International Transmission Through Relative Prices by Keyu Jin (LSE) and Nan Li (OSU&IMF)

> Discussion Wei Liao (HKIMR)

> > June 2012

The 'International Comovement Puzzle'

- Data: positive investment correlation and output correlation across countries
- IRBC(BKK)model
 - Demand-supply spillover (+)
 - Resource shifting effect (-)

Literature

- 1. Dampen the resource shifting effect: Imperfect international asset market
- 2. Strengthen the demand-supply spillover effect:
 - Vertical linkages(Di Giovanni-Levchenko (2009), Burstein-Kurz-Tesar (2008))
 - Low elasticity of substitution (Kose & Yi (2006), Drozd-Nosal (2008))
- 3. Liao & Santacreu (2012): the role of extensive margin, and endogenous TFP comovement

This Paper: Theory

- Domestic composition effect: capital-intensive versus labor-intensive sectors
- The role of relative prices of these two categories of goods
- Mechanism
 - Home labor productivity shock expands labor-intensive sector more
 - Relative price of labor-intensive goods drops
 - Foreign expands capital-intensive sector, higher demand for capital
 - Positive investment correlation as well as output comovement across countries

This Paper: Empirics

- Labor intensive production & net exports are procyclical
 - Capital-intensive sector: output and employment share are negatively correlated with real GDP
 - Labor-intensive sectors' output is more volatile
 - Positive labor productivity shocks expand U.S. labor-intensive sector by more than the capital-intensive sector

Relative prices of capital-intensive goods are procyclical and volatile

- Price of capital-intensive goods positively correlated with real GDP
- Price of labor-intensive goods negatively correlated with real GDP
- Sectoral Trade Balance
 - Real sectoral net exports are more volatile than the aggregate net exports
 - More labor intnesive, more positive correlated with real GDP (Figure V)

In Summary

- This is a very neat paper
 - Provide empirical facts about sectoral dynamics and business cycles
 - A theoretic framework to introduce the composition effects through the relative prices
- Contribute to the international business cycle literature
 - Draw attention to the role of factor-intensity
 - Model generates positive international comovement

Question 1: Labor Productivity shock

- Labor productivity shock
 - What are the driving forces behind business cycle fluctuations?
 - How to estimate the labor productivity process?
 - The current method implies that labor-intensive sector receives a larger productivity shock
 - Depending on the difference between the labor shares
- If using TFP shock
 - Assign 2 times higher capital adjustment costs to the capital-intensive sector, Empirical evidence?
 - If shocks are correlated across countries, both will expand labor-intensive sector
 - Does the composition effect still work?

Question 2: Initial factor abundance

- Table III shows initial factor endowment differences does not affect the results
 - How different are they for the two countries in the analysis
- International specialization
 - The model implies a country exporting one good must import another good
 - A country which is more capital-abundant, tends to export capital-intensive goods
 - Does a positive labor productivity shock change the international trade specialization pattern?

Question 3: Net export

Overall trade balance is countercyclical for the US

- The model generate procyclical home net export (Figure VI)
- It would be interesting to see IRFs of trade balance in each sector
- Both domestically and internationally
- Trade balance in the data and in the model
 - In data countries export and import goods in the same sector, while in model they do not
 - The observed fluctuations in trade balance in each sector may due to changes from both imports and exports

Question 4: Dividing sectors

- How to classify capital intensive sector and labor intensive sector?
 - Factor intensities are time-varying in each industry (Lin, Ju & Wang, 2010)
 - Yesterday's labor-intensive industry may become capital-intensive today
 - One country's labor-intensive sector may be capital-intensive in another country
 - Are capital shares the same across countries for any given sector?
 - How to estimate the capital share in each sector?
- Relative size of the two sectors
 - will affect the strength of the composition effect

Question 5: About the empirics

- Price: labor-intensive sector adjusts slower
 - May cause the negative correlation with real GDP
- The sectoral trade balance
 - Figure V shows only the two most labor-intensive sector (out of ten) are positive correlated with real GDP
 - How large are these two sectors?

Minor issues

- Vertical trade structure may affect the results
 - Suppose the labor-intensive sector uses inputs from capital-intensive sector
 - Relatively more expensive capital-intensive inputs can increase the production cost of labor-intensive goods
 - Both domestically and internationally
- Substitution between capital- and labor-intensive goods
- Factor market friction
 - Can factor be reallocated quick enough? How about skilled and unskilled workers?
- Composition effect at short and medium-run
- ► The other puzzles: e.g. 0 < corr(c, c*) < corr(y, y*), or trade-output comovement puzzle</p>

Output Comovement and the Margins of Trade

Output correlation on EM and IM

Panel 1: HP-filtered output		Panel 2: Output growth		Panel 3: BP-filtered output	
$corr(y_i^{hp}, y_j^{hp})$	Coef.	$corr(\Delta y_i, \Delta y_j)$	Coef.	$\operatorname{corr}(y_i^{bp}, y_j^{bp})$	Coef.
$\log(\textit{EM}_{ij})$	0.309***	$\log(\textit{EM}_{ij})$	0.196***	$\log(\textit{EM}_{ij})$	0.593***
	(0.042)		(0.027)		(0.036)
$\log(\textit{IM}_{ij})$	0.031	$\log(\textit{IM}_{ij})$	0.011	$\log(\textit{IM}_{ij})$	0.028
	(0.021)		(0.013)		(0.036)
Constant	0.644***	Constant	0.354***	Constant	0.662***
	(0.059)		(0.037)		(0.101)

Using Klenow and Hummels' decomposition method

Note: Standard errors in parentheses. Significance at the 1% (5%) level is indicated by $^{***}($ $^{**})$. log distance and log of entry cost as IVs.

・ロト ・日ト ・ヨト ・ヨー ・ つへぐ

TFP Comovement and the Margins of Trade

TFP correlation on EM and IM

Panel 1: HP-filtered TFP		Panel 2: TFP growth		Panel 3: BP-filtered TFP	
$corr(\mathit{tfp}_{i}^{hp}, \mathit{tfp}_{j}^{hp})$	Coef.	$corr(\Delta t \mathit{fp}_{i}, \Delta t \mathit{fp}_{j})$	Coef.	$corr(\mathit{tfp}_{i}^{bp}, \mathit{tfp}_{j}^{bp})$	Coef.
$\log(\textit{EM}_{ij})$	0.275***	$\log(\textit{EM}_{\textit{ij}})$	0.181***	$\log(\textit{EM}_{\textit{ij}})$	0.557***
	(0.037)		(0.024)		(0.062)
$\log(\textit{IM}_{ij})$	-0.042*	$\log(\textit{IM}_{ij})$	-0.027*	$\log(\textit{IM}_{\textit{ij}})$	-0.084**
	(0.018)		(0.012)		(0.030)
Constant	0.215***	Constant	0.154***	Constant	0.568***
	(0.051)		(0.034)		0.568***

Using Klenow and Hummels' decomposition method

Note: Standard errors in parentheses. Significance at the 1% (5%) level is indicated by ***(**). log distance and log of entry cost as IVs.

Mechanism

- Consider a positive TFP shock
- Direct effect: Demand-supply channel
- Amplification effect:
 - ▶ Innovation: Increases in N_{dt}
 - International Technology Diffusion: N_{xt} increases and each variety has a higher average productivity (or quality) *z*_{X,t}.

- The effect is stronger the lower is $f_{X,t}$
- Endogenous TFP

$$TFP_{t} = (N_{dt} + N_{xt}^{*}) \left\{ \left(\frac{1}{N_{dt} + N_{xt}^{*}} \right) \left((N_{dt} \widetilde{z_{dt}}^{\theta - 1} + N_{xt}^{*} \widetilde{z_{xt}}^{\theta - 1}) \right\}^{\frac{1}{\theta - 1}} \right\}$$