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Abstract 

 
Many hedge funds attempt to achieve high returns by employing lev-
erage. However, it is difficult to track the degree of leverage used by 
hedge funds over time because detailed timely information about 
their positions in asset markets is generally unavailable. This paper 
discusses how to combine shrinkage variable selection methods 
with dynamic regression to compute and track hedge fund leverage 
on a time-varying basis. We argue that our methodology measures 
leverage as well as hedge fund sensitivity to markets arising from 
other sources. Our approach employs the lasso variable selection 
method to select the independent variables in equations of hedge 
fund excess returns. With the independent variables selected by the 
lasso method, a state space model generates the parameter esti-
mates dynamically. The hedge fund market sensitivity indicator is 
the average of the absolute values of the parameters in the excess 
return equations. Our indicator peaks at the time of the Long Term 
Capital Management meltdown in 1998 and again at a critical time in 
the 2008 financial crisis. In the absence of direct information from 
hedge fund balance sheets, our approach could serve as an im-
portant tool for monitoring market sensitivity and financial distress 
in the hedge fund industry. 
 
Keywords: hedge fund leverage and market sensitivity, state space 
model, dynamic regression, lasso method 
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1. Introduction 
 
The Long Term Capital Management (LTCM) breakdown in 1998 underscored the im-
portance of understanding and monitoring the use of leverage by hedge funds. LTCM 
employed leverage of extraordinary magnitudes in the various asset classes in which it 
operated, necessitating the intervention of Federal Reserve officials to bring about an 
orderly conclusion to its operation. Monitoring the degree of leverage employed by 
hedge funds is thus important to policymakers. Leverage, moreover, is just one way that 
hedge funds increase their sensitivity to the underlying markets in which they invest. 
Hedge funds can increase their sensitivity to markets by borrowing, by trading futures 
and options, and by trading assets which are intrinsically sensitive to underlying mar-
kets, and it would be useful for policy officials to have an indicator of hedge fund market 
sensitivity arising from all sources. Monitoring hedge fund market sensitivity with quanti-
tative methods as we propose here falls within a broader class of relatively recent work 
investigating hedge funds and financial stability by Adrian (2007), Chan et al (2006), 
Gupta and Lang (2005), and Getmansky et al (2004).  
 
McGuire and Tsatsaronis (2008), MT hereafter, proposed an econometric approach to 
calculating hedge fund leverage on a time-varying basis using rolling regressions. They 
estimated the average leverage for hedge funds in their database for short rolling sam-
ple periods using panel data for hedge funds’ excess returns. In this paper we replace 
the rolling regression method used in MT with a state space model to address problems 
inherent with rolling regression and panel data. We propose a hybrid approach to tackle 
both the variable selection and leverage estimation for individual hedge funds. 
 
First, the lasso technique is applied to select the set of independent variables for each 
individual hedge fund equation from a pool of 29 potential asset returns, and then a 
state space model is used to compute the parameters dynamically. These parameters 
are then used to construct the leverage indicator. We find that the results using the state 
space model, i.e., dynamic regression, differ markedly from those obtained with rolling 
regressions and that our results match anecdotal evidence from hedge fund operators 
concerning the use of leverage by hedge funds during periods of financial distress. 
 
Section 2 discusses our underlying methodology. Section 3 discusses the data used in 
this paper. Section 4 presents our dynamic method for estimating hedge fund leverage. 
Section 5 presents empirical results. Section 6 presents conclusions. 
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2. Methodology 
 
MT base their analysis on the idea that a hedge fund return stream can be modeled as 
a weighted average of the returns of the underlying assets of the fund (Sharpe 1992). 
Suppose a fund invests in risky assets and a risk-free asset. Then, the hedge fund re-
turn can be expressed as:  
 
(1) !!! = !!! + !!!!

!!! !!,!! + !!!!! !!,! + !! 
 
where !!! is the return of hedge fund ℎ in month !, !!! are parameters for fund ℎ, !!,!!  are 
the returns of the risky assets in which the fund invests, and !!,! is the risk-free rate. The 
term !!! represents the fund manager’s intrinsic ability to outperform a passive strategy. 
When the fund is long (short) a risky asset, the corresponding !!! is expected to be posi-
tive (negative). We further assume the fund can invest at the risk-free rate and that it 
can also borrow to achieve leverage at the risk-free rate so that !!!!! < 0. Then, accord-
ing to MT, |!!!|!

!!! , i.e., the sum of the absolute values of the coefficients of the excess 
returns of the risky assets, is an estimate of the leverage of the fund. Where the fund is 
fully invested, !!! + !!!!! = 1!

!!! → !!!!! = 1− !!!!
!!!  so that (1) can be rewritten as: 

 
(2) !!! − !!,! = !!! + !!!!

!!! (!!,!! − !!,!)+ !! 
 
eliminating the !!!!! !!,! term. Here, the dependent variable is the excess return of the 
hedge fund, and the independent variables are excess returns of the asset classes in 
which the fund invests. 
 
However, suppose that a hedge fund invests, without any special intrinsic ability, only in 
the underlying market !, which is the stock market. Then, equation (2) reduces to: 
 
(3) !!! − !!,! = !!! (!!,!! − !!,!)+ !!   
 
which is an empirical form of the CAPM model, and we recognize that !!!  is an estimate 
of CAPM beta, which can take on a range of values regardless of whether the hedge 
fund is leveraging by borrowing. So we argue that, correctly described, equation (2) is a 
model of market sensitivity whether that sensitivity arises from leverage or simply from 
buying market-sensitive assets, and henceforth we refer to |!!!|!

!!!  as the market sen-
sitivity indicator. 
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3. Data 
 
Data for this study come from the Hedge Fund Research Inc. database of hedge fund 
monthly return streams. Our dataset consists of 156 hedge funds from the database, 
each with a continuous monthly reporting history for the period January 1998 to De-
cember 2011. In addition, we restrict the funds in our study to those with assets under 
management of more than $100 million as of December 2011. The assets-under-
management constraint is intended to eliminate small funds with idiosyncratic strategies 
not representative of the hedge fund sector. We use only live hedge funds, and so we 
include the usual caveat that our results may be subject to the effects of survivorship 
bias. 
 
The data for the !!,!!  in our study are the monthly returns of 29 asset classes. The asset 
classes cover U.S. and international stock markets, U.S. bond markets, commodity 
markets, and the volatility and variance swaps market based on the CBOE volatility in-
dex (VIX). Because of the extensive use of derivatives by hedge funds, we also includ-
ed three option-like assets as suggested in Agarwal and Naik (2004). One of these is 
the CBOE BuyWrite Index (BXM) designed to track the performance of a hypothetical 
buy-write strategy of holding the S&P 500 index and writing the near-term S&P 500 in-
dex covered call option. The other two are based on a strategy of buying a 3-month ma-
turity at-the-money synthetic call/put option of the S&P 500 index and selling it one 
month later. The prices of the synthetic options are calculated using the Black-Scholes 
formula. We use the VIX as an approximation for the implied volatility, the 3-month 
Treasury-bill rate as the risk-free rate, and the S&P 500 index dividend yield. The lever-
age of these two strategies is adjusted for derivative exposure by taking delta-adjusted 
values of the securities. Let !, !, and ! denote stock price, call option price, and put 
price. The delta-adjusted values are calculated as the estimated β multiplied by !

!
∗ !"
!"
   or 

!
!
∗ !!"

!"
, respectively, to take into consideration the option elasticity. The list of asset 

classes is presented below. 
 

1. London PM gold price 
2. Handy and Harman silver base price 
3. COMEX copper spot price 
4. FIBER all items industrial materials index 
5. West Texas Cushing intermediate oil price 
6. Federal Reserve Board nominal trade-weighted dollar index 
7. Dow Jones global ex U.S. stock index 
8. 90-day Treasury bill total return index 
9. 10-year Treasury total return index 
10. S&P 500 total return index 
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11. Nasdaq composite index 
12. MSCI emerging markets index 
13. Dow Jones equity all REIT index 
14. CBOE volatility index 
15. Dow Jones 10-year corporate bond index 
16. S&P energy index 
17. S&P materials index 
18. S&P industrials index 
19. S&P consumer discretionary index 
20. S&P consumer staples index 
21. S&P health care index 
22. S&P financial index 
23. S&P information technology index 
24. S&P telecommunications index 
25. S&P utilities index 
26. Spread: Moody’s seasoned BAA corporate bond yield and 90-day Treasury bill yield 
27. CBOE BuyWrite index 
28. S&P synthetic call option 
29. S&P synthetic put option 

 
4. Estimating market sensitivity with a dynamic method 
 
MT estimated the !!! using rolling regressions on panels of monthly excess returns for 
hedge funds in nine fund families. They used a two-stage approach. In the first stage, 
they applied stepwise regression to create an excess-return equation specific to the 
style classification of the funds in their database from a set of potential independent var-
iables. That is, the independent variables in their excess-return equations in their study 
are the same for each hedge fund within a particular style classification. This approach 
implies that all the funds within the same investment style have the same set of risky 
assets in their portfolios, a condition that we view as rare in practice. Hedge funds use 
very idiosyncratic strategies even within the same style classification, and so in this pa-
per we build excess return equations for individual hedge funds. In the second stage, 
MT used linear regression with panel data over rolling samples to calculate the !!!.  
 
We employ the following two-stage approach. In our first stage, excess-return equations 
are built for each hedge fund individually, using the lasso method proposed by Tibshira-
ni (1996), a shrinkage method that has gained wide acceptance in the data-mining field. 
Using the lasso method, a tradeoff is accepted between bias and variance in the re-
gression. By introducing some bias in the estimation, the effects of multicollinearity can 
be reduced so that the variance of the model and the mean square error are reduced. 
Multicollinearity problems could be substantial in excess-return equations where all the 
independent variables are excess returns. 
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For a linear regression !! = !! + !! ∗ !!" + !! , ! = 1,2,3,… ,!!

!!! , the lasso estimate is 
defined by: 
 
(4) !!"##$ = argmin! (!! − !! + !! ∗ !!")!

!
!!!

!
!!!   

 
subject to !!

!
!!! ≤ ! where ! is a tuning parameter. It can also be written in the 

equivalent Lagrangian form: 
 
(5) !!"##$ = argmin!( (!! − !! + !! ∗ !!")!

!
!!!

!
!!! + ! !!

!
!!! ) 

 
The solutions are nonlinear in terms of the dependent variable, and there is no closed 
form solution for the lasso regression. By making ! sufficiently small, some of the coef-
ficients are shrunk to exactly zero, which means that the lasso estimation method is al-
so a variable selection method. By tuning !  continuously, the lasso in effect performs a 
continuous subset selection, which has less variance than the discrete process em-
ployed in stepwise selection. In our study, the choice of the tuning parameter !  is based 
on 10-fold cross-validation estimation of mean square error.  
 
In the second stage, we estimate the parameters in equation (2) as time-varying pa-
rameters and compute market sensitivity for each hedge fund. In classical least squares 
used in rolling regression methods, the regression parameters are assumed to be fixed 
values within short rolling samples. The parameters are time-varying only in the sense 
that they change as the rolling sample changes. The results obtained with rolling re-
gression are arbitrarily affected by the choice of the length of the rolling sample. Choos-
ing a rolling sample that is too long may mean that spikes and pulses in the actual de-
gree of hedge fund market sensitivity are smoothed away and so cannot be observed 
either in the estimated parameters or in the market sensitivity indicator obtained from 
those parameters. Yet, while rolling regressions may smooth parameter estimates so 
that actual spikes cannot be seen, as the sample is rolled, an outlier may be added to or 
deleted from the sample, causing sudden spurious changes in the estimated parame-
ters that mimic the effects of spikes and pulses in market sensitivity. Choosing a rolling 
sample that is too short may mean that there are insufficient degrees of freedom for ef-
ficient estimation. Due to the small sample size in the rolling window, the regressions 
would have large standard errors of the estimates of the coefficients, which would lead 
to unstable and at times inaccurate estimates of market sensitivity. The standard errors 
of the estimates of the coefficients would strongly depend on the window size. 
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Using sums of absolute values of parameters as the market sensitivity indicator intro-
duces another problem. Using absolute values introduces a bias in the market sensitivi-
ty estimate because of Jensen’s inequality. We discuss the mathematics of this bias 
and calculate it and corrections for it in the appendix. The bias may be larger using roll-
ing regression than it is using dynamic regression, and it is not constant for either ap-
proach, a topic to which we return below where we employ the bias corrections to com-
pute results for both methods. 
 
To provide examples of the impact of window size, we constructed excess return equa-
tions for funds #30 and #40 in our database using the lasso method and then computed 
the market sensitivity indicator for each fund, using both 24-month and 36-month rolling 
window regressions. The results are shown in figure 1, where we see that, for the same 
fund with the same excess-return equation, different window sizes yield very different 
estimates of market sensitivity. 
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Figure 1. 24-month and 36-month rolling regression estimation 
of market sensitivity for funds #30 and #40. 

 
To solve the problems inherent in rolling regression, we propose using a state space 
model to estimate the regression parameters dynamically. The state space model, or 
dynamic linear model, has an order one vector autoregression as its state equation. 
 
(6) !! = !!!!! +!! 
 
The p*1 state vector !! is generated from the previous state vector !!!! for ! =
1,2,3,… ,!. The vector !! is a p*1 independent and identically distributed zero-mean 
normal vector having a covariance matrix of !. The starting state vector !! is assumed 
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to have mean !! and a covariance matrix of !!. The state process is a Markov chain, 
but we do not have direct observation of it. We can only observe a q-dimensional linear 
transformation of !! with added noise. Thus, we have the following observation equa-
tion: 
 
(7) !! = !!!! + !!  
 
where !! is a q*p observation matrix. The observed data are in the q*1 vector !!, and 
the additive observation noise !! is white Gaussian noise with a q*q covariance matrix 
!. We also assume !! and !! are uncorrelated. Our primary interest is to produce the 
estimator for the underlying unobserved !! given the data !! = {!!,… ,!!}. In the litera-
ture, when s<t, this is referred to as forecasting; when s=t, this is Kalman filtering; and 
when s>t, this is Kalman smoothing.  
 
With the definitions !!! = !(!!|!!), !!! = ![ !! − !!! !! − !!! ] and the initial conditions 
!!! = !! = !! and !!! = !!, we have the recursive Kalman filter equations as follows: 
 
(8) !!!!! = !!!!!!!!  
 
(9) !!!!! = !!!!!!!!!! + ! 
 
for ! = 1,2,3,… ,! with  
 
(10) !!! = !!!!! + !!(!! − !!!!!!!)  
 
(11) !!! = [! − !!!!]!!!!!  
 
(12) !! = !!!!!!!! [!!!!!!!!!! + !]!! 
 
The Kalman smoother is set up using !!! and !!! calculated from the Kalman filter as the 
initial conditions as follows: 
 
(13) !!!!! = !!!!!!! + !!!!(!!! − !!!!!)  
 
(14) !!!!! = !!!!!!! + !!!![!!! − !!!!!]!!!!!   
 
(15) !!!! = !!!!!!!!![!!!!!]!! 
 
for ! = !,! − 1,! − 2,… ,1. 
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In our studies !! is the observed excess return of a hedge fund at time !, and !! is the 
1*p row vector representing the excess returns of the selected assets for that particular 
hedge fund. The unobserved state !! is the vector of time-varying parameter estimates 
of the !!! in equation (2). As suggested in Lai and Xing (2008), in the case of the dy-
namic capital asset pricing model, a popular choice is to make ! the identity matrix and 
! diagonal. Then the  ! and ! matrices are computed using maximum likelihood estima-
tion. In our paper we employ the Kalman smoother to compute market sensitivity since 
the method can utilize all the available data and so provide more accurate estimates of 
the time-varying regression parameters than that obtained with rolling regression, which 
uses only subsets of the data. In the discussion below, we use the terms Kalman 
smoother and dynamic regression interchangeably. 
 
5. Empirical results 
 
In the first stage we use lasso to select the variables for each hedge fund. The frequen-
cy of occurrence of each asset class in the 156 equations is shown below. 
  
 Asset         Occurrences 

1 London PM gold price        11 
2 Handy and Harman silver base price      45 
3 COMEX copper spot price       23 
4 FIBER all items industrial materials index     44 
5 West Texas Cushing intermediate oil price     20 
6 Federal Reserve Board nominal trade-weighted dollar index  28 
7 Dow Jones global ex U.S. stock index     55 
8 90-day Treasury bill total return index     36 
9 10-year Treasury total return index      39 
10 S&P 500 total return index       12 
11 Nasdaq composite index       45 
12 MSCI emerging markets index      81 
13 Dow Jones equity all REIT index      21 
14 CBOE volatility index        33 
15 Dow Jones 10-year corporate bond index     26 
16 S&P energy index        30 
17 S&P materials index        33 
18 S&P industrials index        27 
19 S&P consumer discretionary index      19 
20 S&P consumer staples index       24 
21 S&P health care index       16 
22 S&P financial index        23 
23 S&P information technology index      30 
24 S&P telecommunications index      17 



11	  
	  

25 S&P utilities index        15 
26 Spread: Moody’s seasoned BAA corporate bond yield and 

90-day Treasury bill yield       18 
27 CBOE BuyWrite index       30 
28 S&P synthetic call option       14 
29 S&P synthetic put option       65 

 
We see that all the proposed asset classes enter into the excess return equations. 
There are about 5-6 excess returns picked up by each hedge fund equation on average. 
The three option-like strategies appear frequently, which agrees with the results in 
Agarwal and Naik. The MSCI emerging markets index appears very frequently in the 
equations. In addition, it is interesting that the S&P sub-indexes each appear more fre-
quently than the S&P 500 total return index. This may be due to the fact that hedge 
funds tend to specialize in some sectors of the stock market but not in the overall mar-
ket. The sub-indexes and S&P index are highly correlated, and so this demonstrates the 
power of the lasso method to handle multicollinearity.  

 
With the variables selected for each hedge fund equation by the lasso method, we esti-
mate equation (2) using rolling regressions for purpose of comparison as in MT and 
equation (13) using the Kalman smoother. We use a 36-month window for the rolling 
regressions. We also employ the bias correction procedure presented in the appendix to 
compute average market sensitivity. The bias correction is employed for both the rolling 
regressions and the Kalman smoother. In our work with rolling regression, the standard 
errors are calculated using the Newey-West estimator, which is robust in the presence 
of heteroskedasticity and autocorrelation. The sample period for the dynamic regression 
is the 168 months from January 1998 to December 2011. We estimate the parameters 
for each hedge fund using both methods and then compute the market sensitivity indi-
cator ( !!,!!!

!!! )/156!"#
!!! , ! = 1,2,3,…!, i.e., the average of the market sensitivities for 

the 156 funds in our database in each period t. The chart below shows the results. 
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Figure 2. Average market sensitivity for 156 funds 
 using rolling and dynamic regression 

 
At a glance, the results using rolling regression and dynamic regression are very differ-
ent. The correction factors are much larger for the rolling regression than for dynamic 
regression. This is understandable since the Kalman smoother uses all the information 
so that the degrees of freedom are greater and there is, thus, less estimation error. Un-
der dynamic regression, the Kalman smoother has its largest bias correction at the end 
of the sample. This is because near the end of sample there is less information about 
the future. So the standard errors are larger. This means that our proposed bias correc-
tion is critical to the analysis since the end of sample is most important for the purpose 
of monitoring hedge fund market sensitivity. Second, the 36-month rolling regression 
shows a spike in 2004 that we cannot link to any significant event. In contrast, the mar-
ket sensitivity estimate using the Kalman smoother is less noisy, and it seems to cap-
ture important changes in market sensitivity. The chart below shows the bias-corrected 
dynamic measure in isolation. 
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Figure 3: Average corrected market sensitivity 
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hedge funds. The market sensitivity indicator reached another peak at about the time of 
the Lehman bankruptcy filing (point B). Thus, in both of these cases the market sensitiv-
ity indicator computed from dynamic regression seems to serve as an indicator of finan-
cial distress. As for the dot-com bubble burst in 2001, we do not see any substantial rise 
in market sensitivity using our dynamic approach. This is in line with the findings in 
Brunnermeier and Nagel (2004). They found that, although hedge funds were heavily 
invested in technology stocks in the run-up to the bubble, they reduced their positions 
before prices collapsed and avoided much of the downturn. 
 
The chart below shows the market sensitivity indicator by major style classification. 
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Figure 4. Market sensitivity by major style classification 
 
Here we see that relative value funds are highly market sensitive at times while event-
driven funds are relatively insensitive to market fluctuations. 
 
6. Conclusion 
 
In this paper we have introduced a hybrid two-stage approach, employing the lasso var-
iable selection method and dynamic regression, to analyze hedge fund market sensitivi-
ty with a market sensitivity indicator computed from our two-stage approach. We com-
pared the results to those generated by rolling regression. We find that rolling regres-
sion has several shortcomings, one of which is the arbitrary choice of rolling window 
length. Rolling regression methods may produce spurious spikes in estimated parame-
ters and the market sensitivity indicator that are not rooted in the actual data, and rolling 
regression may introduce large bias into the market sensitivity indicator.  
 
Dynamic regression produces estimates of the parameters that are not subject to the 
particular problems inherent in rolling regressions. Our methodology produces smoother 
results, and the peaks in our market sensitivity indicator are more consistent with anec-
dotal information about historical events in financial markets. Thus, the market sensitivi-
ty indicator described in this paper may provide analysts and policymakers with more 
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accurate information about the degree of market sensitivity in hedge fund space. The 
sharp increases and peaks of market sensitivity around crisis events revealed by our 
approach could be used as an indicator of stress in financial markets. 
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Appendix: Correction for market sensitivity estimation bias 
 
Suppose !~!(!,!!). Then: 
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Let ! = ! − ! and let ! denote the cumulative distribution function of a standard normal 
distribution. Then, the first term can be rewritten as: 
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Similarly, the second term becomes: 
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Then: 
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which is biased from |!| by !!
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. It is clear that with a small |!|
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and a large ! we could have a large positive bias. The ideal cases, where bias is zero, 
are where ! > 0  !"#   !

!
≫ 1  so that: 
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≫ 1  we have: 
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In this paper we propose to modify the estimate by subtracting 
!!
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!"# !!!
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− 2|!|∅ !|!|

!
. And if the modified market sensitivity is negative, which only 

happens occasionally, we force it to be 0.  
 
 


