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Abstract 
 

Monetary policy in which the central bank commits to a randomized inflation target allows for 
potentially faster expectations convergence than with a fixed target. Randomization acts as a 
substitute for full credibility, enabling the central bank to transfer its intent to the economy more 
quickly. With a fixed target, individual occurrences of high inflation are regarded as confirming 
the low credibility of the institution. Under a random target, such events can be regarded as 
generated by the randomization process and thus harm credibility less on the margin. We thus 
emphasize the role of this mechanism in particular in transition environments. 
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I. Introduction 

 While the past 30 years has seen remarkable progress is the conquest of inflation in most 

parts of the world, the specter of high, uncontrollable, or persistent inflation remains. Notable 

cases include cases as varied as Zimbabwe and Brazil. The former suffers from its leaders’ 

reckless disregard of the economy and the latter from a long history of inflationary episodes and 

a concomitant fear of a rapid return. Our paper provides an alternate monetary policy that can 

accelerate the population expectations convergence, and thus transition to a new low-inflation 

more rapidly. 

 The intellectual backdrop to this is a long-standing debate on the appropriate “speed” of 

convergence in transition environments. The existing literature on gradual vs. “shock” 

approaches to transition draws either on credibility, or on trend or targeting approaches. 

Guillermo Calvo’s (1983) model of stochastic price adjustments suggests that immediate 

disinflation can be costless, and Laurence Ball (1994) suggests that a credible and rapid 

disinflation can even prompt a boom. Thomas Sargent (1994) has suggested that four historic 

cases of hyperinflation were halted through credible institutional change.1 While these go some 

distance in resolving new Keynesian concerns of wage and price friction in economic 

adjustment, they don’t capture the credibility constraints at hand in transition environments.  

Within the targeting literature, Svensson (1999b) argues that prior controversy on the role 

of inflation targeting in real variability has been resolved in that there is relative consensus on the 

inclusion of the output gap in the monetary policy loss function. This leads, in turn, to 

convergence rates being slower than would otherwise be the case. He points to a collection of 

research (Fischer 1996, King 1996, Taylor 1996 and Svensson 1996) that all emphasize loss 

                                                 
1 Additional country studies are available in Sachs (1990). 
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function with relatively larger weight on the output gap than the gap between target and actual 

inflation. Svensson (1997) and Ball (1999) both show that concern with output gap stability 

translates into slower transitions. This solution, namely gradualism, arises in other contexts as 

well. Svensson (1999b) indicates that model uncertainty and interest rate smoothing both lead to 

solutions with increased convergence horizons. This discussion is essentially a synopsis of the 

field’s opinion on optimal policy conditional on a given (consensus) loss function. 

 We re-ask the fundamental question about gradualism slightly differently by looking at 

the role of credibility in the expectations formation process. One can view the key problem as the 

ability of the population to discern the intent of the central bank. The crux of our argument that 

acceleration of expectations, and consequently of targets themselves, is a function of the 

population’s response to the institutions lack of complete credibility. Without full credibility, 

adverse shocks or small errors on the part of the central bank during the transition period can be 

interpreted by the population as malign intent. This leads to increasingly slow convergence. In 

our opinion, this mechanism contributes to the finding of gradualism in the targeting literature. 

Fast convergence paths are punished with higher output gap variability in part because of the 

reaction of population; as much of monetary policy, it’s about credibility. 

 Our method for exploring this issue is a stylized one. We take a transitional expectations 

framework (Taylor 1975) and generalize it to a stochastic environment. This is an environment 

with fully rational expectations; real impact can only occur during an expectations formation 

period at the onset of a new regime.2 The population will form expectations of inflation in each 

period using Bayesian updating and the government will minimize a classic loss function. In this 

context, it is possible to create a mechanism which enables the population to “learn” faster. 

                                                 
2 For reasons that will be apparent, a randomized policy makes little sense with this framework during a time period 
in which the economy is close to its optimal inflation level. 
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Using Randomization as a Substitute for Credibility 

In our model, we find that randomization of monetary policy in transition cases provides 

a better response mechanism to the population’s behavior, because it eliminates a portion of the 

information asymmetry problem. That is, randomization can act as a partial substitute for an 

increase in bank credibility. Through such a policy, the monetary authority can “encourage” 

rapid convergence without an increase in credibility or reputation. Consider the following 

example. Suppose a new government takes over monetary policy in a developing country with a 

“traditional” inflation rate of 40-50 percent a year. The new government “knows” that the 

optimal inflation level is 5 percent. However, since a 5 percent target would not be credible, the 

government would potentially have to announce a higher target or to implement a relatively slow 

convergence plan in an inflation targeting framework.3 We show that if the government commits 

to a so-called “random target”, the situation can change. The government would enact a policy 

whereby if it commits to implement the targeting decisions of a computer run by some 

independent third party.4 The computer in each period would generate a random number based 

on a target around 5 percent, with some small variance.5 Now consider the case when the public 

observes inflation in a given period that is relatively high compared to recent history. With a 

traditional fixed target, the public attributes this either to duplicity or to implementation errors on 

the part of the bank. Under the random target, individual aberrant observations can be obtained 

as part of the randomization and thus do not harm credibility. 

                                                 
3 Good discussions, literature reviews and case examples are available in Bernanke et al 1999. 
4 The third party is used to illustrate the feasibility of a trustworthy random draw. The computer could even be placed within the 
offices of a “trusted” institution outside the country.  
5 In fact, the model will specify that the computer generate a random walk target, though for the sake of explanation, random is 
sufficient at this stage. Simulations at the conclusion of the paper reveal that the two provide similar convergence paths.  
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Notice as well that the government’s commitment to a randomized policy is credible in of 

itself, because there is no a priori reason why the government is better off under the fixed target. 

In fact, we will specify below that the population is completely unaware of the target in each 

period. This further “ties the hands” of the central banks and highlights the credibility 

enhancement features of the method itself. Notice as well the distinction here from inflation 

targeting in that the stated commitment of the central bank is to a target that is itself moving, not 

to a band around a fixed target.  

From this starting point, we compare two basic environments: a traditional “fixed” 

inflation target and a “random” one. Both of these will have targets close to the optimal inflation 

level and will depart from the inflation targeting literature in that we do not look for 

deterministic paths for the target; our focus is on the informational differences between fixed and 

random targets. Monetary policy randomization has potential application in at least three cases. 

Two of these cover the “high” inflation situation, hyperinflation and persistent inflation. In 

situations of hyperinflation, a faster convergence rate is clearly desirable, especially since most 

“losses” occur in the short run. The Japanese deflation-cum-liquidity trap case is also an example 

in which expectations are too sticky (this time downwards) and in which, for structural and 

credibility reasons, a change in inflationary expectations is needed where traditional monetary 

policy has failed (see Krugman 1998 for discussion). 

We have focused our discussion on such “extreme” cases because we believe lack of 

credibility to be an important limitation in the availability of monetary policy options for such 

countries. While credibility can be built over time, these countries may find themselves too often 

in a “transitional” period, in which credibility building is impractical. Our solution prescribing 



 

 6 
 

inflation targeting with a random target rate seems to provide at least some improvement in the 

efficacy of monetary policy in such cases. 

As mentioned, two situations are discussed: a “classic” one in which the government 

commits to a particular inflation target; and our proposal for a “randomized” target, in which the 

government pre-commits to a particular randomization of its inflation target. In either case, the 

target inflation rate is unknown to the public. We cover in Section II the rationale behind the 

ability of the government to obtain real gains through monetary policy, even under rational 

expectations, and we address the effect on expectations formation of increased uncertainly in 

inflation policy. In order to achieve this increased uncertainty, we use a “random target”. 

Specifically, this refers to a random walk in the target inflation rate of the country’s monetary 

authority.6 Section III describes our model of monetary policy equilibrium in the case of a fixed 

monetary target. Subsequently, Section IV explains optimal monetary policy when the 

government chooses a random walk inflation target. The benefits of the randomized policy are 

discussed. We show simulated results for the random walk process, a white noise process and the 

standard fixed target in Section V and conclude in Section VI. 

  

II. A transitional expectations framework 

In order to evaluate the tradeoffs between a fixed and random targeting regime, we 

explore a transition expectations environment (Taylor 1975). In a world of full information and 

fully rational expectations, monetary policy has limited effect. Indeed, economic agents, given 

full information, can rationally determine the inflation that the government wants to achieve, and 

adjust their prices and wages accordingly. In Taylor’s classic set up, he describes as a transitional 

                                                 
6 In the empirical section, we also show results from a randomization that is based on a white noise process. For 
small values of the variance of this process, the results are in line with the random walk version. 
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period towards rational expectations, a period during which the central bank’s target inflation 

rate is either not known or not credible. Under such conditions of asymmetric information, 

Taylor shows that monetary policy has a significant impact in the short run, that is, until 

expectations fully adjust to reflect the actual chosen rate. 

Taylor uses an output-inflation targeting loss function (i.e. the loss is measured in 

squared deviations from some target output level and some target inflation rate, both of which 

are held constant across time). In particular, Taylor is concerned with the potential gains from 

generating some extra “unexpected” inflation. Indeed, suppose that for some reason (fiscal policy 

distortions, etc.) the current rate of inflation (which is fully known by the public and thus also 

expected by the public) is below the optimal rate. If the central bank unexpectedly moves to 

target the optimal rate, it will obtain some output gains in the transitional period until the 

population learns the new rate. The central bank can capitalize on creating “confusion” about the 

true inflation rate. 

We begin by walking through the Taylor setup. First, we explain, as Taylor has, the logic 

behind the inefficacy of monetary policy under rational expectations. Suppose the relationship 

between inflation and unemployment can be shown as 

 ( ) ( ) ( )t u t x tπ φ= +⎡ ⎤⎣ ⎦ , ( ) 0φ′ ⋅ < , ( )* 0uφ = ,    u* > 0.  (1) 

Here π(t) and x(t) are the actual and expected rates of inflation, respectively, at each time t.  

Unemployment is denoted by u , and φ  is some decreasing function. Taylor further assumes that 

the monetary authority has direct control over the inflation rate through control of the money 

supply,7 so that π ( )t  is effectively a choice variable. Long-run effects on employment are not 

                                                 
7 We later relax this assumption in order to add reality and as the mechanism for further uncertainty. 
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possible in (1), but short-run effects are. This is a well-known argument made by Phelps, who 

considers that inflationary expectations adapt according to the linear rule: 

 
 ( ) ( ) ( )dx t t x t dtβ π= −⎡ ⎤⎣ ⎦ .  (2) 

Where β  is some constant and the government chooses an inflation target that maximizes: 

 ( )
0

,te W x u dtρ∞ −∫ ,  (3) 

where ( ),W x u  is the instantaneous social utility rate, u is the unemployment rate, and β and ρ 

are discount rates. The short-run effects mentioned above are obtained when π( )t  is 

systematically greater than x ( )t . Rational expectations theory suggests that over a period of 

time, agents understand that their expectations based on (2) are biased and modify accordingly. 

Taylor explains that under rational expectations the formulation appears as: 

 ( ) ( ) ( )0 0| |x t t E t I tπ= ⎡ ⎤⎣ ⎦ .   (4) 

Here ( )0I t  represents information available at time t0. This explains that under a deterministic 

policy with no uncertainty, ( ) 0u tφ =⎡ ⎤⎣ ⎦  and ( ) *u t u=  for all t (Taylor 1975).  

 

III. Monetary policy commitment to a fixed target 

From the above argument, it follows that some information asymmetry is necessary in 

order for the short-run Phillips curve to have an effect on output. We will thus model the 

monetary policy effects of central bank policies as an incomplete information game between the 

central bank and the public. The game is set in continuous time, so that stochastic random 

variables are used to model random disturbances. The public does not have knowledge of the 

government’s methods or desires, but is able to learn from the government’s prior actions. This 
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is an abstraction that seems appropriate in a situation of low government credibility. Essentially 

it assumes zero credibility – any announcement is equivalent to none at all. The public derives all 

new information from the actions themselves. Taylor illustrates such a system: during the time 

period when old beliefs mix with new information, the rational expectations hypothesis no longer 

holds, and monetary policy has real and significant effects.  

A. The Government (and Central Bank) 

The government commits itself at time t = 0 to a target inflation rate for the economy, 

which we denote by µ. Once the target inflation rate is set, the economy generates an actual 

inflation rate π( )t . We assume that the government has limited control over the generated 

inflation rate. More precisely, π( )t  is modeled as a normally distributed random variable, where 

( )E tπ µ=⎡ ⎤⎣ ⎦  (thus, the government can control the average inflation rate it generates, but not 

the actual value). Furthermore, we assume that ( )var tπ σ=⎡ ⎤⎣ ⎦ , where σ is a known constant 

depending on the characteristics of the interaction between the central bank and the economy.8  

Let us define price level at each time t as ( )p t , and then let ( ) ( )logz t p t= ⎡ ⎤⎣ ⎦ . When σ = 

0, the government has complete control over inflation, and by definition ( ) ( )t tπ µ= . With σ > 

0, inflation is generated through the diffusion process:  

 ( )dz t dt dvµ σ= + ,        (5) 

where v ( )t  is a Wiener process with a zero mean and unit variance. 

                                                 
8 A lower σ implies a more precise monetary policy. In particular, we assume that σ is the minimum possible variance, i.e. the 
government cannot improve the precision with which it generates inflation beyond this point. 
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Once inflation is generated, the public observes it and (as discussed below) forms some 

inflationary expectations ( ) ( )publicx t E tπ= ⎡ ⎤⎣ ⎦ . We assume that the government knows the 

process through which these expectations are formed, so the government can infer x ( )t .  

The government also has a negative payoff function or loss function L ( )t  (see Svensson 

1999a). At this point, we will not specify L; suffice it to say that L depends on two arguments, 

actual inflation π( )t  and some other target variable (unemployment, or real GDP, etc.) which 

depends again on inflation and on public inflationary expectations, x ( )t . Since by choosing µ the 

government determines both π( )t  and x ( )t , the government's goal is to choose a target µ that 

minimizes the expected value of the loss function. Indeed, both π( )t  and x ( )t  are stochastic, and 

the government can control only moments of their distribution, not the actual realized values. In 

a full commitment regime, the government chooses a value µ that minimizes the (discounted) 

expected future losses, ( )
0

te E L t dtδ
∞

− ⎡ ⎤⎣ ⎦∫ . 

B. The Public 

At each time t, the public observes the inflation rate π(t) generated in the economy. The 

public, however, does not have a full knowledge of the government's target inflation rate µ. More 

precisely, consider that at time zero the public expects the government's inflation target to be 

( ) 00µ µ= , different from µ. In other words, ( ) ( ) 00 0publicE xµ µ= =⎡ ⎤⎣ ⎦ . Also, the public belief 

about the accuracy of this initial guess is such that ( ) 0var 0public µ σ=⎡ ⎤⎣ ⎦ . We assume throughout 

that the government knows both 0µ  and 0σ . The fact that the initial public expectations are 

different from the actual government target may result, as Taylor emphasizes, from the fact that 
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the initial basis for expectations of inflation setting is a combination of expectations from a new 

regime and information from an old regime. Moreover, the same situation can result from a lack 

of credibility of the “new” government. Such a construction captures the reality that an emerging 

market government’s open commitment to a particularly “low” inflation level, µ, may not be 

entirely credible.  

It follows from standard quadratic loss functions that the public's goal is to generate at 

each time t > 0 the most appropriate inflationary expectations. The public observes the actual 

inflation generated at each time t, and based on it and on its current inflationary expectations 

"infers" the most likely inflation target chosen by the government and adjusts its own 

expectations. Note that this method assumes that the public knows σ, but not µ. Under these 

conditions, it can be shown that the population's inflationary expectations are given by the 

following stochastic differential equation: 

 ( ) ( ) ( )2 2
0

1
/

dx t dz t x t dt
t σ σ

= −⎡ ⎤⎣ ⎦+
.  (6) 

 Given than this equation will have a stochastic solution, even under perfect information, 

the government will not be able to have deterministic knowledge of the expectations path x ( )t . 

However, as will become apparent shortly, because we use quadratic loss functions, the 

government only needs to know the mean and the variance of the populations' expectations. 

 If we define: 

 
( )

( ) ( ) ( )2 2

( )

( ) var ,

government

government government

x t E x t

x t x t E x t x t

⎡ ⎤= ⎣ ⎦
⎡ ⎤⎡ ⎤= = −⎣ ⎦ ⎣ ⎦

  (7) 

then, from the theory of linear stochastic differential equations (Arnold 1974) it follows that 

these deterministic variables are given by the following deterministic differential equations: 
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 ( ) ( )2 2 2 2
0 0

1
/ /

dx t x t dt
t t

µ
σ σ σ σ

⎡ ⎤
= − +⎢ ⎥+ +⎣ ⎦

, with ( ) 00x µ=  , and   (8) 

 

 ( ) ( )
( )

2

22 2 2 2
0 0

2
/ /

dx t x t dt
t t

σ
σ σ σ σ

⎡ ⎤
⎢ ⎥= − +
⎢ ⎥+ +⎣ ⎦

, with ( ) 2
00x σ= .   (9) 

Solving the above equations for the mean and variance of the inflation expectations we get: 

 x t
t

( )
/

= +
−

+
µ

µ µ
σ σ
0

2
0
2 , and        (10) 

     

 ~( )
/

x t
t

=
+

σ
σ σ

2

2
0
2 .         (11)  

 From this knowledge of the expected path of people’s expectations, the government can 

set µ appropriately to minimize some given loss function. The population, as implied above, 

simply attempts to have full understanding of the inflation rate in order to set prices and wages to 

match. 

C. The loss function and the resulting Bayesian equilibrium 

The most commonly used loss function is a variant of that suggested by Taylor (See also 

Kydland and Prescott (1977) and Barro and Gordon (1983)):  

 ( ) ( ){ }2 2* *1( )
2

L t y t y tλ π π⎡ ⎤ ⎡ ⎤= − + −⎣ ⎦ ⎣ ⎦       (12)  

We use a variant of this, a generalization of the well accepted standard, where y can be output or 

other appropriate macro target variable such as unemployment.  Our generalization is as follows.  

Begin with the form: ( ) 22 *( ) ( ) ( )L t A x t t B tπ π π⎡ ⎤⎡ ⎤= − + −⎣ ⎦ ⎣ ⎦ . The first term is the squared 

deviation from optimal unemployment. This deviation enters the function as a result of the loss 

created from "wrong" wage setting (this affects unemployment and thus output). Firms set wages 
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to equal expected inflation in the next period (in our model this corresponds to x ( )t ). However, 

the ideal wage that would generate the ideal unemployment is the wage firms would choose if 

they had perfect knowledge about future inflation. But in our model, if firms had perfect 

information they would choose a wage determined by µ, as this is the true expected inflation. We 

can thus rewrite the above loss function as: 

 ( ) ( ) ( ) 22 *L t A x t B tµ π π⎡ ⎤⎡ ⎤= − + −⎣ ⎦ ⎣ ⎦ .  (13) 

One can see that this is equivalent to equation 12 by writing ( ) ( ) ( ); *y t y x t y y t⎡ ⎤= =⎣ ⎦ .  Our 

structure requires simply that the mappings are one-to-one. Since the firms do not know (or do 

not believe) µ, they wrongly set wages to x(t) instead. This term is weighted by a constant factor, 

A.9 The second term is the deviation from an "optimal" inflation level, *π . We have included 

this term as well, weighted by a constant B.  Setting ( )1 2; 1 2A B λ= = , and substituting the 

output equation mappings returns the standard loss function. 

 Thus, the expected loss, EL ( )t  is given by: 

( ) ( ){ } ( ){ } ( ) ( )
2 2* var varA BEL t A E x t B E t x t tµ π π π= − + − + +⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ .  (14) 

 
Since ( ) ( ) ( ) ( ) ( ) ( ) 2 ;  ; var  and varE x t x t E t x t x t tπ µ π σ= = = =⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ , the expected loss 

function can be re-written as: 

 ( ) ( )22 * 2( )EL t A x t B Ax t Bµ µ π σ⎡ ⎤= − + − + +⎣ ⎦ .  (15) 

                                                 
9 Under the general targeting framework described by Svensson (1999b), such a loss function corresponds to a combination of 
inflation targeting and inflationary expectations targeting, where the target inflation rate is π*, and the target expectation is the 
actual policy choice µ.  
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In equilibrium, the government thus chooses µ so that ( ) 0TL µ∂ ∂ = , where ( )
0

tTL e EL t dtδ∞
= ∫ . 

Solving for the optimal µ, we get: 

 ( ) ( )
( )

*
0*

22 2
0 0

 , where 
tAI B eI dt

AI B t

δµ π δ
µ

δ σ σ

∞ −+
= =

+ +
∫ .  (16)  

A Bayesian Nash Equilibrium exists in which the government chooses a target inflation rate as 

described above. The population does not know this rate, but its inflationary expectations 

converge to the above rate. Note that with discounting, the equilibrium target rate is not the 

socially optimal inflation rate. In particular, in a hyperinflationary situation, the government will 

choose a target rate that is higher than optimal (a lower rate would not be credible and would 

generate losses due to sticky expectations). With no discounting, the optimal policy is to choose 

the ideal inflation rate, and this is the same result as Taylor's similar model. 
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IV. Monetary policy commitment to a random target 

We have seen from the above discussion that the government is constrained to choosing a 

sub-optimal target inflation rate in a situation in which its commitment is not credible. However, 

if we could manage to accelerate the rate at which the public changes its expectations, we would 

be able to draw closer to the socially optimal level of inflation. As we discussed in the 

introduction, the concept behind such an acceleration of expectations is the use of randomness as 

a proxy for credibility. The intuition derives from the fact that errors in implementation or 

adverse shocks under a traditional target can be misinterpreted by the population as changes in 

policy. These mistakes can result in reductions in credibility and long delays in the convergence 

to low inflation. 

In this section, we model this possibility under the assumption that the random process 

for the target inflation rate follows a diffusion process. For completeness and as a reality check 

on the results, in the simulation section below, we also consider the case of a white-noise 

process. 

A. The Government (and Central Bank) 

As before, the government chooses at time t = 0 some target inflation rate µ. However, at 

each time, the government “randomizes” its target around µ. More precisely, the government 

chooses an initial target rate and specifies that it evolves according to a random walk with 

variance ω2. Thus the target can now be written as µ(t), evolving over time. Now, inflation is 

generated according to the same rule as before, but it is more volatile, because both the 

government and the state of the economy add uncertainty regarding the final observed inflation 

rate level. We now have: 
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 ( )d t dwµ ω= , and ( )0µ µ= , and       (17)  

 ( ) ( )dz t t dt dvµ σ= + .        (18) 

Here, v ( )t  and w ( )t  are standard Wiener processes with a zero mean and unit variance, 

independent of each other. 

B. The public 

The public again attempts to “guess” the full-information expected inflation rate µ( )t , 

based on its initial assumptions and on the observed inflation rate (an imperfect signal of the true 

target rate). The public’s information set at time t consists of the actual inflation rate, and of the 

parameters σ and ω.  

One can show that the population's inflationary expectations are given by the following 

stochastic differential equation: 

 ( ) ( ) ( )
2

2

1
1

t

t

Cedx t dz t x t dt
Ce

α

αα −
= −⎡ ⎤⎣ ⎦+

, where 
2
0
2
0

 and C ωσ σα ω σ
ωσ σ

+
= =

−
.  (19) 

Again, since this equation will generate stochastic solutions, we look for the (deterministic) paths 

of the mean and variance of the inflationary expectations:  

 ( ) ( ) ( )
2 2

2 2

1 1
1 1

t t

t t

Ce Cedx t x t t dt
Ce Ce

α α

α αα µ α
⎡ ⎤− −

= − +⎢ ⎥+ +⎣ ⎦
, with ( ) 00x µ= , and  (20) 

 

 ( ) ( ) ( )
22 2

2 2 2
2 2

1 12
1 1

t t

t t

Ce Cedx t x t dt
Ce Ce

α α

α αα α σ ω
⎡ ⎤⎛ ⎞− −

= − + +⎢ ⎥⎜ ⎟+ +⎢ ⎥⎝ ⎠⎣ ⎦
, with ( ) 2

00x σ= . (21) 

Solving the above equations for the mean and variance of the inflation expectations we 

get: 
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( ) ( ) ( ) ( ) ( )
2
0

0 2

2  , where  and t tx t t t
e eα α

σα ωµ µ µ α β
α β α β σ σ−⎡ ⎤= + − = =⎣ ⎦ + + −

; and (22) 

 

( ) ( ) ( ) ( )( )( ) ( )( )
( ) ( )

22 2 2 2 2 2 2
2

2

2 1 1 1 2 1
1

2

t

t t

t e
x t

e e

α

α α

α α β α α α β α α α α βα α
α β α β

−

−

− − + − + − + −
= + +

⎡ ⎤+ + −⎣ ⎦
. (23) 

C. The loss function and the Bayesian equilibrium 

 Again, intuitively, a fast convergence without the benefit of the monetary authority’s full 

credibility is particularly useful in emerging market transition situations. The loss function is 

described by (13): ( ) ( ) ( ) ( ) 22 *L t A x t t B tµ π π⎡ ⎤⎡ ⎤= − + −⎣ ⎦ ⎣ ⎦ , and the expected loss function by 

(14): ( ) ( ) ( ){ } ( ){ } ( ) ( )
2 2*( var varA BEL t A E x t t B E t x t tµ π π π⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − + − + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ .   

 Here, ( ) ( ) ( ) ( ) ; E x t x t E t tπ µ⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦ ; ( ) ( ) ( ) 2 2var  and varx t x t tπ ω σ⎡ ⎤ ⎡ ⎤= = +⎣ ⎦ ⎣ ⎦
10 It 

follows that the expected loss function can be re-written as: 

 ( ) ( ) ( ) ( ) ( ) ( )22 * 2 2EL t A x t t B t Ax t Bµ µ π ω σ⎡ ⎤⎡ ⎤= − + − + + +⎣ ⎦ ⎣ ⎦ .  (24) 

Now, both µ(0) and ω are choice variables, and the government thus chooses them so that 

 ( )
0

0 , where tTL TL TL e EL t dtδ∂ ∂
∂µ ∂ω

∞
−= = = ∫ .   (25)  

For simplicity, let’s denote the ratio of ω/σ by α. Since σ is a constant, choosing ω is the 

same as choosing α. Solving (25) for µ(t) while holding ω (and thus α.) temporarily constant we 

get the optimal target as: 

( ) ( )*
0* AI B

AI B
µ π δ

µ
δ

+
=

+
, where 

( ) ( )

22
0

2 2
0

4 ,   and .
t

t t

eJ dt
e e

δ

α α

σα ωα β
σ σα β α β

∞ −

−
≡ = =

⎡ ⎤+ + −⎣ ⎦
∫  (26) 

                                                 
10 Note that this assumes a zero covariance between the random target Wiener process and that of the inflation 
process.  There is no reason to assume otherwise, and the random process could in fact be constructed to follow such 
an assumption. 
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At this point, µ is a function of α. To solve the problem completely, we would need to determine 

the value of α > 0 for which the value of the total loss function is minimized. Lacking a closed 

form solution, we derive some intuitive properties of the optimal policy. 

Our key result here is that expectations converge faster under the randomized target 

policy. This can be seen by inspection of equations (10) and (22). Recall that equation (10):  

 ( ) 0
2 2

0

x t
t
µ µµ
σ σ
−

= +
+

          (10) 

displays hyperbolic convergence to the target rate. Equation (22)  

( ) ( ) ( ) ( ) ( )0
2

t tx t t t
e eα α

αµ µ µ
α β α β −⎡ ⎤= + −⎣ ⎦ + + −

    (22) 

shows exponential convergence. This result is apparently counterintuitive: by randomizing 

monetary policy, that is, creating further uncertainty for the public, the central bank allows the 

public converge faster to its true target rate.  

The key to this apparent contradiction is that by randomizing the target, the central bank 

allows agents to condition their expectations on the existence of the randomization process. By 

doing so, responses to shocks are ameliorated and the public and converge to the true target more 

quickly. We have thus shown that convergence is faster in the random target case, indicating that 

the method may be useful in a context in which the central bank needs to overcome sticky 

expectations.  

On the same grounds, it can be shown that ( ) ( )0 0, , , , , , 0.I Jσ σ δ ω σ σ δ ω≥ ∀ >  If we 

now define the optimal target described in (26) as ( )*µ α  and the optimal commitment target 

defined in (16) by *Fµ , we notice that both ( )*µ α  and *Fµ  are weighted averages of 0µ  and 

*π , with J and I as weights on the side of 0µ . But since J is lower than I, it follows that under 
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random targeting a lower weight is put on the public’s initial inflation guess. Consequently, the 

resulting optimal target is closer to the socially optimal *π  under random targeting than under 

fixed targeting.11 

The final question is whether or not the total loss associated with implementing the 

optimal random target policy is lower than the loss under a fixed target, that is, whether or not 

( ) ( )* * *Random Fixed FTL TLµ ω µ≤⎡ ⎤⎣ ⎦ . Since we cannot solve directly for *ω , we cannot check 

directly whether this inequality holds in general (or for particular values of the parameters A, B, 

σ, σ0, δ). However, the inequality seems intuitively possible. Indeed, consider that we start with 

a fixed target policy *Fµ . If at this point we introduce some randomization of the policy (say a 

small ω), we can reduce the target rate to ( )*µ ω . What are the effects of this small change on 

the total loss function? First, there is the negative effect of generating more volatile inflation; and 

this effect is weighted by the factor B. There exist, however, two positive effects. On the one 

hand, we have brought the inflationary policy closer to the social optimum, which decreases the 

value of the loss (again scaled by the factor B). On the other hand, because randomization leads 

to faster convergence of the inflationary expectations, we have a second improvement in the loss 

function, scaled by the factor A. Whether the two positive effects dominate the negative effect or 

not will most likely depend on the parameters of the problem, but it is conceivable that in the 

case of “mild” randomization (when 0α ω σ= ≅ ), the negative effect on the volatility of 

inflation will not be dominant. 

                                                 
11 Note, incidentally, that this conclusion does not apply if there is no discounting of the future. If δ = 0, both policies imply 
setting the target inflation rate to the optimal level π*. It is easy to see why this is so: with no discounting of the future, the speed 
with which the convergence takes place is irrelevant compared with the level at which expectations converge. Thus, in order to 
prevent losses from some point t to infinity, expectations have to become arbitrarily close to π*. This can only be achieved if the 
target inflation rate is set to π* as well in both the fixed and the random scenarios. 
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Indeed, it is possible to show mathematically that this is the case under fairly un-

restrictive conditions on the parameters of the problem. If the initial guess of the public is not 

accurate, so that 0σ σ>  (with strict inequality), it can be shown that there exists a continuous 

range of small values of α (and thus ω) for which the total loss associated with an optimal 

randomized policy is strictly lower than the total loss associated with an optimal fixed target. 

This finding suggests that for situations characterized by a high degree of uncertainty, 

randomized targeting both decreases social losses and moves the economy closer to the optimal 

inflation rate.12 

V. Some simulations and results 

In this section we provide some basic illustrations of the theoretical results contained 

above. We simulate a policy game as described above with a 200 period path of inflation. In each 

period, given a set of initial parameters, we calculate expected inflation, mean squared error, and 

total loss from both the Taylor baseline and the two variations of the random policy (random 

walk and white noise). Our parameters are set as follows: recall that σ is the parameter on the 

inflation dispersion process, σ0 is the public’s initial expectation of inflation variance, ω is the 

government’s choice of a dispersion parameter on the inflation target (or in the case of the white 

noise process, the variance), µ* is defined in equation (26), and µ0 is the public’s initial guess of 

the government inflation target. We choose parameters as follows: 

 

 

 

                                                 
12 The case σ0 = σ is more difficult to treat mathematically. For this case, we have constructed total loss curves, graphing the 
total loss in the random targeting scenario as a function of the choice of α. The optimal α should be chosen as the point where 
these curves bottom; however, the shape of the curves depends highly on the other parameters of the problem. As a result, 
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TABLE I. Parameter values. 
Parameter Value 

    
ω  0.1 
σ  0.1 

0σ  0.01 
*µ  3% 
0µ  15% 

 

Figure 1, below, shows a sample case that might be relevant for a high inflation country. 

In this circumstance, a change in government policy or other structural shift might lead the 

population to believe that the government has a target of about 15 percent. Note that the exercise 

is not sensitive to this choice. The figure shows a sample time path of inflation under the two 

cases. The fixed target and the initial value of the random one are set at 3 percent. The initial 

public guess of the target is 15 percent. One can see that under this parameterization, the random 

policy leads to a more rapid convergence to the target rate than the Taylor version. Figure 2 

repeats the exercise for a white noise random process. It should be apparent that two achieve 

similar gains in convergence speed vis-à-vis the fixed version. An explicit comparison is 

available in Figure 3. The similarity of results comes in part from the relatively small value of 

omega. For larger values, the random walk process shows “divergence” after about 100 periods. 

The initial convergence is fast, but at the target itself starts to move, public expectations begin to 

oscillate as well. See Figure 4 for an illustration. 

Figure 5 repeats the initial exercise given a government in a deflationary environment. 

Consider a public that expects an optimal inflation rate of -1 percent. A similar pattern of 

                                                                                                                                                             
depending on the particular values of the parameters, there may or may not exist values of α for which the total loss in random 
targeting is lower than the total loss in fixed targeting. 
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convergence can be seen. We can also consider the squared error and mean squared error for 

these cases. Figures 6 and 7 show the squared error and mean squared error respectively for the 

high inflation case (comparing the random walk and the fixed versions). Figures 8 and 9 show 

the same for the deflationary case. 

Further exploration reveals a bit more about the properties of this system. The discussion 

above suggested that the presence of noise meant that implementation errors were not punished 

in the same way as in a fixed system. This allows the populations expectations to converge at a 

faster rate. We look at the convergence rate in a number of cases to explore the role of ω  in 

determining the speed of expectations adjustment. Figure 10 compares the rate of convergence 

for the fixed target and the random walk target against the size of ω . Our metric for convergence 

is the number of periods to reach the target rate (with some small tolerance). One should be able 

to see that the rate of convergence for the random case, and thus its degree of advantage over the 

fixed case, is increasing (the number of periods to reach the target is falling) in the ω  (and thus 

in α ). Figure 11 shows the same set of rates comparing the fixed target to the random process 

generated by white noise. Again, the convergence is increasing in ω . Figure 12 compares only 

the random walk and white noise processes. 

VI. Conclusions 

Under rational expectations theory, central banks automatically achieve rapid 

convergence of public inflation beliefs to the actual rate of inflation. In many cases, this is not 

plausible monetary policy, given credibility constraints. If the public is ignorant of the 

parameters of the government’s optimization problem, then the announcement of a new target 

will not be automatically credible. This may be particularly true in developing countries where, 

because of political instability, the central banks and/or government may minimize a private loss 
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function that does not reflect the societal optimization. We find that in such situations, a 

government can achieve faster expectations convergence to an economy’s optimal inflation rate 

through the use of a randomized inflation target. 
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Appendix I: 
Determination of the public's expected inflation path under a fixed inflation target 

As indicated, the public wants to determine the true government inflation target µ. The public cannot 
observe µ directly, but instead observes a noisy signal (inflation) that is based on µ. The equation of the signal is: 

( ) ( )logd p dz t dt dvµ σ= = +⎡ ⎤⎣ ⎦ . 

The public thus observes z ( )t , and must infer the value of µ. This is known as a filtering problem; it was 
solved in continuous time by Kalman and Bucy (Fleming and Rishel 1975, pp. 133-140). The public is assumed to 
start with an initial guess µ0, and then to develop conditional expectations based on current knowledge and the 
observed signal. The expected value for µ, which we denote by x(t) follows the stochastic differential equation: 
 
  ( ) ( ) ( ) ( )dx t F t dz t x t dt= −⎡ ⎤⎣ ⎦ , where ( ) ( ) 00 0publicx E µ µ= =⎡ ⎤⎣ ⎦ ,   (A1)  

 
and ( ) ( ) 2F t R t σ= , where R ( )t  follows the deterministic differential equation (known as the Ricatti 
equation): 

  ( ) ( )2

2

R t
dR t dt

σ
= −  with initial condition ( ) 2

00R σ= .     (A2)  

Solving for R, we get: ( ) ( )2 21 1R t t σ σ= + , and thus ( ) ( )2 2
01F t t σ σ= + . 

This implies that the public's expectations follow the stochastic differential equation: 

  ( ) ( ) ( )2 2
0

1dx t dz t x t dt
t σ σ

= −⎡ ⎤⎣ ⎦+
.      (A3)  

Solving for x would generate a solution with a deterministic part and a stochastic part, because x must be a stochastic 
variable. Such a solution would not be particularly interesting, because the government is mostly interested in the 
expected mean and variance of the population's expectations. Let us define: 

   
( ) [ ]
( ) ( ) ( ) ( )2 2

( )

var

government

government government

x t E x t

x t x t E x t x t

=

⎡ ⎤= = −⎡ ⎤⎣ ⎦ ⎣ ⎦
.    (A4) 

The government also knows µ, so it can rewrite (A3) as: 

  ( ) ( )2 2
0

1dx t dt dv x t dt
t

µ σ
σ σ

= + −⎡ ⎤⎣ ⎦+
, or:     (A5)  

  dx t
t

x t
t

dt
t

dv( )
/

( )
/ /

= −
+

+
+

⎡

⎣
⎢

⎤

⎦
⎥ +

+
1
2

0
2 2

0
2 2

0
2σ σ

µ
σ σ

σ
σ σ

.  (A6)  

Based on Arnold (1973, pp. 130), we know that the mean and variance of x follow the deterministic 
differential equations: 

  ( ) ( )2 2 2 2
0 0

1dx t x t dt
t t

µ
σ σ σ σ

⎡ ⎤
= − +⎢ ⎥+ +⎣ ⎦

, with ( ) 00x µ=  , and  (A7) 

  ( ) ( )
( )

2

22 2 2 2
0 0

2dx t x t dt
t t

σ
σ σ σ σ

⎡ ⎤
⎢ ⎥= − +
⎢ ⎥+ +⎣ ⎦

, with ( ) 2
00x σ= .  (A8) 

Solving the above equations for the mean and variance of the inflation expectations we get: 

  0
2 2

0

( )x t
t
µ µµ
σ σ
−

= +
+

: the mean inflationary expectations; and   (A9) 
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  ( )
2

2 2
0

x t
t

σ
σ σ

=
+

: the variance of the inflationary expectations.   (A10) 

In equilibrium, the population forms rational expectations based on a Bayesian rule. These expectations are 
described by (A3). The government knows (A3), and thus derives the deterministic paths of the expectations’ mean 
and variance, (A9) and (A10), respectively. Based on these paths, and on its own loss function, the government 
finally chooses the optimal commitment level µ*.  

 
 

Appendix II: 
Determination of the optimal government commitment with a fixed target 
As justified in the text, the expected loss associated with monetary policy is given by: 

 ( ) ( ) ( ) ( ) ( )22 * 2EL t A x t t B t Ax t Bµ µ π σ⎡ ⎤⎡ ⎤= − + − + +⎣ ⎦ ⎣ ⎦ .  (A11)  

The total loss is the integral of the (discounted) losses from the introduction of the policy to infinity:  

( )
( )

22 * 2 2
0 2 2 22 2

00 0 0 00

t t
t te eTL A dt B e dt A dt B e dt

tt

δ δ
δ δµ µ µ π σ σ

σ σσ σ

∞ ∞ ∞ ∞− −
− −⎡ ⎤= − + − + +⎣ ⎦ ++

∫ ∫ ∫ ∫ . (A12) 

The government then chooses µ to minimize the total loss, by setting the first derivative of the total loss with respect 
to µ to zero. (It is clear from the below expression that the second derivative is positive, so this is indeed a 
minimum). 

  ( )
( )

( )*
0 22 2

0 0

2 2
tTL eA dt B

t

δ∂ µ µ µ π δ
∂µ σ σ

∞ −

= − + −
+

∫ .   (A13)  

Let us define: ( )22
00

tI e t dtδ σ σ
∞ −⎡ ⎤= +⎢ ⎥⎣ ⎦∫ , which is a function of δ, σ, and σ0, but not µ. Now, setting the first 

derivative of the total loss with respect to the target rate to zero, we get: 

( ) ( ) ( )* *
0 0/ 2 2 0TL A I B AI B AI Bµ µ µ µ π δ µ δ µ π δ∂ ∂ = − + − = → + = + . 

Finally, we obtain: 
 

 
( ) ( )

( )
*

0*
22 2

0 0

 , where 
tAI B eI dt

AI B t

δµ π δ
µ

δ σ σ

∞ −+
= =

+ +
∫ .    (A14)  

 
 

Appendix III: 
Determination of the public's expected inflation path under random targeting 

As indicated in the text, the public wants to determine the true government inflation target µ. As this target 
varies over time, we will use ( )tµ  throughout this appendix. The public knows that ( )tµ  is generated randomly so 
that d t dwµ ω( ) = , but cannot observe ( )tµ  directly. The public instead observes a noisy signal (inflation), which 
is based on ( )tµ . The equation of the signal is: 

  ( ) ( ) ( )logd p dz t t dt dvµ σ= = +⎡ ⎤⎣ ⎦ .      (A15)  

The public thus observes z(t), and must infer the value of µ(t). The Kalman-Bucy solution for the filtering 
problem is described by the stochastic differential equation: 
  ( ) ( ) ( ) ( )[ ]dx t F t dz t x t dt= − , where ( ) ( ) 00 0publicx E µ µ= =⎡ ⎤⎣ ⎦ .  (A16)  

As before, ( ) ( ) 2F t R t σ= , and R(t) follows the deterministic Ricatti equation: 
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  ( ) ( )2
2

2

R t
dR t dtω

σ

⎡ ⎤
= − +⎢ ⎥
⎢ ⎥⎣ ⎦

with initial condition ( ) 2
00R σ= .    (A17) 

Solving for R, we get: 

  ( )
22
0

2 2
0

1  , where /  and 
1

t

t

CeR t C
Ce

α

α

ωσ σσω α ω σ
ωσ σ

+−
= = =

+ −
,   (A18)  

 and thus: 

  F t
Ce
Ce

C
t

t( ) /=
−
+

= =
+
−

α α ω σ
ωσ σ
ωσ σ

α

α

2

2
0
2

0
2

1
1

 ,  where  and .   (A19) 

This implies that the public's expectations follow the stochastic differential equation: 

  ( ) ( ) ( )
2

2

1[ ]
1

t

t

Cedx t dz t x t dt
Ce

α

αα −
= −

+
.      (A20) 

Let us define as before:  

  
( ) ( )

( ) ( ) ( ) ( )2var

government

government government

x t E x t

x t x t E x t x t

= ⎡ ⎤⎣ ⎦
⎡ ⎤= = −⎡ ⎤⎣ ⎦ ⎣ ⎦

.    (A21) 

Rewriting (A20) based on (A15) and the definition of ( )tµ , we obtain: 

( ) ( ) ( )
2

2

1
1

t

t

Cedx t t dt dv x t dt
Ce

α

αα µ σ−
⎡ ⎤= + −⎣ ⎦+

, or:    (A22) 

( ) ( )
2 2 2

2 2 2

1 1 1
1 1 1

t t t

t t t

Ce Ce Cedx t x t dt dv
Ce Ce Ce

α α α

α α αα µ σα
⎡ ⎤− − −

= − + +⎢ ⎥+ + +⎣ ⎦
  (A23) 

Based on Arnold (1973) the mean and variance of x follow the deterministic differential equations: 

  ( ) ( ) ( )
2 2

2 2

1 1
1 1

t t

t t

Ce Cedx t x t t dt
Ce Ce

α α

α αα µ α
⎡ ⎤− −

= − +⎢ ⎥+ +⎣ ⎦
, with x( )0 0= µ , and (A24) 

( ) ( ) ( )
22 2

2 2 2
2 2

1 12
1 1

t t

t t

Ce Cedx t x t dt
Ce Ce

α α

α αα α σ ω
⎡ ⎤⎛ ⎞− −

= − + +⎢ ⎥⎜ ⎟+ +⎢ ⎥⎝ ⎠⎣ ⎦
, with ( ) 2

00x σ= .  (A25) 

Solving the above equations for the mean and variance of the inflation expectations we get: 

( ) ( ) ( ) ( ) ( )
2
0

0 2

2  , where  and t tx t t t
e eα α

σα ωµ µ µ α β
α β α β σ σ−⎡ ⎤= + − = =⎣ ⎦ + + −

, and (A26) 

( ) ( ) ( ) ( )( )( ) ( )( )
( ) ( )

22 2 2 2 2 2 2
2

2

2 1 1 1 2 1
1

2

t

t t

t e
x t

e e

α

α α

α α β α α α β α α α α βα α
α β α β

−

−

− − + − + − + −
= + +

⎡ ⎤+ + −⎣ ⎦
. (A27) 

 
 

Appendix IV: 
Determination of the optimal government commitment with a random target 

As before, the expected loss at each time t is given by: 
 

 ( ) ( ) ( ) ( ) ( ) ( )22 * 2 2EL t A x t t B t Ax t Bµ µ π σ ω⎡ ⎤⎡ ⎤= − + − + + +⎣ ⎦ ⎣ ⎦ .  (A28) 

It follows that the total loss is  
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( )( )
( ) ( )

( ) ( ) ( )

2 2
2

0 22 20 0 0

2* 2 2

0 0 0

4 t

t t

t t t

eTL A t dt
e e

B t e dt A e x t dt B e dt

δ

α α

δ δ δ

σ ωµ µ
σω σ σω σ

µ π σ ω

∞ −

−

∞ ∞ ∞
− − −

= − +
⎡ ⎤+ + −⎣ ⎦

⎡ ⎤− + + +⎣ ⎦

∫

∫ ∫ ∫
.  (A29) 

To optimize governmental policy, let us first determine the best monetary target under the temporary assumption 
that ω is constant (that is, not a choice variable). This is achieved by setting the derivative of the total loss function 
with respect to the target rate to zero: 

  ( ) ( )
( ) ( )

( )
2 2

*
0 22 2

0 0 0

4
2 2

t

t t

eTL A t dt B t
e e

δ

α α

σ ω∂ µ µ µ π δ
∂µ σω σ σω σ

−∞

−
⎡ ⎤⎡ ⎤= − + −⎣ ⎦ ⎣ ⎦⎡ ⎤+ + −⎣ ⎦

∫ .

 (A30) 

Let us define: ( ) ( ) ( ) 22 2 2 2
0 00

( ) 4 t t tJ e e e dtδ α αω σ ω σω σ σω σ
∞ −⎡ ⎤ ⎡ ⎤≡ + + −⎣ ⎦ ⎣ ⎦∫ , which again does 

not depend on ( )tµ . Now, setting the first derivative of the total loss with respect to the target rate to zero, we get: 

( ) ( ) ( )
( )( ) ( ) ( )( )

22 2 2 2
0 00

* *
0 0

/ ( ) 4

2 2 0

t t tTL J t e e e dt

A t J B t t AJ B AJ B

δ α αµ σ ω σω σ σω σ

µ µ µ π δ µ δ µ π δ

∞ −⎡ ⎤ ⎡ ⎤∂ ∂ ≡ + + −⎣ ⎦ ⎣ ⎦
⎡ ⎤= − + − = → + = +⎣ ⎦

∫ . 

Finally, we obtain  

  ( ) ( ) ( )
( )

*
0* AJ B

AJ B
µ ω π δ

µ ω
ω δ

+⎡ ⎤⎣ ⎦=
+

,where     (A31) 

 
( ) ( )

22
0

2 2
0

4 ,   and .
t

t t

eJ dt
e e

δ

α α

σα ωα β
σ σα β α β

∞ −

−
≡ = =

⎡ ⎤+ + −⎣ ⎦
∫  

In equilibrium, the government should choose a target inflation rate described by (A31) for any particular 
(predetermined) level of randomization ω. Subsequently, the government should choose the particular level of 
randomization ω* that minimizes the total loss function (A29). Due to the complexities of the equations involved, a 
closed solution for ω* is not available. 

 
 

Appendix V 
Comparison of expectations convergence speed under fixed and random targets 

We attempt to show that the (expected) convergence of the expectations towards the true target rate is faster 
under random targeting (A26) than under fixed targeting (A9). Let f t e tt( ) ,= ∈ ℜα be an exponential function, 
with α = ω/σ as above. Since f is convex, we have from Jensen's inequality: 
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    (A32) 

In particular, let us set: t1 = t; t2 = - t , and σωσϖω 2/)( 2
0+=s . From the above inequality (A32), we get: 
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But for any value q, we know that e qq ≥ +1 . In particular: 
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Based on the fact that σ corresponds to the maximum inflation generation precision, it follows that:  

 σ σ
σ
σ

≤ ≥0 1, . and so we also have: 0
2

2       (A35) 

Combining (A33), (A34) and (A35), we get: 
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Inverting, we obtain: 
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Multiplying by 0 ( )tµ µ−  we obtain: 
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The above equations, together with the equations (A26) and (A9), show that the convergence of 
x towards µ is always faster under random targeting than under fixed rate targeting.  Moreover, if we compare 
(A14) and (A31), with (A37), we find that the weighting factor I that appears in the fixed rate optimization problem 
is always higher than the factor J that appears in the random rate optimization. Indeed, squaring (A37) and using the 
definitions of I and J, we obtain that ( ) , 0.I J ω ω≥ ∀ >  In particular, this implies that the optimal target under 

randomization will be always closer to the socially desired level π* than will the optimal rate under a fixed target 
policy. 

 
 

Appendix VI 
Comparison of total losses under fixed and random targets 

We have shown that optimality in the fixed and randomized targeting cases requires the government to 
choose µF

* and α*, µR
* (α*) respectively. These choices generate respective values of the loss function of 

( )* *F FTL TL µ=  and ( )* *F RTL TL µ α= ⎡ ⎤⎣ ⎦ . Below, we establish a sufficient (but not necessary) condition 

for *RTL  to be lower than *FTL . For simplicity, calculations below are carried out using the symbols 

σωα /= and 22
0 /σσβ = . 

Lemma 1: Under random targeting, ( ) ( ) ( )22

0
lim 1 1 , 0x t t t t
α

σ β β
→

⎡ ⎤= + + ∀ >⎣ ⎦ . 

Proof of Lemma 1: Starting with the formula for ( )x t in (A27), we apply the L’Hospital rule twice, since 

α is the only variable factor. The fact that the resulting limit exists and is finite proves the lemma (for clarity of 
exposition, actual calculations are skipped here). 
Lemma 2: Let µF

* be the optimal inflation target chosen under fixed targeting, and ( )* *F FTL TL µ=  the total 

loss associated with it. Also, for a given α > 0, let µ R
* (α) be the optimal inflation target chosen under 

random targeting, and ( ) ( )* *R RTL TLα µ α= ⎡ ⎤⎣ ⎦ . Then, the following relation 

holds: ( )* *

0
lim R R FTL TL
α

µ α
→

⎡ ⎤ ≤⎣ ⎦ , with equality iff .1=β   
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 Proof of Lemma 2: We know that 
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In the above equality, let us take 0α → , which also implies 0ω → . First of all, from the derivation in 

Appendix V (or simply applying the l’Hospital rule twice) we have that: 
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Second, it is trivial to see that: 
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Using the above (A39) and (A40) results, we obtain: 
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Based on Lemma 1, we can simplify further: 
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Since by construction 1β ≥ , it follows that ( ) ( )22

0
1 / 1 0tA e t t dtδσ β β β

∞ − − + ≥⎡ ⎤⎣ ⎦∫ , with equality iff 

1β = . 
Combining this with (A42), we reach the desired conclusion, namely, that: 
  ( )* *

0
lim R R FTL TL
α

µ α
→

⎡ ⎤ ≤⎣ ⎦ , with equality iff .1=β     (A43) 

Lemma 3: With the same notation as above, ( )*lim R RTL
α

µ α
→∞

⎡ ⎤ = ∞⎣ ⎦ . 

Proof of Lemma 3: The result is derived trivially by passing α to infinity in (A28) and noticing that the first three 
terms are all positive and that the last one is infinite. 
Theorem 1: If 0σ σ>  , that is, if  1β > , then ∃ > =ω α ω σ0 (and thus / ) , such that  

    ( ) ( )* 0,R R FTL TLµ α α α⎡ ⎤ < ∀ ∈⎣ ⎦ . 
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Proof of Theorem 1: Since β > 1, we know from Lemma 2 that ( )* *

0
lim R R FTL TL
α

µ α
→

⎡ ⎤ <⎣ ⎦ , This implies 

that there exists a neighborhood of zero, say, N = (0, 2ε) with ε > 0, such that: 
 ( ) ( )* * , 0, 2 .R R FTL TL Nµ α ε ε⎡ ⎤ < ∀ ∈ =⎣ ⎦       (A44) 

In particular, it follows that: 
  ( )* *0 .R R FTL TLε µ ε⎡ ⎤∃ > ∴ <⎣ ⎦         (A44a) 

From Lemma 3, we know that ( )*lim .R RTL
α

µ α
→∞

⎡ ⎤ = ∞⎣ ⎦  This implies that there exists a neighborhood of infinity, 

say N’ = (δ/2,∝) with δ > ε > 0, such that: 
  ( ) ( )* * , / 2, .R R FTL TL Nµ α ε δ′⎡ ⎤ < ∀ ∈ = ∞⎣ ⎦      (A45) 

In particular, it follows that: 
  ( )* *

R R FTL TLδ ε µ δ⎡ ⎤∃ > ∴ >⎣ ⎦        (A45a) 

The expressions (A44a) and (A45a) show that the function ( )*
R RTL µ⎡ ⎤⋅⎣ ⎦ takes values both below and above TL*F. 

But ( )*
R RTL µ α⎡ ⎤⎣ ⎦ is a continuous function of α, and thus (A44a) and (A45a) guarantee that: 

   ( ) ( )*ˆ ˆ, .R R FTL TLα ε δ µ α⎡ ⎤∃ ∈ ∴ =⎣ ⎦       (A46) 

Let us now define the set A as follows: ( )* *{ 0 | R R FA x TL x TLµ⎡ ⎤= > =⎣ ⎦ . Expression (A46) guarantees 

that the set A is non-empty. Let α = inf
x

A . We can easily see that α > 0 . Indeed, if this were not the case, there 

would exist points x arbitrarily close to zero such that ( )* .R R FTL x TLµ⎡ ⎤ =⎣ ⎦ But this contradicts (A45), which says 

that there exists an entire neighborhood of zero with points for which the relation above is not true. We contend now 

that the α > 0  as defined above has the desired property: ( ) ( )* * 0,R R FTL TLµ α ε α⎡ ⎤ < ∀ ∈⎣ ⎦ . Indeed, suppose 

by contradiction that this were not the case, that is, 
 ( ) ( )*0, R R FTL TLθ α µ θ⎡ ⎤∃ ∈ ∴ >⎣ ⎦       (A47) 

From (A45) we know that ( )*
R RTL µ⎡ ⎤⋅⎣ ⎦  must take a value lower than TL*F in ( )0,α . If (A47) were true, then the 

function would also take a value greater than TL*F. By reason of continuity of the function ( )*
R RTL µ⎡ ⎤⋅⎣ ⎦ , we 

conclude that ( ) ( )* *0, R R FTL TLγ α µ γ⎡ ⎤∃ ∈ ∴ =⎣ ⎦ . It follows that γ ∈ A and thus, by construction, 

γ α≥ = inf .
x

A  But this contradicts the fact that by construction ( )0,γ α∈ . It follows that (A47) cannot be true, 

and thus we conclude that: 
  ( ) ( )* *0 0,R R FTL TLα µ α α⎡ ⎤∃ > ∴ < ∀∈⎣ ⎦      (A48). 
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Figure 1: Inflation Vs. Time: High Inflation Case (Random Walk Target) 
The below figure plots the time paths of expected inflation under the random walk target and 
under a ‘traditional’ fixed inflation target. The dotted line (pink) shows the path of inflation 
under the fixed target and the solid line (blue) under the random one. The fixed target and the 
initial value of the random walk target are both set to 3 percent. The public’s initial guess in each 
case is set to 15 percent. The parameters for the calculation are as follows: ω  = 0.1, σ  = 0.1, 0σ  
= 0.01, *µ  = 3, and 0µ  = 15.  
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Figure 2: Inflation Vs. Time: with White Noise Random Process 
The below figure plots the time paths of expected inflation under the white noise random target 
and under a ‘traditional’ fixed inflation target. The dotted line (pink) shows the path of inflation 
under the fixed target and the solid line (blue) under the random one. The fixed target and the 
initial value of the white noise target are both set to 3 percent. The public’s initial guess in each 
case is set to 15 percent. The parameters for the calculation are as follows: ω  = 0.1, σ  = 0.1, 0σ  
= 0.01, *µ  = 3, and 0µ  = 15.  
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Figure 3: Inflation Vs. Time: Inflation, Comparing Random Processes 
The below figure plots the time paths of expected inflation under the white noise random target 
and under a random walk inflation target. The dotted line (pink) shows the path of inflation 
under the white noise process and the solid line (blue) under the random walk one. The initial 
values of both are set to 3 percent. The public’s initial guess in each case is set to 15 percent. The 
parameters for the calculation are as follows: ω  = 0.1, σ  = 0.1, 0σ  = 0.01, *µ  = 3, and 0µ  = 
15.  
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Figure 4: Inflation Vs. Time: Large Alpha 

The below figure plots the time paths of expected inflation under the random walk target and 
under a ‘traditional’ fixed inflation target. This figure illustrates the role of a large “alpha”. 
Recall that α ω σ= . Thus since sigma is not a choice variable, the alpha variable reflects the 
government’s choice of ω . The dotted line (pink) shows the path of inflation under the fixed 
target and the solid line (blue) under the random one. The fixed target and the initial value of the 
random walk target are both set to 3 percent. The public’s initial guess in each case is set to 15 
percent. The parameters for the calculation are as follows: ω  = .19, σ  = 0.1, 0σ  = 0.01, *µ  = 3, 
and 0µ  = 15. Note the variability in the target path of inflation (in addition to inflation itself) in 
the random walk case. 
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Figure 5: Inflation Vs. Time: Deflation Case 
The below figure plots the time paths of expected inflation under the random walk target and 
under a ‘traditional’ fixed inflation target. The dotted line (pink) shows the path of inflation 
under the fixed target and the solid line (blue) under the random one. The fixed target and the 
initial value of the random walk target are both set to 3 percent. The public’s initial guess in each 
case is set to minus one percent. The parameters for the calculation are as follows: ω  = 0.1, σ  = 
0.1, 0σ  = 0.01, *µ  = 3, and 0µ  = -1. 
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Figure 6: Squared Error for High Inflation Case 
The below figure plots the time paths of the squared error in prediction under the random walk 
target and under a ‘traditional’ fixed inflation target. The dotted line (pink) shows the path of 
inflation under the fixed target and the solid line (blue) under the random one. The fixed target 
and the initial value of the random walk target are both set to 3 percent. The public’s initial guess 
in each case is set to 15 percent. The parameters for the calculation are as follows: ω  = 0.1, σ  = 
0.1, 0σ  = 0.01, *µ  = 3, and 0µ  = 15. 
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Figure 7: Mean Squared Error for High Inflation Case 
The below figure plots the paths of the mean squared error, from time zero to present, in 
prediction under the random walk target and under a ‘traditional’ fixed inflation target. The 
dotted line (pink) shows the path of inflation under the fixed target and the solid line (blue) under 
the random one. The fixed target and the initial value of the random walk target are both set to 3 
percent. The public’s initial guess in each case is set to 15 percent. The parameters for the 
calculation are as follows: ω  = 0.1, σ  = 0.1, 0σ  = 0.01, *µ  = 3, and 0µ  = 15. 
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Figure 8: Squared Error for Deflation Case 
The below figure plots the paths of the squared error in prediction under the random walk target 
and under a ‘traditional’ fixed inflation target. The dotted line (pink) shows the path of inflation 
under the fixed target and the solid line (blue) under the random one. The fixed target and the 
initial value of the random walk target are both set to 3 percent. The public’s initial guess in each 
case is set to minus one percent. The parameters for the calculation are as follows: ω  = 0.1, σ  = 
0.1, 0σ  = 0.01, *µ  = 3, and 0µ  = -1. 
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Figure 9: Mean Squared Error for Deflation Case 
The below figure plots the paths of the mean squared error, from time zero to present, in 
prediction under the random walk target and under a ‘traditional’ fixed inflation target. The 
dotted line (pink) shows the path of inflation under the fixed target and the solid line (blue) under 
the random one. The fixed target and the initial value of the random walk target are both set to 3 
percent. The public’s initial guess in each case is set to minus one percent. The parameters for 
the calculation are as follows: ω  = 0.1, σ  = 0.1, 0σ  = 0.01, *µ  = 3, and 0µ  = -1. 
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Figure 10: Convergence Rates Random Walk vs Fixed Target 
The below figure plots the convergence rates of population expectations under the traditional 
‘fixed’ target and the random walk target. We measure the number of periods required for the 
expectations path to reach the intended target (with a small permitted error of .05%). In each 
case, we compare the convergence rates with the value of ω . The dotted line (pink) shows the 
convergence rates under the fixed target and the solid line (blue) under the random one. The 
fixed target and the initial value of the random walk target are both set to 3 percent. The public’s 
initial guess in each case is set to 15 percent. ω  is incremented from 0.1 to 0.19, and the other 
parameters for the calculation are as follows:, σ  = 0.1, 0σ  = 0.01, *µ  = 3, and 0µ  = 15. 
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Figure 11: Convergence Rates White Noise vs Fixed Target 
The below figure plots the convergence rates of population expectations under the traditional 
‘fixed’ target and the white noise random target. We measure the number of periods required for 
the expectations path to reach the intended target (with a small permitted error of .05%). In each 
case, we compare the convergence rates with the value of ω . The dotted line (pink) shows the 
convergence rates under the fixed target and the solid line (yellow) under the white noise random 
one. The fixed target and the initial value of the white noise target are both set to 3 percent. The 
public’s initial guess in each case is set to 15 percent. ω  is incremented from 0.1 to 0.19, and the 
other parameters for the calculation are as follows:, σ  = 0.1, 0σ  = 0.01, *µ  = 3, and 0µ  = 15. 
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Figure 12: Convergence Rates White Noise vs Random Walk Target 
The below figure plots the convergence rates of population expectations under the two studies 
forms of random targets, random walk and white noise. We measure the number of periods 
required for the expectations path to reach the intended target (with a small permitted error of 
.05%). In each case, we compare the convergence rates with the value of ω . The solid line 
(blue) shows the convergence rates under the random walk target and the dashed line (green) 
under the white noise one. The initial value of both targets is set to 3 percent. The public’s initial 
guess in each case is set to 15 percent. ω  is incremented from 0.1 to 0.19, and the other 
parameters for the calculation are as follows:, σ  = 0.1, 0σ  = 0.01, *µ  = 3, and 0µ  = 15. 
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