explain financial fluctuations fairly well, risk shocks turn out to have little role in driving real-side

fluctuations.

The second identifying assumption is that firm-level profitability shocks are true productivity

shocks. Because plant-level price deflators are unavailable in the dataset, it is impossible to dis-

tinguish cost shocks from revenue shocks, so the ωit residuals mix both supply and demand shifts

(hence the term “profitability” shocks).11 As an identifying assumption for the theoretical model, I

simply interpret these profitability shocks as true productivity shocks. A model-based justification

for this is that the relative price of all goods in the model is always unity due to perfect competition

in goods markets. Thus, one can think of this aspect of the data analysis as also being conducted

strictly through the lens of the model.

Third, when deploying the evidence documented here in the model, I identify “plants” as

“firms,” abstracting from the fact that a non-negligible share of plant-level output in the LRD

represents output of multi-plant firms. With these three identifying assumptions, I characterize

the business-cycle behavior of both ωmt and of σωt , aspects of the data not studied by Cooper and

Haltiwanger (2006).

9Which is the basis for my interchangeable references to firm-level “dispersion” and firm-level “risk.”
10To my knowledge, no DSGE models based on the agency-cost framework have been solved assuming persistent

idiosyncratic shocks.
11More precisely, they are available only at five-year intervals, too low a frequency for business-cycle analysis.
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Figure 1: Cross-sectional coefficient of variation of firm-level profitability over the period 1974-1988. Data

are annual. Trend component constructed with HP filter (smoothing parameter 100). Based on profitability

series from Cooper and Haltiwanger (2006).

2.1 Productivity Risk

I first compute the cross-sectional coefficient of variation of productivity (profitability) for each of

the 15 years of the sample. Cross-sectional coefficients of variation are used because the residually-

computed aggregate mean level of productivity (ωmt) is not unity in the data, but it is normalized

to unity in the model below. The time-averaged mean of the cross-sectional coefficient of variation

is 0.156, hence I normalize long-run dispersion in the model to σ̄ω = 0.156. Given the discussion

above, true long-run “risk” is smaller than σ̄ω = 0.156. Specifically, taking a stationary AR(1) view

of idiosyncratic productivity and using the Cooper and Haltiwanger (2006, p. 622-623) estimate of

idiosyncratic persistence of 0.885, true long-run firm-level risk is
√

1− 0.8852σ̄ω = 0.0726. Aligning

the empirical analysis with the model thus overstates firm-level risk by roughly a factor of two.

Figure 1 plots the time series σωt , which suggests a modest upward trend in dispersion. (However,

the time series is somewhat short.) Figure 2 displays the HP-filtered components of σωt and GDP

over the period 1974-1988. A clear negative cyclical correlation between the two series is apparent

— the contemporaneous correlation between the two series is -0.83, hence expansions are associated

with a decrease in dispersion of firms’ idiosyncratic productivity, and recessions are associated with

an increase in dispersion of firms’ idiosyncratic productivity. Strongly countercyclical firm-level risk

is also a robust finding in the micro evidence of BB and BFJ. In terms of volatility, the standard
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Figure 2: Cyclical component of cross-sectional coefficient of variation of firm-level profitability over the

period 1974-1988. Vertical axis is percentage deviation from HP trend. Computed from profitability residuals

constructed by Cooper and Haltiwanger (2006).

deviation of the cyclical component of σωt is 3.15 percent over the sample period. With an innocuous

abuse of notation, I hereafter use σωt to denote the cyclical component of cross-sectional dispersion.

In the model presented below, I suppose that σωt follows the exogenous AR(1)

lnσωt+1 = (1− ρσω) ln σ̄ω + ρσω lnσωt + εσ
ω

t+1, (1)

with εσ
ω ∼ N(0, σσω). Given σ̄ω = 0.156, the point estimate (using OLS) of the AR(1) parameter is

ρσω = 0.48, with a t-statistic of 1.93. With this estimate of ρσω and the standard deviation of σωt of

3.15 percent, the standard deviation of the (annual) innovations to the cross-firm dispersion process

can be computed to be 0.0276. This implies a coefficient of variation (with respect to the mean

dispersion σ̄ω = 0.156) of 17.7 percent, which can be directly compared to the empirical evidence

reported by BB and BFJ. Computed in a variety of ways, BB find a coefficient of variation of

innovations to firm-level productivity for their entire sample of German firms between two and three

percent. However, because the Cooper and Haltiwanger (2006) analysis is of large manufacturing

plants, the most comparable result in BB is their finding for the largest (ranked by employment)

five percent of firms in their sample. For this sample, BB find a coefficient of variation of firm-level

innovations of 5.5 percent (see their Table 8). The 17.7 percent coefficient of variation of plant-

level innovations in the Cooper and Haltiwanger (2006) sample is thus substantially larger than the
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Figure 3: Mean level of firm-level profitability residuals over the period 1974-1988. Data are annual. Trend

component constructed with HP filter (smoothing parameter 100). Based on profitability series from Cooper

and Haltiwanger (2006).

largest firms in BB’s sample. However, this degree of volatility of firm risk lines up much better

with the evidence of BFJ, who document using a variety of cross-sectional measures that dispersion

of firm outcomes rises very sharply during recessions.

2.2 Average Productivity

For further consistency in the way the firm-level data are used as an input to the model, I also

characterize the time-series behavior of ωmt, the average productivity (profitability) residual. In

the model, this measure will correspond to the standard notion of TFP (i.e., the first moment of

the productivity distribution).

Figures 3 and 4 display the actual series, its HP trend, and the cyclical component of average

productivity. As noted above, long-run average productivity is normalized to unity in the model, so

the vertical scale in Figure 3 is arbitrary.12 The cyclical component of ωmt is highly correlated with

the cyclical component of GDP, as Figure 4 shows — the contemporaneous correlation between the

two is 0.87. The volatility of the cyclical component of ωmt is 1.26 percent (at an annual horizon).

Again with an innocuous abuse of notation, I hereafter use ωmt to denote the cyclical component

of average productivity.

12And follows directly from the normalizations in the Cooper and Haltiwanger (2006) data.
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Figure 4: Cyclical component of mean of firm-level profitability residuals over the period 1974-1988. Vertical

axis is percentage deviation from HP trend. Computed from profitability residuals constructed by Cooper

and Haltiwanger (2006).

In the model presented below, I suppose that ωmt follows the exogenous AR(1)

lnωmt+1 = ρωm lnωmt + εωmt+1, (2)

with εωm ∼ N(0, σωm). Estimation gives a point estimate ρωm = 0.47, with a t-statistic of 1.84.13

With this estimate of ρωm and the standard deviation of ωmt of 1.26 percent, the standard deviation

of the (annual) innovations to the average productivity process can be computed to be 0.0111.

Finally, the cyclical correlation between average productivity and the dispersion of productivity

(i.e., the concept of firm risk) is -0.97; this extremely strong negative correlation is part of the

motivation of the “bundled-shock” model extension considered in Section 7.

In the model developed below, I pursue a quarterly calibration, rather than an annual calibra-

tion, because the leverage evidence documented in Section 3 is quarterly. Because the evidence

presented in this section is from annual data, I use persistence parameters of ρσω = 0.480.25 = 0.83

and ρωm = 0.480.25 = 0.83, which assumes smoothness in the processes during the year. How

this inference of quarterly persistence from annual estimates affects the model calibration of the

innovation parameters σσω and σωm is discussed in Section 6.2.

13This differs from Cooper and Haltiwanger’s (2006, p. 623) estimate of the persistence of mean productivity

because they do not detrend; the AR(1) coefficient of the unfiltered ωmt series is 0.76.
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3 Balance-Sheet Fluctuations

In this section, I compute quarterly business-cycle statistics for aggregate measures of the leverage

ratio, along with their debt and equity components, of U.S. non-financial businesses over the past

25 years. There are a few other studies that document similar evidence. The closest available

evidence is provided by: Levin, Natalucci, and Zakrajsek (2004), who use quarterly Compustat

data to construct a time series of non-financial sector leverage over the period 1988-2003; Korajczyk

and Levy (2003), who use quarterly Compustat data over the period 1984-1993; and Covas and

den Haan (2006), who use Compustat data, although at an annual frequency and with a focus on

the behavior of debt and equity separately — that is, on the numerator and denominator of the

leverage ratio separately.

With the exception of Covas and den Haan (2006), these other studies do not report standard

business cycle statistics, such as volatilities and cross-correlations with standard macro aggregates,

using filtering procedures common in business-cycle analysis. Constructing metrics using this stan-

dard macro approach is the goal here. In the online Appendix to their study, Covas and den Haan

(2006) present cyclical correlations of a few measures of leverage with respect to GDP, but not the

cyclical volatility of leverage. Relative to Covas and den Haan (2006) and Levin, Natalucci, and

Zakrajsek (2004) — henceforth, LNZ — the evidence presented here extends the analysis through

2009 and also documents both business-cycle volatilities and correlations of leverage, providing

some metrics against which the predictions of business-cycle models that feature endogenous lever-

age may be judged, including the model I study below. In more finance-oriented and firm-level

applications, Hennesy and Whited (2007) and Levy and Whited (2007) also document some of the

type of evidence on which I focus.14

Like LNZ and Korajczyk and Levy (2003), I use quarterly Compustat data on publicly-traded

non-financial U.S. firms. The sample period analyzed is 1974:Q1 — 2009:Q1, as well as the subsam-

ples 1974:Q1 — 1988:Q4 and 1989:Q1 — 2009:Q1 separately. The former subsample corresponds to

the time period of the Cooper and Haltiwanger (2006) data analyzed in Section 2. The latter time

period, although beginning a few years later than the commonly-accepted dating of the beginning

of the Great Moderation, corresponds roughly to the Great Moderation period. For convenience, I

thus sometimes refer to the latter subsample as the Great Moderation period. For each quarter of

the sample period, every non-financial firm in Compustat that has data recorded for debt, equity,

and revenue (an item used as a proxy that a firm is indeed active) is selected.15 The measure of

14An important distinction between Hennesy and Whited (2007) and Levy and Whited (2007) relative to the type

of model-based lens through which LNZ and I view the data is that in the former, external financing can be either in

terms of debt or equity, whereas in the latter external financing is only in the form of debt.
15That is, a firm-quarter observation for which any of these three data were missing was dropped. Thus, the data

are not a panel.
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debt is the book value of firms’ total debt, and the measure of equity is the book value of total

shareholder equity. In each quarter, aggregate debt and aggregate equity are computed as the

simple sums of debt and equity over all firms selected in that quarter. The aggregate leverage ratio

is then defined as the ratio of aggregate debt to aggregate equity in each quarter. The empirical

debt and equity series whose statistics are reported below are the aggregates divided by aggregate

revenues of all the firms selected in each quarter, which render the debt and equity measures sta-

tionary over the time period.16 The precise interpretation of the statistics reported below for debt

and equity is thus on a per-unit-of-revenue basis.

For the entire time period and the two subsamples separately, Figures 5 and 6 plot the time

series of aggregate leverage, the HP trend components (computed using HP smoothing parameter

1,600), and the cyclical components.17 In constructing the cyclical components, HP trends were

extracted separately for each of the three time periods analyzed. Figure 5 shows that leverage

was virtually stationary from the mid-1970’s through the mid-1980’s, and has trended upward

since then, with two marked jumps in the late 1980’s and early 2000’s.18,19 Figure 6 shows that

the volatility of aggregate leverage increased as the Great Moderation took hold, both in absolute

terms and even more dramatically relative to the volatility of GDP.

Figure 7, which presents the cyclical components of the aggregate debt and aggregate equity

components separately, shows that underlying the change in magnitude of leverage cycles were

interesting changes in comovements between debt and equity. Pre-Great Moderation, non-financial

firms’ debt and equity tracked each other a bit more closely than during the Great Moderation.

Moreover, the business-cycle volatility of debt and equity financing were each larger (relative to

the volatility of GDP) during the Great Moderation period than before, although the increases in

16In particular, the number of firms in the sample jumps up in late 1979, a jump that is reversed in mid-1984.

Scaling by revenue thus achieves stationarity of debt and equity over this time period and still allows me to use the

full sample of firms.
17The data were first seasonally adjusted because the Compustat data are not adjusted; a single seasonal adjustment

was done for the entire time period. Seasonal filtering was performed used the X12 ARIMA algorithm implemented

on the econometrics software package gretl.
18This latter aspect of the leverage ratio I construct differs from LNZ, who show in their Figure 3 that the leverage

ratio displays a downward trend during the period 1988-2000, which is not evident here. Some differences may be

definitional ones (for example, they use the market value of common equity as their measure of equity, in contrast

to my metric of total shareholder equity) and some may be sample selection and construction issues (for example,

they use a sales-weighted average of firm-level leverage ratios, whereas I focus directly on an aggregative measure of

leverage, ignoring the cross-sectional dimension of leverage).
19I also note that the level of the leverage ratio I compute is substantially larger than that computed by Levy

and Whited (2007, Table 1), which may be at least partly, and perhaps almost entirely, attributable to the different

sample selection methods employed. Yet another (early) point of comparison for the results presented in Figures 5

and 6 is Bernanke, Campbell, and Whited (1990), who computed aggregate non-financial sector leverage in the late

1980’s of about 0.4; as Figure 5 shows, I find that it was about 0.7 in the late 1980’s.
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Figure 5: Leverage ratio in U.S. non-financial business sector, 1974Q1-2009Q1.

relative volatilities are not as sharp as for leverage. Changes in financial regulations along with

other shifts that occurred in the economy since the 1980’s evidently permitted and encouraged

non-financial firms to manage their debt and equity financing differently by the mid-1980’s than

they had previously.20

Tables 1, 2, and 3 provide more quantitative detail on the observations that emerge from Fig-

ures 5, 6, and 7 by documenting standard business-cycle statistics for aggregate leverage, aggregate

debt, and aggregate equity during, respectively, 1974:Q1-1988:Q4, 1989:Q1-2009:Q1, and the entire

sample. There are a couple of main features worth highlighting, which reinforce the impressions

left by Figures 5, 6, and 7. First, the volatility of leverage rose from 3.4 percent in the pre-Great

Moderation period to 4.6 percent during the Great Moderation; relative to the volatility of GDP,

it rose much more sharply, from 1.8 to nearly 4.5. Associated with this were more modest increases

in the volatility of debt and equity, and a slight weakening of their contemporaneous correlation

(from 0.78 during the pre-Great Moderation period to 0.68 during the Great Moderation).

Second, and perhaps counter to conventional wisdom, the contemporaneous correlation of lever-

age in the non-financial business sector with GDP is moderately countercyclical. Non-financial firms

do not seem to load up on leverage during expansions; in fact, somewhat the opposite. This finding

is consistent with that in Levy and Hennessy (2007), who show that leverage ratios in highly-

constrained firms are countercyclical, while leverage ratios in less-constrained firms are acyclical.

20I do not speculate further on the nature or sources of these shifts, which is part of the topic of the literature on

the Great Moderation.
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GDP C I leverage debt equity

Std. dev. (%) 1.87 1.40 8.85 3.38 5.30 4.67

Auto. corr. 0.86 0.86 0.81 0.72 0.71 0.66

GDP 1 0.83 0.87 -0.41 -0.55 -0.33

Corr. matrix C 1 0.72 -0.44 -0.27 0.01

I 1 -0.40 -0.46 -0.24

leverage 1 0.48 -0.17

debt 1 0.78

equity 1

Table 1: 1974:Q1-1988:Q4: business-cycle comovements for standard macro aggregates (GDP, consumption,

and gross investment) and aggregate debt, equity, and leverage ratio in U.S. non-financial business sector.

Based on HP-filtered cyclical components.

Moreover, Table 4 shows that leverage is also moderately countercyclical with respect to leads and

lags of GDP. This finding is of moderate countercyclicality contrasts with the conclusion of Covas

and den Haan (2006) that leverage is acyclical.21

This evidence amounts to a simple step in constructing and characterizing measures of aggregate

leverage in a way familiar to standard business cycle analysis. Future work may refine these

aggregative measures and examine alternative measures.22 For the purposes of the rest of this

paper, I focus on the facts presented in Table 1 because they align with the time period of the

risk analysis of Section 2. For the period 1974 — 1988, then, I take the following as stylized facts:

the volatility of leverage relative to that of GDP was in the range of 1.5 — 2, the volatility of

debt and equity relative to GDP was about 2.5, and leverage, debt, and equity were all moderately

countercyclical. The idea of the model analysis in Section 4 is to assess the role the risk fluctuations

documented in Section 2 may have played in broadly explaining these joint financial and macro

21Note that the evidence of Adrian and Shin (2008), who document procyclicality of leverage amongst the five large

U.S. investment banks leading up to the most acute phase of the financial crisis in September 2008, is for the supply

side of the credit markets — lenders. The evidence I present is for the demand side of credit markets — (corporate)

borrowers. Hence there is no inconsistency between these findings and Adrian and Shin (2008). In fact, my finding

of moderate countercyclicality of non-financial sector leverage is consistent with the one piece of evidence Adrian and

Shin (2008) document for non-financial firms: their Figure 2.3 also displays mild countercyclicality of non-financial

sector leverage (although note that their notions of cyclicality are with respect to market asset values, rather than

with respect to GDP). See Mimir (2010) for a standard business-cycle accounting of financial-sector balance-sheet

conditions.
22For example, another dimension of analysis would be examining leverage behavior amongst publicly-traded firms

(which are what Compustat covers) vs. privately-traded firms. Davis, Haltiwanger, Jarmin, and Miranda (2007)

show that some firm outcomes can be very different for public vs. private firms.
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GDP C I leverage debt equity

Std. dev. (%) 1.02 0.89 5.37 4.57 6.20 3.52

Auto. corr. 0.84 0.88 0.82 0.76 0.63 0.29

GDP 1 0.87 0.92 -0.53 -0.48 -0.13

Corr. matrix C 1 0.73 -0.34 -0.26 0.02

I 1 -0.56 -0.50 -0.14

leverage 1 0.83 0.16

debt 1 0.68

equity 1

Table 2: 1989:Q1-2009:Q1: business-cycle comovements for standard macro aggregates (GDP, consumption,

and gross investment) and aggregate debt, equity, and leverage ratio in U.S. non-financial business sector.

Based on HP-filtered cyclical components.

GDP C I leverage debt equity

Std. dev. (%) 1.47 1.16 7.03 4.22 5.82 4.07

Auto. corr. 0.86 0.87 0.81 0.77 0.66 0.51

GDP 1 0.84 0.92 -0.35 -0.45 -0.29

Corr. matrix C 1 0.72 -0.30 -0.2 -0.04

I 1 -0.40 -0.44 -0.23

leverage 1 0.71 -0.03

debt 1 0.68

equity 1

Table 3: 1974:Q1-2009:Q1: business-cycle comovements for standard macro aggregates (GDP, consumption,

and gross investment) and aggregate debt, equity, and leverage ratio in U.S. non-financial business sector.

Based on HP-filtered cyclical components.
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t− 4 t− 3 t− 2 t− 1 t t+ 1 t+ 2 t+ 3 t+ 4

1974:Q1 — 1988:Q4

leverage 0.05 -0.06 -0.17 -0.33 -0.41 -0.45 -0.43 -0.34 -0.26

debt -0.22 -0.30 -0.45 -0.56 -0.55 -0.38 -0.15 0.09 0.30

equity -0.30 -0.30 -0.39 -0.41 -0.33 -0.14 0.12 0.33 0.52

1989:Q1 — 2009:Q1

leverage -0.07 -0.21 -0.37 -0.47 -0.53 -0.50 -0.44 0.38 -0.31

debt 0.03 -0.14 -0.29 -0.44 -0.48 -0.43 -0.34 -0.25 -0.23

equity 0.17 0.08 0.01 -0.11 -0.13 -0.07 -0.01 0.06 0.02

1974:Q1 — 2009:Q1

leverage 0.04 -0.06 -0.16 -0.29 -0.35 -0.35 -0.31 -0.26 -0.21

debt -0.09 -0.18 -0.32 -0.43 -0.45 -0.36 -0.20 -0.05 0.07s

equity -0.17 -0.20 -0.29 -0.34 -0.29 -0.15s 0.03 0.18 0.29

Table 4: Correlations of leverage, debt, and equity in U.S. non-financial business sector with GDP at various

horizons. Based on HP-filtered cyclical components.

fluctuations.

4 Model

As described in the introduction, the model is based on the agency-cost formulation of Bernanke

and Gertler (1989), Carlstrom and Fuerst (1997, 1998), and Bernanke, Gertler, and Gilchrist (1999).

The model is most directly based on the “output model” of Carlstrom and Fuerst (1998), in which all

prices are flexible, a homogenous final good is used for both consumption and investment purposes,

firms require short-term working capital (formally, intraperiod) to finance their production costs,

and there are no other rigidities or frictions whatsoever. This provides the cleanest starting point to

highlight the role of shocks to firm risk, so I refer to the Carlstrom and Fuerst (1998) — henceforth,

CF — output model as “the” underlying model, recognizing that it is meant to capture an entire

literature of work. In a study with a very similar motivation, Dorofeenko, Lee, and Salyer (2008)

study the role of risk shocks in the Carlstrom and Fuerst (1997) “investment model,” in which it

is only capital-goods producers that are subject to financing constraints. Besides this difference in

specific model, Dorofeenko, Lee, and Salyer (2008) parameterize the risk process in an illustrative
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Figure 8: Timing of events in model.

way, rather than calibrating it to micro data as I do.

As an aid to the ensuing description of the model, Figure 8 illustrates the timing of events in

the model. Because the model is virtually identical to the CF output model, with only a couple of

modifications made to align the model with the data analysis in Sections 2 and 3, readers familiar

with the CF model may choose to skip to the analysis beginning in Section 5.

4.1 Households

There is a representative household in the economy that maximizes expected lifetime discounted

utility over streams of consumption ct and leisure 1− nt,

E0

∞∑
t=0

βt [u(ct) + v(1− nt)] , (3)

subject to the sequence of flow budget constraints

ct + kht+1 = wtnt + kht [1 + rt − δ] + Πt. (4)

The functions u(.) and v(.) are standard strictly-increasing and strictly-concave subutility functions

over consumption and leisure, respectively. The rest of the notation is as follows. The household’s

subjective discount factor is β ∈ (0, 1), kht denotes the household’s capital holdings at the start

of period t, wt is the real wage that is taken as given, rt is the market rental rate on capital that

is also taken as given, and δ is the per-period depreciation rate of capital. The capital good and
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consumption good are identical and thus have a unit relative price. The household also receives

aggregate dividend payments Πt from firms as lump-sum income, the determination of which is

described below.23

Emerging from household optimization is a completely standard labor supply condition

v′(1− nt)
u′(ct)

= wt, (5)

and a completely standard capital supply condition

u′(ct) = βEt
{
u′(ct+1) [1 + rt+1 − δ]

}
, (6)

which follow as usual from the household’s period-t first-order conditions with respect to ct, nt,

and kht+1. The one-period-ahead stochastic discount factor is defined as Ξt+1|t = βu′(ct+1)/u′(ct),

with which firms, in equilibrium, discount profit flows.

4.2 Firms

There is a continuum of unit mass of firms, each of which produces output by operating a constant-

returns technology. Firms are heterogenous in their productivity. Firm i produces output using

the technology ωitF (kit, nit): kit is the firm’s purchase of physical capital on spot markets, nit is

the firm’s hiring of labor on spot markets, and ωit is a firm-specific productivity realization.

Each period, firm i’s idiosyncratic productivity is a draw from a distribution with cumulative

distribution function Φ(ω), which has a time-varying mean ωmt, a time-varying standard deviation

σωt , and associated density function φ(ω), all of which are identical across firms. Time-variation

in ωmt corresponds to the usual notion of TFP shocks, in the sense of exogenous variation in the

mean of firms’ technology. The time-varying volatility σωt is the key innovation in the model com-

pared to CF. Given the first and second moments ωmt and σωt common across firms, idiosyncratic

productivity for a given firm is i.i.d. over time, an assumption made for tractability.24

23I could also introduce shares in order to directly price streams of dividends paid by firms to households; but this

extra detail is unnecessary for the main points, so it is omitted.
24The assumption of zero persistence of the idiosyncratic component of a firm’s productivity was noted in Section 2,

and it greatly simplifies the computation of the model because the firm sector essentially can be analyzed as a

representative agent. This point is discussed further below when I come to the aggregation of the model. This

simplification still allows me to illustrate the main point of the model, which is that variations in cross-sectional

productivity dispersion can lead to large fluctuations in aggregate leverage and possibly, in turn, to fluctuations in

economic activity. In addition to greatly reducing the computational burden, the assumption of zero persistence in

idiosyncratic shocks also retains the simplicity of the CF and Bernanke and Gertler (1989) contracting specifications.

If persistent shocks were allowed, it is not clear that the simple debt contracts of these models could not be improved

upon by the contracting parties by, say, multi-period contracts. Sidestepping this issue is yet another reason to

assume no persistence in realized idiosyncratic productivity. Note, however, that assuming persistence in shocks to
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Firms are owned by households, and the objective of firms is to maximize the expected present

discounted value of dividends remitted to households. Denote by Πit the dividend payment made by

firm i to households. For descriptive convenience, I decompose Πit into a “non-retained earnings”

component Πe
it and an “expected operating profit” component EωΠf

it; the notation Eω indicates

an expectation conditional on the period-t aggregate state but before idiosyncratic realizations

are revealed to any firm.25 Thus, Πit ≡ Πe
it + EωΠf

it. As described below, the component EωΠf
it

essentially corresponds to static profits as in a simple RBC model.

Because they are owned by households, firms apply the representative household’s stochastic dis-

count factor (the one-period-ahead discount factor is Ξt+1|t, as defined above) to their intertemporal

optimization problem. However, firms are also assumed to be “more impatient” than households

by the factor γ < 1, which can be thought of as a reduced-form way of capturing some sort of

principal-agent problem that prevents perfect alignment of the firms’ objectives with households’

intertemporal preferences. At a technical level, γ < 1 ensures that firms cannot accumulate enough

assets to become self-financing, which would render irrelevant the financial frictions described be-

low. This device for avoiding self-financing outcomes is common in models of financial frictions.

The intertemporal objective function of firm i is thus

E0

∞∑
t=0

γtΞt|0
[
Πe
it + EωΠf

it

]
. (7)

The firm problem is now further developed and analyzed.

4.2.1 Firm Financing and Contractual Arrangement

In period t, total operating costs of firm i, which are the sum of capital rental costs and wage

payments, are

Mit = wtnit + rtkit. (8)

As in CF and as shown in Figure 8, the firm is assumed to commit to all of its input costs after

observing the aggregate exogenous state (ωmt, σ
ω
t ), but before observing its idiosyncratic realization

ωit and thus before any output or revenue are created.

Part of the financing of the firm’s costs comes from its own accumulated net worth, which is held

primarily in the form of capital. The capital that each firm accumulates is rented on spot markets

to (other) firms, just like households rent their capital on spot markets. Firm i’s capital holdings

at the start of period t are keit. Thus, note that keit, which reflects the firm’s savings decisions, is

distinct from kit, which reflects the firm’s capital demand decisions for production purposes.

σωt , as the empirical results in Section 2 indicate, does not pose any of these problems; indeed, shocks to σωt really

are aggregate shocks.
25As Figure 8 indicates, firm decisions are made in the first “subperiod” of period t, before idiosyncratic shocks

have been realized but after aggregate shocks have been realized, hence the need for Eω.
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However, the firm’s internal funds (which I refer to interchangeably as its net worth or its

equity) are insufficient to cover all input costs. To finance the remainder, a firm borrows short-

term — formally, intraperiod — working capital. A firm requires external financing because of the

assumption that it is more impatient than households, as described above.26 By acquiring external

funds, the firm is able to leverage its net worth in period t,

nwit = keit [1 + rt − δ] + et, (9)

into coverage of its operating costs Mit. Total borrowing by the firm is thus Mit − nwit. The

component et of net worth is a small amount of “endowment income” that each firm receives to

ensure its continued operations in the event that it becomes insolvent in the previous period. In

closing the model, this endowment is absorbed into the payout Πit the firm pays to its owners,

which is the representative household. The payout Πit is thus interpreted as net of the endowment

et.
27

I describe only briefly the outcome of the contracting arrangement between borrowers (firms)

and lenders (households) because it is well-known in this class of models.28 The financial contract

is a debt contract, which is fully characterized by a liquidation threshold ω̄t and a loan size Mit −
nwit. A firm must be liquidated or “reorganized” if its realized productivity ωit falls below the

contractually-specified threshold ω̄t. Below this threshold, the firm does not have enough resources

to fully repay its loan. In that case, the firm is declared insolvent and receives nothing, while

the lender must pay reorganization costs that are proportional to the total output of the firm

and receives, net of these reorganization costs, all of the output of the firm. Note that all firms,

regardless of whether or not they end up requiring reorganization, do produce output up to their

full (idiosyncratic) capacity.

Define by f(ω̄t) the expected share of idiosyncratic output ωitF (kit, nit) the borrower (the firm)

keeps after repaying the loan, and by g(ω̄t) the expected share received by the lender.29 These

26As noted above, this is a standard assumption in this class of models and avoids the self-financing outcome. See,

for example, Carlstrom and Fuerst (1997, 1998) and Bernanke, Gertler, and Gilchrist (1999).
27Thus, equivalently, et can be interpreted as a lump-sum transfer of “startup funds” provided by households to

firms, as in Gertler and Karadi (2009). By allowing a “firm’s” operations to continue in the event of bankruptcy, the

assumption of a startup fund brings great analytical tractability to the model. Thus, the “costs of bankruptcy” in

the model are more properly interpreted as “costs of reorganization” without any disruption of its output-producing

activities (i.e., bringing in new management to oversee ongoing operations).
28In the context of general-equilibrium settings, familiar expositions appear in Carlstrom and Fuerst (1997, 1998),

Bernanke, Gertler, and Gilchrist (1999), and Faia and Monacelli (2007). In partial-equilibrium settings, analysis

of this type of contractual arrangement traces back to Townsend (1979), Gale and Hellwig (1985), and Williamson

(1987).
29Formally, f(ω̄t) ≡

∫∞
ω̄t

(ωi − ω̄t)φ(ωi)dωi =
∫∞
ω̄t
ωiφ(ωi)dωi − [1−Φ(ω̄t)]ω̄t is the share received by the firm, and

g(ω̄t) ≡
∫ ω̄t

0
(ωi − µ)φ(ωi)dωi +

∫∞
ω̄t
ω̄tφ(ωi)dωi =

∫ ω̄t

0
ωiφ(ωi)dωi + [1− Φ(ω̄t)]ω̄t − µΦ(ω̄t).
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expectations are conditional on the realization of the time-t aggregate state, but before revelation

of a firm’s idiosyncratic productivity ωit. The contractually-specified loan size is characterized by

a zero-profit condition on the part of lenders,

Mit =
nwit

1− ptg(ω̄t)
, (10)

and the contractually-specified liquidation threshold is characterized by

ptf(ω̄t)

1− ptg(ω̄t)
= −f

′(ω̄t)

g′(ω̄t)
, (11)

in which pt > 1 is a “markup” on input costs that arises solely from the external financing needs

of the firm.30 Thus, for each unit of capital the firm rents, the cost, inclusive of financing costs, is

ptrt, rather than just rt. The same is true for each unit of labor that must be paid. All contractual

outcomes are contingent on the aggregate state (ωmt, σ
ω
t ) of the economy.

The loan size Mit − nwit is firm-specific. However, the liquidation threshold ω̄t is not because

idiosyncratic productivity has zero persistence. Condition (11) thus implies pt is also identical

across firms, which is the key result that makes aggregation in the model simple, which justifies

our omission of firm-i indexes for the variables p and ω̄.

CF interpret pt as a “markup” that drives a wedge between factor prices and marginal prod-

ucts. The analysis below shows that this interpretation also carries over here. However, another

informative interpretation of pt is as an external finance premium. For every unit of cost firms

incur for their inputs, they must pay p > 1 units inclusive of borrowing costs. Thus, p naturally

has an interpretation as an external finance premium.

4.2.2 Operating Profits and Asset Evolution

Firms take as given contractual outcomes when maximizing profits. The expected operating profit

of firm i in period t is

EωΠf
it = ωmtF (kit, nit)− pt [wtnit + rtkit] . (12)

As discussed above, this is an expected profit because it is measured before the realization of firm-

specific idiosyncratic productivity but after the realization of the aggregate period-t state of the

economy, (ωmt, σ
ω
t ). Because the mean of ωit is ωmt, ex-ante revenue of the firm is ωmtF (kit, nit).

The idiosyncratic risk ωit and associated financing costs implied by it are captured by the inclusion

30The background assumptions of the zero profit condition are that lending is a perfectly competitive activity and

entry into the lending market is costless. Formally, the two conditions characterizing the optimal contract result from

maximizing (the firm’s share of) the return on the financial contract (because the firm, if it remains solvent, is the

residual claimant on output), ptf(ω̄t)Mit, subject to the zero profit condition of the lender, ptg(ω̄t)Mit = Mit−nwit.
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of the external finance premium pt in the above expression.31 Firms take as given the competitively-

determined factor prices wt and rt.

Regarding the dynamic aspect of firms, firm i begins period t with assets keit, whose beginning-

of-period-t market value determines the firm’s net worth nwit, as shown in (9). The firm borrows

Mit − nwit against the value of these assets, and it expects to keep ptf(ωt)Mit after repaying its

loan.32 Of these “excess” resources, the firm can either accumulate assets or make payments to

households. That is,

Πe
it + keit+1 = ptf(ω̄t)Mit, (13)

which highlights that keit+1 can be thought of as retained earnings. Substituting the contractually-

specified quantity of borrowing, M = nw
1−pg(ω̄) , this can be re-written as

Πe
it + keit+1 =

ptf(ω̄t)

1− ptg(ω̄t)
nwit. (14)

Further substituting the definition of net worth from (9), the firm’s asset evolution is described by

Πe
it + keit+1 =

ptf(ω̄t)

1− ptg(ω̄t)
[keit [1 + rt − δ] + et] . (15)

Finally substituting (12) and (15) into (7), the dynamic profit function of the firm is

E0

∞∑
t=0

γtΞt|0

{
ptf(ω̄t)

1− ptg(ω̄t)
[keit [1 + rt − δ] + et]− keit+1 + ωmtF (kit, nit)− pt [wtnit + rtkit]

}
. (16)

4.2.3 Profit Maximization

Maximization of (16) with respect to capital rental kit and labor hiring nit gives rise to the capital

demand condition

rt =
ωmtFk(kit, nit)

pt
(17)

and the labor demand condition

wt =
ωmtFn(kit, nit)

pt
. (18)

In (17) and (18), the effective payments per unit of each factor are ptrt for capital rental and ptwt

for labor, reflecting firms’ need for external financing. Financing costs drive an endogenous time-

varying wedge between prices and marginal returns in factor markets, which leads CF to refer to

31As is common in macro models, writing, for example, pt, is shorthand for the state-contingent equilibrium function

p(ωmt, σ
ω
t ). If the distribution of ω were degenerate — that is, if there were no idiosyncratic component of technology

— then we would have pt = 1 ∀t, which simply has the interpretation that financing issues are irrelevant as in, say,

a baseline RBC model.
32This is because, as noted in footnote 28, the firm keeps the entire (expected) surplus from the contractual

arrangement. Hence, in expectation, the firm is left with ptf(ωt)Mit after the sequence of borrowing, renting factors

of production, producing output, and repaying its loan.
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pt as a “markup.” As discussed above, one can also usefully interpret pt as the model’s external

finance premium. That the external finance premium drives an endogenous time-varying wedge

between prices and marginal returns in neoclassical factor markets is a key feature of the model.

Note that, although firms may differ in their levels of factor usage, each firm chooses an identical

capital-labor ratio because the market prices rt and wt and the external premium pt are identical

for all firms and the production technology F (.) is constant-returns.

Maximization of (16) with respect to asset accumulation keit+1 yields the capital Euler equation

for firms,

1 = γEt

{
Ξt+1|t

pt+1f(ω̄t+1)

1− pt+1g(ω̄t+1)
[1 + rt+1 − δ]

}
, (19)

which, note, is independent of firm-i conditions.

4.2.4 Aggregation

Firms are heterogenous with respect to their net worth and differ (only) in size — a firm with a

larger net worth receives a proportionately larger loan and so produces more output. However, the

size distribution of firms is irrelevant for computing the aggregates of the economy, which makes

the agency-cost framework tractable in a DSGE setting.

The production side of the economy can be analyzed as if there were a representative firm that

held the average quantity of net worth and hired the average quantity of labor and capital for

production. The specific assumptions and results behind this aggregation result are: the constant-

returns nature of the production function F (.); the linearity of the monitoring technology (in the

quantity monitored); and, crucially, the result that the prices wt, rt, and pt are identical for all

firms.33

The stand-in representative firm has a profit function identical to (16) (with firm indices

dropped), which clearly gives rise to the same optimality conditions (17), (18), and (19). The

(aggregate) profits that get transferred to households are thus

Πt = Πe
t + Πf

t =
ptf(ω̄t)

1− ptg(ω̄t)
[ket [1 + rt − δ] + et]− ket+1 + ωmtF (kt, nt)− pt [wtnt + rtkt]

=
ptf(ω̄t)

1− ptg(ω̄t)
[ket [1 + rt − δ] + et]− ket+1 + ωmtF (kt, nt)− ωmtFn(kt, nt)nt − ωmtFk(kt, nt)kt

=
ptf(ω̄t)

1− ptg(ω̄t)
[ket [1 + rt − δ] + et]− ket+1. (20)

The second line makes use of the factor price conditions (17) and (18), and the third line follows be-

cause F (.) is constant-returns. Thus, note that in this representative-firm foundation of aggregates,

33The result that p is identical for all firms is an implication of zero persistence of firms’ idiosyncratic productivity,

which, as described above, makes it impossible to condition the contractually-specified liquidation threshold ω̄ on

firm-specific variables. See also CF (1997, 1998) for further discussion. The result that w and r are identical for all

firms follows simply from the assumption of perfectly-competitive rental markets for labor input and capital input.
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firms earn zero aggregate operating profits, so Πt = Πe
t . The capital Euler equation that arises

from maximizing this representative-firm profit function with respect to aggregate entrepreneurial

capital holdings ket+1 is clearly identical to (19).

Finally, the aggregate resource constraint of the economy is

ct + kt+1 − (1− δ)kt = ωmtF (kt, nt) [1− µΦ(ωt)] , (21)

in which kt = kht + ket is the equilibrium quantity of physical capital at the beginning of period t.

Note that aggregate monitoring costs are a final use of output.

4.3 Private Sector Equilibrium

A symmetric private-sector equilibrium is made up of state-contingent endogenous processes

{ct, nt, kht+1, k
e
t+1, kt+1,Π

e
t , wt, rt, pt, ω̄t} that satisfy the following conditions: the labor-supply con-

dition
v′(1− nt)
u′(ct)

= wt; (22)

the labor-demand condition

wt =
ωmtFn(kt, nt)

pt
; (23)

the capital-demand condition

rt =
ωmtFk(kt, nt)

pt
; (24)

the representative household’s Euler equation for capital holdings

1 = Et
{

Ξt+1|t [1 + rt+1 − δ]
}

; (25)

the (representative) firm’s Euler equation for capital holdings

1 = γEt

{
Ξt+1|t

pt+1f (ω̄t+1)

1− pt+1g (ω̄t+1)
[1 + rt+1 − δ]

}
; (26)

aggregate capital market clearing

kt = kht + ket ; (27)

the aggregate resource constraint

ct + kt+1 − (1− δ)kt = ωmtF (kt, nt) [1− µΦ(ω̄t)] ; (28)

the contractually-specified loan size

Mt =
nwt

1− ptg (ω̄t)
, (29)

in which expression (9) for nwt is substituted in; the contractually-specified liquidation threshold

ptf(ω̄t)

1− ptg(ω̄t)
= −f

′(ω̄t)

g′(ω̄t)
; (30)
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and the evolution of the aggregate assets of firms (equivalently, the assets of the representative

firm)

Πe
t + ket+1 =

ptf(ω̄t)

1− ptg(ω̄t)
[ket [1 + rt − δ] + et] . (31)

The private sector takes as given the stochastic process {ωmt, σωt }∞t=0.

5 Basic Analytics: Firm Risk and Leverage

Before proceeding to the quantitative analysis of the model, it is useful to consider analytically the

intuition behind the model’s main mechanism. These analytics do not formally prove the main

results, which are quantitative in nature. But they shed light on the transmission mechanism,

which is quantified in Section 6.

To begin this intuitive consideration, note that conditions (29) and (30), which characterize the

terms of the financial contract, can be combined to

M − nw = −
(
fω̄(ω̄;σω)g(ω̄;σω)

f(ω̄;σω)gω̄(ω̄;σω)

)
nw. (32)

I drop time indices here for ease of notation. The term in parentheses is the leverage ratio because

it expresses a firm’s total debt obligation, M−nw, as a multiple of its net worth (its equity). Thus,

define the leverage ratio as

`(ω̄;σω) ≡ −fω̄(ω̄;σω)g(ω̄;σω)

f(ω̄;σω)gω̄(ω̄;σω)
. (33)

The expected share functions f(.) and g(.) and their derivatives depend on the cross-sectional

dispersion σω of firm productivity, hence the leverage ratio also depends on σω. For this intuitive

argument, I emphasize this dependence by explicitly noting it as an argument of these functions.

Figure 9 illustrates why changes in the cross-sectional dispersion of firms’ TFP would be ex-

pected to cause changes in leverage. Suppose the solid black curve in Figure 9 is the pdf φ(ω) before

a risk shock occurs. The liquidation threshold ω̄ shown is for this initial distribution. Suppose there

is an exogenous reduction in dispersion. If the liquidation threshold ω̄ were to remain unchanged,

fewer firms would draw an idiosyncratic ω < ω̄, which lenders understand because the density φ(ω)

is common knowledge. This in turn means that fewer firms are expected to be unable to repay

their loans, which reduces lenders’ risk. Ex-ante, then, lenders would be willing to extend more

credit, which implies higher leverage ratios for firms (borrowers). In general equilibrium, ω̄ will of

course also change. It is thus a quantitative question how much a given-size change in dispersion

σω will affect the threshold ω̄ and hence leverage and hence real activity. These questions can only

be answered in the full general equilibrium model.
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Figure 9: An exogenous decrease in the dispersion of productivity across firms. The bankruptcy threshold

ω̄ shown is for the original distribution; if the threshold were to remain unchanged, fewer firms would be

expected to go bankrupt, which in turn would make lenders willing to allow larger leverage ratios.
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6 Quantitative Analysis

6.1 Computational Strategy

To study the dynamics of the model, I compute a second-order approximation of the equilibrium

using my own implementation of the perturbation algorithm described by Schmitt-Grohe and Uribe

(2004). Because the main interest is in business cycle fluctuations, such methods are likely to

accurately portray the model’s dynamic behavior, as the studies by Aruoba, Fernandez-Villaverde,

and Rubio-Ramirez (2006) and Caldera, Fernandez-Villaverde, Rubio-Ramirez, and Yao (2009)

suggest.

Changes in cross-sectional risk are indeed aggregate, rather than idiosyncratic, shocks in the

model economy. Because I track only aggregate outcomes and do not track any firm-specific out-

comes, there is no reason to think that local approximation methods will misrepresent the model’s

aggregate dynamics.34 Given a local approximation strategy, I nonetheless compute a second-order

approximation given the novelty of the analysis. However, it is useful to note that the results re-

ported below are virtually identical to those obtained from a linear approximation. This reinforces

the point made by Dorofeenko, Lee, and Salyer (2008, p. 386) that linearization does not impose

certainty equivalence on this type of second-moment (a cross-sectional variance) shock. The quan-

titative results reported below are thus fundamentally driven by the model’s mechanism — changes

in cross-sectional risk leading to changes in firms’ leverage, which then potentially are transmitted

to the real economy — rather than choice of approximation method.

Before presenting the dynamic results, I complete the description of the calibration of the model

and briefly describe some of its long-run predictions.

6.2 Calibration

The novel aspect of the model calibration is the risk shock process using micro data, as described in

Section 2. As described there, long-run dispersion of firm productivity is σ̄ω = 0.156. This is about

half the value used by CF (1998, p. 590) and Bernanke, Gertler, and Gilchrist (1999, p. 1368),

which are calibrated to aggregate financial data, not firm-level data: the former set σ̄ω = 0.37, and

the latter set σ̄ω = 0.28. Thus, direct micro evidence indicates less cross-sectional dispersion than

standard macro calibrations of agency-cost models.

As also discussed in Section 2, I assume sufficient smoothness in the average TFP and risk

processes so that I can set quarterly persistence parameters ρωm = 0.83 and ρσω = 0.83, even though

the data on which the estimation is based are annual. This mismatch between (desired) model

34Recall the discussion above that, given the maintained assumptions of the model, aggregates in the model do not

depend on distributions of outcomes at the firm level.
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Functional Form Description

lnσωt+1 = (1− ρσω) ln σ̄ω + ρσω lnσωt + εσ
ω

t+1 Exogenous process for firm productivity dispersion

lnωmt+1 = ρωm lnωmt + εωmt+1 Exogenous process for mean of TFP

u(c) = ln c Consumption subutility

v(`) = ψ ln ` Leisure subutility

F (k, n) = kαn1−α Production technology

Table 5: Functional forms for quantitative analysis.

frequency and empirical frequency raises the question of the appropriate calibration of the standard

errors of the quarterly innovations in the TFP and risk processes.35 Given the quarterly frequency

of the model and the annual frequency of the productivity data, I simply time aggregate the

simulated data from the model, and set parameters σωm and σσω so that the annualized volatilities

of average TFP and dispersion of TFP in the model match their annual empirical counterparts. As

documented in Section 2, the empirical volatilities are, respectively, 1.26 percent and 3.15 percent.

This simulated-method-of-moments procedure leads to σωm = 0.008 and σσω = 0.0033.36

Besides the calibration of the exogenous processes, Table 5 lists all functional forms used in

the quantitative experiments, and Table 6 lists all baseline parameter settings. The preference and

production parameters are standard in business cycle models. The agency cost parameter is set to

µ = 0.15, which is the same as the calibrated value in Covas and den Haan (2006) and in line with

the estimate µ = 0.12 by Levin, Natalucci, and Zakrajsek (2004). The value for firms’ “additional”

discount factor is set to γ = 0.99, which allows the model to match a long-run annualized external

finance premium of about two percent. This value of γ is larger than the calibrated values of CF

and BGG and seems due to the much lower calibrated value of σ̄ω here.

6.3 Long-Run Dispersion and Long-Run Equilibrium

I compute the long-run deterministic (steady-state) equilibrium numerically using a standard non-

linear equation solver. The main comparative static exercise I conduct is presented in Figure 10,

which plots the long-run (steady-state) equilibria as a function of long-run cross-sectional dispersion

σ̄ω. All other parameters are held fixed at those presented in Table 6.

35As noted in Section 2, the standard deviation of the annual innovations in the average TFP and risk processes

are, respectively, 0.0111 and 0.0276.
36It is interesting to note that σωm = 0.008 is quite similar to the calibration of the size of quarterly innovations

in the aggregate TFP process in a baseline RBC model, in which a benchmark value is 0.007. Here, of course,

σωm = 0.008 is computed directly from micro data.
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Parameter Value Description/Notes

Preferences

β = 0.99 Households’ quarterly subjective discount factor

γ = 0.99 Firms’ (additional) subjective discount factor

ψ = 1.8 Leisure calibrating parameter (calibrated in baseline model)

Production Technology

α = 0.36 Capital’s share in production function

δ = 0.02 Depreciation rate of capital

Financial Markets and Agency Costs

µ = 0.15 Per-unit monitoring cost

ωm = 1 Long-run mean of idiosyncratic productivity

σ̄ω = 0.156 Long-run standard deviation of distribution of lnω

ρσω = 0.83 Quarterly persistence of log firm risk process

σσω = 0.0033 Standard deviation of innovations to log firm risk

Exogenous Process

ρωm = 0.83 Quarterly persistence of log mean-TFP process

σωm = 0.0081 Standard deviation of innovations to log mean-TFP

Table 6: Parameter values for baseline model.
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Figure 10 shows that the long-run response of the economy to changes in σ̄ω is non-monotonic.

For low dispersion of idiosyncratic productivity, GDP falls as dispersion rises, but for high disper-

sion, the comparative static result reverses. The nonmonotonicity is also evident in the long-run

behavior of the finance premium (lower right panel) as well as other standard aggregate quantities

such as gross investment and consumption (for brevity, the latter are not shown in Figure 10).

This effect is not due to any nonmonotonicity of the contract terms, as debt (upper middle panel)

is strictly decreasing in σ̄ω, and the bankruptcy threshold ω̄ (not shown) and hence bankruptcies

(lower middle panel) are strictly increasing in σ̄ω; all of these results are intuitive. When σωt is

allowed to fluctuate around the long-run dispersion σ̄ω = 0.156 during simulations of the model,

dispersion never reaches as high as 0.40, hence the model’s dynamics do not cover the inflection

point Figure 10 reveals.37 I leave to future investigation further study of the nonmonotonicity.

For the baseline calibration, the model’s long-run leverage ratio is 1.77, which is larger than the

leverage ratio at any point during the period 1974-2009, as comparison with Figure 5 shows. In the

model, the conceptually most important determinant of long-run leverage is long-run dispersion,

σ̄ω. As dispersion shrinks to zero, which means that lenders face no risk whatsoever on their loans,

leverage grows unboundedly, independent of all other parameter values. This effect is shown in the

lower left panel of Figure 10.38 Apparently, the empirically-relevant σ̄ω = 0.156 is small enough

steady-state dispersion that the model overpredicts long-run leverage. To force the model to explain

a long-run leverage ratio of, say, unity, requires σ̄ω = 0.24, given the rest of the parameters. Indeed,

σ̄ω = 0.24 is closer to typical macro calibrations of this class of models, such as CF and BGG.

However, the overprediction of long-run leverage here is not a shortcoming of the analysis. Instead

of treating σ̄ω as a free parameter to match aggregate moments, as other agency-cost macro models

do, it seems important to know that direct micro evidence on this parameter leads to perhaps

substantially different long-run aggregate predictions.

It is useful to also highlight the long-run values implied by the model of two other financial

variables of interest: the (annualized) finance premium and the bankruptcy rate. These are collected

in Table 7. The long-run bankruptcy rate is substantially lower than in the Dun & Bradstreet

evidence cited by CF (1998, p. 590), while the finance premium is in line with most of the measures

of premia presented in DeGraeve (2008).39 The former result is again a reflection of a relatively

37As Table 6 shows, the calibrated value of the standard error of the shocks to the dispersion process is σσω = 0.0027,

which is sufficiently small that during simulations, σωt = 0.40 was never reached.
38That is, as σ̄ω → 0, lenders are willing to lend ever larger quantities. Alternatively, one could say that leverage

is undefined because financial frictions do not matter and the model technically pins down neither loan amounts nor

leverage.
39As discussed extensively by DeGraeve (2008), it is not clear what is the most relevant empirical counterpart to

the model’s external finance premium. Many natural alternatives suggest themselves, such as the difference between

the prime borrowing rate and the short-term T-bill rate, the interest spread between AAA-rated commercial paper
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Figure 10: Long-run equilibrium as long-run standard deviation of idiosyncratic productivity distribution,

σ̄ω, varies; σ̄ω plotted on horizontal axis.
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Financial Measure Long-Run Value

Leverage ratio, `(ω̄) 1.77

External premium, 100 (p− 1) 2.10 percent

Bankruptcy rate, 100Φ(ω̄) 1.04 percent

Table 7: Long-run financial variables for the baseline calibration of the model.

low level of long-run risk, while the latter is the calibration target at which γ was aimed.

6.4 Business Cycle Dynamics

I divide the presentation of the baseline model’s cyclical dynamics into three parts. First, to

establish a baseline that can be directly compared to CF’s experiments, I document how macro

as well as financial aggregates respond to standard shocks to average TFP, with cross-sectional

dispersion of firm productivity held constant at σ̄ω. Then, I document how the model behaves in

response to only dispersion shocks, with average TFP held constant at ωm = 1. Finally, I allow

both shocks to simultaneously drive the economy.

6.4.1 TFP Shocks

To establish a baseline, I first demonstrate that the model’s predictions are in line with those

obtained by CF when σωt = σ̄ω ∀t and it is only average TFP shocks that drive fluctuations.

Figure 11 displays impulse responses to a one-time, one-standard deviation positive shock to average

TFP, holding constant cross-sectional dispersion of firm productivity. The results are qualitatively

in line with those documented in CF (1998, Figure 1) for their “output model,” although magnitudes

differ due to different calibrations.

Figure 11 shows that leverage rises somewhat substantially, with the peak response about twice

as large as the peak response of GDP. CF (1998, Figure 1) do not report the dynamics of leverage

(nor is it reported in the related models of CF (1997) or BGG), so this result is new in the

literature. Thus, in contrast to the conjecture in Carlstrom, Fuerst, and Paustian (2009, p. 8),

the leverage ratio is not virtually constant, conditional on TFP shocks, in the basic agency-cost

model.40 However, a more informative metric may be the relative volatility of leverage with respect

and T-bills, the spread between BBB-commercial paper and T-bills, and so on. DeGraeve (2008) documents that

these various empirical measures of “the external finance premium” behave differently enough over the business cycle

that it remains an open question what the natural empirical counterpart of the model’s external finance premium is.
40More precisely, leverage is not virtually constant, conditional on TFP shocks, in the CF output model. This

paper does not test the dynamics of leverage in the CF (1997) investment model.
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GDP C I leverage debt equity

Std. dev. (%) 2.42 0.83 9.05 3.23 4.53 3.08

Auto. corr. 0.80 0.98 0.78 0.01 0.66 0.81

GDP 1 0.50 0.97 0.57 0.98 0.82

Corr. matrix C 1 0.27 0.01 0.39 0.56

I 1 0.63 0.97 0.75

leverage 1 0.73 0.01

debt 1 0.68

equity 1

Annual std. dev (%) TFP 1.21 (Data: 1.26)

Annual std. dev (%) σω 0 (Data: 3.16)

Annual correlation (GDP, σω) — (Data: -0.83)

Annual correlation (TFP, σω) — (Data: -0.98)

Table 8: Simulation-based business cycle statistics, only average TFP shocks. Upper panel from quarterly

simulations, lower panel from annualization of quarterly simulations.

to GDP induced by TFP shocks.

To this end, Table 8 presents business cycle statistics from model simulations when the only

exogenous process is fluctuations in average TFP.41 While CF do not report simulation-based

moments, the model reproduces basic business cycle stylized facts: for example, gross investment is

nearly four times as volatile as GDP, consumption is less volatile than GDP, and GDP, consumption,

and investment are all highly persistent.

On financial measures, leverage, debt, and equity are all more volatile than GDP. In a relative

volatility sense, the magnitude of leverage fluctuations is fairly close to the evidence documented

in Table 1 — a relative volatility of 1.3 in the model versus 1.8 in the data. The relative volatilities

of debt and equity are also smaller in the model than during the period 1974-1988. Given the

parsimony of the model, on balance, the basic agency-cost model generates financial fluctuations,

conditional on shocks to average TFP, that at least reach the empirically-relevant range. Leverage

fluctuations are certainly not miniscule, which is the impression left by Carlstrom, Fuerst, and

Paustian (2009, p. 8), but financial fluctuations are smaller than in the data.

41These business cycle statistics are generated by simulating the model 1000 times around the deterministic steady

state equilibrium, with each simulation 1000 periods in length, and then computing the medians across simulations

of standard deviations, correlations, etc.
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Figure 11: Impulse response to a one-standard-deviation exogenous increase in average TFP, holding con-

stant the dispersion σω of firm productivity. Except where noted, scale is percentage point deviation from

steady state.
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productivity, holding constant average TFP. Except where noted, scale is percentage point deviation from
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GDP C I leverage debt equity

Std. dev. (%) 0.02 0.01 0.04 3.60 1.23 2.38

Auto. corr. 0.81 0.77 0.87 0.80 0.80 0.79

GDP 1 -0.79 0.87 -0.79 -0.79 0.79

Corr. matrix C 1 -0.82 0.62 0.62 -0.62

I 1 -0.96 -0.96 0.96

leverage 1 1 -1

debt 1 -1

equity 1

Annual std. dev (%) TFP 0 (Data: 1.26)

Annual std. dev (%) σω 3.16 (Data: 3.16)

Annual correlation (GDP, σω) 0.98 (Data: -0.83)

Annual correlation (TFP, σω) — (Data: -0.98)

Table 9: Simulation-based business cycle statistics, only risk shocks. Upper panel from quarterly simula-

tions, lower panel from annualization of quarterly simulations.

6.4.2 Risk Shocks

With the baseline dynamics of the model established, I now present the main set of experiments

conducted in the model, namely dynamics in the face of pure risk shocks. Figure 12 presents impulse

responses to a one-time, one-standard deviation positive shock to the cross-sectional dispersion of

firm productivity, holding constant average TFP. Complementing this impulse-response analysis

are the simulated business cycle statistics reported in Table 9, in which it is only risk shocks that

generate business cycles.

Comparing Figure 12 with Figure 11 shows that a pure risk shock induces virtually no GDP

response — the peak response of GDP in Figure 12 is two orders of magnitude smaller than

the peak response of GDP in Figure 11! This is one of the main results of the model analysis:

empirically-relevant risk shocks seem to play little role as an independent driver of aggregate quan-

tity fluctuations. This is one of the main messages of the theoretical model of BB, as well, even

though their model does not situate financial frictions as part of the potential transmission channel

for risk shocks. Examining just the role of financial frictions in the transmission mechanism leads

to a broadly similar conclusion as BB. The result here is even starker than in BB, though, because

I found innovations in firm risk to be five to ten times larger than found by BB, as discussed
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in Section 2. Thus, despite much larger risk shocks, the pass-through of risk shocks to quantity

fluctuations is still minor, a result in line with the findings of Dorofeenko, Lee, and Salyer (2008).

However, comparing Figure 12 with Figure 11 shows that financial variables do react much

more strongly to a risk shock than to a shock to average TFP. This is another main result of the

model analysis. In line with the intuitive discussion in Section 5, debt and hence leverage fall

(sharply) in response to a rise in firm risk, as lenders pull back on extending credit. In terms of

relative volatilities of fluctuations in financial variables compared to aggregate macro quantities,

risk shocks are quantitatively very powerful.

The quantitative power of pure risk shocks on financial outcomes is more clearly revealed by

the simulation-based results reported in Table 9. The cyclical volatilities of leverage, debt, and

equity are broadly similar in magnitude to their volatilities conditional on only average-TFP shocks

(Table 8), even though the volatility of GDP is less than two percent as large.42 In terms of

cyclicality of leverage, it is countercyclical (-0.79) with respect to GDP, broadly consistent with the

the evidence documented in Section 3. Note, however, that this result arises in the face of only risk

shocks — below, I show that if the economy is hit by both shocks to average TFP and risk shocks,

the cyclicality of leverage has the wrong sign compared to the data.

Somewhat counterintuitively, and clearly counterfactually, an increase in cross-sectional disper-

sion induces an increase in GDP. As shown in Figure 2 and as also documented by BB and BFJ,

firm-level dispersion is clearly countercyclical. The reason this result seems to arise in the model is

due to the “Hartman-Abel effect,” which also arises in the simplest version of the BFJ model that

features a minimum of adjustment costs for capital and labor. The idea, as described by BFJ (p.

20), is that absent sufficient adjustment costs, a higher variance of productivity increases output

because marginal revenue products are convex in productivity. While I do not model “adjustment

costs” in the way the firm-level literature typically does, the entire agency cost/financial friction

mechanism can be viewed broadly as a type of “adjustment cost.” However, it apparently is not

strong enough to overturn the Hartman-Abel effect. In Section 7, I modify the model in a sim-

ple way to deliver countercyclical firm risk. The leverage volatility result in this baseline model,

though, carries over to the modified model, hence it is useful to understand how the baseline model

works, both its successes and shortcomings.

6.4.3 Both First-Moment Shocks and Second-Moment Shocks

Conditional on just a productivity-driven view of business cycles, it seems reasonable to think of

fluctuations as being due to both first-moment shocks and second-moment shocks. Table 10 reports

business cycle statistics when the model economy is hit by independent shocks to both average-TFP

42The first row of Table 9 reports GDP volatility of 0.02 percent; without rounding, the volatility is 0.01733 percent.
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GDP C I leverage debt equity

Std. dev. (%) 2.42 0.83 9.05 4.88 4.72 3.87

Auto. corr. 0.81 0.99 0.78 0.44 0.67 0.80

GDP 1 0.50 0.97 0.38 0.93 0.64

Corr. matrix C 1 0.27 0.01 0.37 0.44

I 1 0.42 0.93 0.59

leverage 1 0.67 -0.44

debt 1 0.35

equity 1

Annual std. dev (%) TFP 1.21 (Data: 1.26)

Annual std. dev (%) σω 3.16 (Data: 3.16)

Annual correlation (GDP, σω) -0.01 (Data: -0.83)

Annual correlation (TFP, σω) 0.07 (Data: -0.98)

Table 10: Simulation-based business cycle statistics, with average TFP shocks and risk shocks. Upper panel

from quarterly simulations, lower panel from annualization of quarterly simulations.
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and cross-firm dispersion. The combination of first-moment and second-moment shocks implies a

relative volatility of leverage still very close to the evidence presented in Table 1 — a relative

volatility of 2 versus 1.8 in the data. The volatilities of consumption and investment relative to

that of GDP are unchanged from the TFP-shock-only case. The model continues to generate larger

swings in debt and equity than GDP, but once again not as large as in the data.

Unfortunately, though, the contemporaneous correlation between leverage and GDP turns mod-

erately positive when cycles are driven by both first-moment and second-moment shocks, in con-

trast to the moderate countercyclical pattern of leverage documented in Section 3. Furthermore, no

matter which configuration of shocks is considered — first-moment shocks alone, second-moment

shocks alone, or both in tandem — none of the experiments conducted in the baseline model lead

to countercyclicality of firm risk. For example, the combined-shock model features zero correlation

between risk fluctuations and GDP, as the next-to-last row of the lower panel of Table 10 shows.

As documented in Section 2, this is opposite the empirical evidence, which uniformly reveals strong

countercyclicality of firm risk. In Section 7, I modify the model to accommodate this.

7 Bundled Aggregate Shocks: TFP-Induced Risk Fluctuations

Countercyclicality of firm risk can be modeled by linking time-variation in average TFP directly to

fluctuations in firm-level risk. Specifically, the cross-sectional dispersion of productivity across firms

is now assumed to decline when average TFP improves. First-moment shocks are thus assumed to

be bundled with second-moment shocks, and I refer to the entire bundle as an “aggregate shock.”

The two processes are assumed to be linked according to

σωt = σ̄ω + ϕ lnωmt. (34)

This condition replaces the exogenous law of motion (1) for σωt , and the evolution of ωmt is still

described by (2). The rest of the model is exactly the same as above. The parameter ϕ is clearly

the key parameter of this version of the model, with ϕ < 0 implying countercyclicality of firm-

level risk.43 In terms of correlation between average TFP and dispersion of TFP, ϕ < 0 obviously

implies a perfect negative correlation between the two, but this portrayal is not counterfactually

stark compared to the data; recall from Section 2 that the contemporaneous cyclical correlation

between average TFP and dispersion of TFP is -0.98.

Figure 13 illustrates why ϕ < 0 leads to countercyclical firm risk. A positive shift in average

TFP will, all else equal, increase GDP. If at the same time cross-sectional dispersion declines due

to ϕ < 0, and supposing initially that the bankruptcy threshold ω̄ were fixed, fewer firms would be

43Clearly, ϕ > 0 would deliver procyclical firm-level risk, and ϕ = 0 would recover the baseline CF model in which

there are never any changes in firm risk.
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Figure 13: A positive shock to the mean of aggregate TFP causes a decrease in the dispersion of productivity

across firms. The bankruptcy threshold ω̄ shown is for the original distribution; if the threshold were to

remain unchanged, fewer firms would be expected to go bankrupt, which in turn would make lenders willing

to allow larger leverage ratios.

expected to go bankrupt. This in turn would induce lenders to extend more credit, hence leverage

rises for given net worth. Indeed, the second part of the intuitive argument is exactly the same as

that underlying Figure 9. What is different from the baseline model is the event that now induces

the change in dispersion. In the baseline model, the change in dispersion itself was the exogenous

event, whereas here it is a positive shock to average TFP.

This bundled aggregate shock is of course a reduced-form construct. However, I bring the same

empirical evidence presented in Section 6.2 to bear on the calibration of the crucial elasticity param-

eter ϕ. The calibration approach is to choose ϕ so that the model matches the observed time-series

variation in cross-sectional dispersion. Section 6.2 documented that the time-series volatility in

annual cross-sectional dispersion is 3.15 percent. Given this target and holding fixed all parameters

in Table 6, this simulated-method-of-moments procedure (with average TFP fluctuations now as

the sole truly exogenous driving process) leads to ϕ = −1.43.

Figure 14 presents impulse responses to a positive bundled aggregate shock. The most salient
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Figure 14: Impulse response to a positive “bundled aggregate shock,” in which a one-standard-deviation

exogenous increase in average TFP induces a decrease in cross-sectional dispersion. Except where noted,

scale is percentage point deviation from steady state.
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GDP C I leverage debt equity

Std. dev. (%) 2.35 0.80 8.86 4.82 5.38 0.66

Auto. corr. 0.80 0.99 0.78 0.73 0.77 0.89

GDP 1 0.49 0.97 0.98 0.99 0.82

Corr. matrix C 1 0.26 0.37 0.43 0.76

I 1 0.99 0.98 0.69

leverage 1 0.99 0.72

debt 1 0.78

equity 1

Annual std. dev (%) TFP 1.16 (Data: 1.26)

Annual std. dev (%) σω 3.16 (Data: 3.16)

Annual correlation (GDP, σω) -0.99 (Data: -0.83)

Annual correlation (TFP, σω) -1 (Data: -0.98)

Table 11: Simulation-based business cycle statistics for bundled aggregate shocks, in which average TFP

(first-moment) shocks induce changes in cross-sectional dispersion. Parameter ϕ = −1.43. Upper panel from

quarterly simulations, lower panel from annualization of quarterly simulations.

comparison for these impulse responses are those presented in Figure 11, in which the same size

first-moment shock is also the exogenous impulse except with no change in cross-firm dispersion.

Comparing Figure 14 with Figure 11 shows that the bundled aggregate shock induces very similar

dynamics in most variables as does the unbundled first-moment shock alone. The only difference

compared to Figure 11 is that equity rises by much less in response to the bundled shock.

Finally, Table 11 presents simulation-based business cycle statistics. The first row shows that the

volatility of leverage (and debt) carries over from the baseline model’s results presented in Table 10.

However, a shortcoming of the bundled-shock model is that leverage is extremely procyclical, at

odds with the evidence presented in Section 3.

To summarize, the bundled-shock model by construction is consistent with the empirically-

observed countercyclicality of cross-sectional firm risk (see the last two rows of the lower panel

of Table 11), and it retains the volatility predictions of the baseline model driven by indepen-

dent first-moment and second-moment shocks. However, it fails to predict empirically-relevant

countercyclicality of leverage. On the other hand, the baseline model driven by a complete set of

independent, “unbundled,” shocks performed well on the volatility dimension, but failed to capture
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the countercyclicality of firm-level risk. Although I do not take up this extension here, a conjecture

is that a combination of bundled shocks along with independent, exogenous, shocks to firm risk

may help in capturing all these dimensions of the data.44

8 Conclusion

This paper documented the business-cycle properties of firm risk based on micro data, and of

aggregate leverage, debt, and equity in the non-financial business sector. Using a baseline quanti-

tative financial accelerator model, the main theoretical question was to assess the extent to which

the former can explain the latter — especially, because of its central role in connecting financial

and real outcomes, leverage. Empirically-relevant risk shocks turn out to explain quite well the

observed volatility of leverage, as well as generating volatilities of its underlying debt and equity

components that are also in the empirically-relevant range. However, in the model, the leverage

fluctuations that risk shocks induce lead to only very small fluctuations of real activity — GDP

volatility conditional on risk shocks alone is less than two percent of GDP volatility conditional on

shocks to average TFP alone.

These results, coupled with the similar results of Dorofeenko, Lee, and Salyer (2008), perhaps

pose a challenge for the emerging literature studying the joint dynamics of financial and real

activity. The agency-cost framework has become a common building block, especially of late, in

medium-scale and large-scale DSGE models, including for practical policy analysis. At the same

time, the idea of risk shocks — or “financial shocks” more broadly defined — has begun appearing

in a growing number of DSGE models. The results of this paper show that, when calibrated in

a way consistent with micro evidence, the effects of risk shocks on real activity are small. More

optimistically, the results suggest that in richer agency-cost models that do find important linkages

between financial fluctuations and real fluctuations, the linkages are not driven by the basic agency-

cost friction per se, but rather by other features of the model that interact with the friction. This

sort of model parsing of results seems important to understand as the profession’s interest in the

joint modeling of financial and real dynamics grows.

Another broad idea that emerges is that understanding changes directly in the distribution of

micro-level risk may be important for guiding the further development of business-cycle models

featuring financial frictions. This paper has exploited second-moment disturbances. As noted by

LNZ (2004, p. 33), fluctuations in third- or higher-order moments may also need to be considered for

understanding some aspects of the financial data. This requires moving away from the symmetry of

normally-distributed (log) productivity standard in macro models. Given the robust evidence that

44Of course, there are a host of other model features and/or shocks one could consider introducing to the model.

Such analysis is left to future work.
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firm-level outcomes are distributed non-normally, there seems reason to think that skewness and

higher moments of the firm productivity distribution may be time-varying. Such “higher-moment

shocks” would also be expected to affect leverage and so possibly real activity; the quantitative

degree to which they do may be an interesting question.
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