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ABSTRACT  __________________________________________________________________________ 

This paper proposes a new way of modeling age, period, and cohort effects that improves substantively 
and methodologically on the conventional linear model. The linear model suffers from a well-known 
identification problem: If we assume an outcome of interest depends on the sum of an age effect, a period 
effect, and a cohort effect, then it is impossible to distinguish these three separate effects because, for any 
individual, birth year = current year – age. Less well appreciated is that the model also suffers from a 
conceptual problem: It assumes that the influence of age is the same in all time periods, the influence of 
present conditions is the same for people of all ages, and cohorts do not change over time. We argue that 
in many applications, these assumptions fail. We propose a more general model in which age profiles can 
change over time and period effects can have different influences on people of different ages. Our model 
defines cohort effects as an accumulation of age-by-period interactions. Although a long-standing litera-
ture on theories of social change conceptualizes cohort effects in exactly this way, we are the first to show 
how to statistically model this more complex form of cohort effects. We show that the additive model is a 
special case of our model and that, except in special cases, the parameters of the more general model are 
identified. We apply our model to analyze changes in age-specific mortality rates in Sweden over the past 
150 years. Our model fits the data dramatically better than the additive model. The estimates show that 
the rate of increase of mortality with age among adults became more steep from 1881 to 1941, but since 
then the rate of increase has been roughly constant. The estimates also allow us to test whether early-life 
conditions have lasting impacts on mortality, as under the cohort morbidity phenotype hypothesis. The re-
sults give limited support to this hypothesis: The impact of early-life conditions lasts for several years but 
is unlikely to reach all the way to old age. 
 
Keywords: Cohort effects; Age-period-cohort identification problem; Mortality; Cohort morbidity  
phenotype hypothesis; Sweden 
JEL: C23, I15, J11, N33 
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1. Introduction

Social scientists conceive of many phenomena as depending on age, period, and cohort

(APC) effects. For example:

• In demography, vital rates may depend on a person’s age, on environmental conditions

in the current year (period), and on conditions early in life that created scarring or

selection effects (cohort).

• In sociology, behaviors such as going to college or forming a family may depend on

individual physiological and social development (age), on major historical events and

social structural changes that individuals encounter in the current year (period), and

on formative experiences of groups of individuals coming of age in different historical

and social contexts (cohort).

• In economics, consumption inequality among a group of people born in the same year

may depend on stages of the life cycle (age), on economic conditions in the current

year (period), and on the group’s initial level of inequality (cohort).

Despite the analytic importance of age, period, and cohort effects, how to empirically

distinguish them is among the best-known and longest-standing methodological problems in

the social sciences. Researchers commonly analyze data consisting of an (A+ 1)× T matrix

of outcomes for ages a = 0, 1, . . . , A and dates t = 1, 2, . . . , T , such as a table of age-specific

mortality rates in various years. The diagonals of this matrix correspond to birth cohorts:

people born in the same year and aging together. Figure 1 illustrates a typical dataset on

mortality in Sweden; we will analyze these data later in the paper. Most attempts to date

to distinguish age, period, and cohort effects in such data have used linear models. However,



it is impossible to distinguish the separate effects of age, period, and birth cohort in a linear

regression model because age, period, and cohort are linearly dependent; for any person, birth

year = current year − age. The problem persists even if one specifies age, period, and cohort

effects nonparametrically with dummy variables for each possible value, as in the additive

model

yat = αa + βt + γj, j = t− a, (1)

where yat is some outcome for people of age a in year t (who are therefore members of birth

cohort j = t−a); αa is the effect of being age a; βt is the effect of living in year t; and γj is the

effect of being a member of cohort j. The separate effects of age, period, and cohort cannot

be distinguished in the additive model (1) because, if (1) is true, then for any constant δ, we

also have

yat = (αa + δa) + (βt − δt) + (γj + δj). (2)

That is, age, period, and cohort effects are identified only up to an unknown trend δ.

Even though the additive model (1) is not identified, it has been widely adopted to

study age, period, and cohort effects. (Examples date to Greenberg et al., 1950; for reviews,

see, e.g., Hobcraft et al., 1982, and Robertson et al., 1999.) Researchers typically solve the

identification problem by imposing one or more constraints on the parameters (e.g., Deaton

and Paxson, 1994; Mason et al., 1973; Mason and Smith, 1985). But such constraints are often

unsatisfying because they must depend on potentially unavailable outside information, on the

researcher’s subjective preferences, or on purely mathematical (as opposed to substantive)

considerations.
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Besides being unidentified, the conventional additive model (1) has serious substantive

limitations. The additive model is a quite simple approximation to the process of social change

and does not adequately describe many phenomena where age, period, and cohort effects are

of interest:

• The additive model specifies that the influence of age is the same in all time periods

and for all cohorts. In fact, however, the influence of age changes over time and across

cohorts. Consider, for instance, the dramatic declines in infant mortality over the past

century (United Nations, 1997).

• The additive model specifies that the influence of conditions in the present period is

the same for people of all ages. In reality, period effects are often age-specific. For

example, the influenza epidemic of 1918 caused especially high mortality among people

in their teens and twenties (Noymer and Garenne, 2000).

• The additive model specifies that cohorts do not change over time. But cohorts must

change, not least because — most obviously in the context of studies of mortality —

some members of the cohort die each year, and they are not necessarily identical to

those who remain alive (Vaupel et al., 1979).

Cohorts can also change over time for reasons other than composition effects. As

Ryder (1965) explained in his seminal article:

The case for the cohort as a temporal unit in the analysis of social change rests

on a set of primitive notions: persons of age a in time t are those who were age

a− 1 in time t− 1; transformations of the social world modify people of different

ages in different ways; the effects of these transformations are persistent.
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In other words, cohort effects arise because different cohorts live through different social

events, or live through the same events at different ages, and these events change the cohort

in long-lasting ways. But because new events constantly occur, a model with unchanging co-

hort effects is appropriate only if all relevant events occur before the initial observation and

only if the impact of these events stays fixed as the cohort ages (Hobcraft et al., 1982). One

can model the effect of events experienced at earlier ages by including lagged period effects if

these events and conditions affect all age groups similarly. However, if, as Ryder argues, co-

horts are continuously exposed to events that affect people of different ages in different ways,

one needs a more general model — a framework that Hobcraft et al. (1982) labeled “contin-

uously accumulating cohort effects.” Despite the widespread theoretical influence of Ryder’s

paper, the concept of continuous cohort change appears never to have been mathematically

formalized or taken to data.

We fill this gap by developing a new model of age, period, and cohort effects that

can accommodate the various processes of change described above. Our model improves on

the additive model in two ways. First, in our model, age profiles can change over time and

period effects can have different influences on people of different ages. Second, our model

operationalizes Ryder’s concept of continuously evolving cohort effects by specifying cohort

effects as accumulations of age-by-period interactions. These substantive contributions lead

to a methodological contribution. We show that our model nests the additive model as a

special case. Apart from a set of measure zero of special cases, however, the parameters of

our model are identified, unlike those of the additive model. In other words, by broadening

the concept of cohort effects, our model avoids the identification problem that has bedeviled

the previous literature on the additive model.
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Previous researchers, of course, also extended the APC accounting model (1) to include

interactions (Fienberg and Mason, 1985; James and Segal, 1982; Moolgavkar et al., 1979). Our

model differs from previous models of interactions both substantively and mathematically.

Our model allows outcomes to depend on the accumulation of all the events a group of people

experiences over the life course, whereas previous models have assumed that only events in

the birth year and in the present year are relevant and that the influence of the birth year

never changes. Previous models, further, remain unidentified because the additive part can

never be identified without additional constraints.

The paper proceeds as follows. In section 2, we describe the model and discuss how to

interpret its parameters. In section 3, we analyze conditions under which the parameters are

identified when outcomes are measured without error, while section 4 extends the analysis

to allow measurement error. Section 5 applies the model to analyze the evolution of human

mortality — a fundamentally important phenomenon in demography — and section6 con-

cludes. Proofs appear in the appendix, with some additional details in a separate technical

appendix.

2. Model

We model an outcome yat as an accumulation of age-by-period interactions. Specifi-

cally, there are K ≥ 1 sequences of time effects e1, . . . , eK , where K is assumed to be known

a priori. Each sequence ek is a list of time effects in various years s: ek = {ek,s}∞s=−∞. Time

effects that occur in year s affect every cohort alive in that year. However, the impact may

depend on the cohort’s age and on which sequence contains the time effect: wk,aek,s is the

contribution of time effects from sequence k in year s to the outcomes of people who are age
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a in year s. We refer to wk,a as the age weight for sequence k at age a. Each sequence of time

effects should be thought of as representing a different factor that contributes to the outcome

of interest. For example, if the outcome is mortality, one sequence of time effects might

represent environmental conditions that affect infant mortality, and another might represent

medical technologies that affect the mortality of older people.

The influence of past time effects may increase or fall off over time. Suppose we let

r(k, a, a′) represent the increase or decay between ages a′ and a, where r(k, a, a) ≡ 1. Then

the impact in year t of time effects from sequence k occurring in year s ≤ t for people who

were age a′ in year s would be

r(k, a, a′)wk,a′ek,s, a = a′ + t− s. (3)

For example, r(k, a, a′) could be a step function if time effects at a young age have no further

impact until old age, as in the case of increases in old-age lung cancer mortality that result

from increasing popularity of cigarettes when people are young. The general form of increase

or decay in (3) may, however, be difficult to analyze. In particular, modeling r(k, a, a′) as

a step function with steps at unknown ages would lead to nonsmooth likelihood functions,

and allowing r(k, a, a′) to depend nonparametrically on a and a′ would add A(A + 1)K/2

parameters to the model. Therefore, in this paper we restrict attention to the simplest

possible smooth approximation — exponential increase or decay:

r(k, a, a′) = ra−a
′

k , rk ≥ 0. (4)
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(We adopt the convention that 00 = 1.) Although the exponential form does not encompass

all possible forms of increase or decay, its simplicity makes it easy to analyze, and we will

show that it generalizes the additive model. We recognize that other choices of r(k, a, a′)

may be valuable in particular applications and leave the analysis of such models for future

research.

Having defined our building blocks ek,t, wk,a, and r(k, a, a′), we add an intercept and

sum up the entire history of time effects to obtain our model for the outcomes for a particular

cohort in a particular year:

yat = µ+
K∑
k=1

a∑
a′=0

ra−a
′

k wk,a′ek,t−a+a′ . (5)

We now consider how to interpret the parameters of the model. For some parameter values,

age and cohort effects in our model evolve over time. For other parameter values, our model

generates time-invariant age effects, time-invariant cohort effects, and period effects that have

the same influence on people of all ages. We first discuss the parameter values that generate

these pure effects before showing how other parameter values can produce effects that evolve

over time.

• Pure age effects: Suppose that, for the kth sequence of time effects, the same time

effects occur every year: ek,s = ēk for all years s. Then the contribution of this

sequence of time effects to outcomes for people of age a in year t is
∑a

a′=0 r
a−a′
k wk,a′ ēk,

which depends only on age a, not on the period t or the cohort j = t− a.

• Pure period effects: Suppose that, for the kth sequence of time effects, rk = 0 and

wka = 1 for all a. Then the contribution of the kth sequence to outcomes for age a in
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year t is simply ekt , which depends only on the current year and not on age or birth

year.

• Pure cohort effects: Suppose that, for the kth sequence of time effects, rk = 1, wk0 = 1,

and wka = 0 for a > 0. Then the contribution of the kth sequence to outcomes for age

a in year t is simply ekt−a, which depends only on the birth year j = t − a and not

separately on age or the current year.

Because our model can generate pure age, period, and cohort effects, it nests the additive

model (1). Specifically, suppose that K = 3, e1,s = ē1 for all s, r2 = 0, w2,a = 1 for all a,

r3 = 1, w3,0 = 1, and w3,a = 0 for a > 0. Then (5) reduces to

yat = µ+
a∑

a′=0

ra−a
′

1 w1,a′ ē1 + e2,t + e3,j, j = t− a, (6)

which is equivalent to (1) with αa = µ+
∑a

a′=0 r
a−a′
1 w1,a′ ē1, βt = e2,t, and γj = e3,j.

Three questions are of substantial interest in analyzing age- and period-specific data.

First, how do outcomes vary with age, and how has the effect of age changed over time?

For example, how does the mortality rate depend on age? Or, how does within-cohort

consumption inequality change as the cohort ages? Second, how do outcomes depend on

conditions in the current period? And third, does history influence current outcomes in a

way that age effects do not fully capture — in other words, is a cohort theory appropriate?

The parameters of our model help answer all three of these questions.

We can address the first question by estimating age profiles of outcomes. In our model,

we conceive of changes in the age profile over historical time as changes in the time effects

that accumulate for different cohorts. Permanent changes in time effects lead to permanent
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changes in the age profile. Define mk(a) =
∑a

a′=0 r
a−a′
k wk,a′ . Then a hypothetical cohort that

experienced the same time effects (ē1, ē2, . . . , ēK) in every year of its life would, at age a, have

outcomes

ya(ē1, ē2, . . . , ēK) = µ+
K∑
k=1

ēkmk(a), (7)

which depends only on the cohort’s age a. Two kinds of comparisons are in order. First, by

comparing the model profile with the observed outcomes ya,j+a for a particular cohort j, we

can see how the cohort’s outcomes differ from what we would have predicted if conditions had

never changed throughout its life. This comparison applies to actual people — it can help

us see whether, and in what way, conditions changed over a particular cohort’s life course.

Second, consider a different hypothetical cohort that experienced a different set of constant

time effects (ẽ1, ẽ2, . . . , ẽK) in every year of its life. The second cohort would have outcomes

ya(ẽ1, ẽ2, . . . , ẽK) = µ+
K∑
k=1

ẽkmk(a). (8)

The outcomes in (8) again depend only on the cohort’s age, but they differ from the outcomes

of the first hypothetical cohort in (7). Thus, given any set of time effects, we can calculate

the hypothetical age profile that would result if those time effects continued for the entire

life of a cohort. So, for example, we can calculate different age profiles corresponding to the

time effects of 1900 and the time effects of 2000:

ya(e1,1900, e2,1900, . . . , eK,1900) = µ+
K∑
k=1

ek,1900mk(a),

ya(e1,2000, e2,2000, . . . , eK,2000) = µ+
K∑
k=1

ek,2000mk(a).

(9)
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The profile ya(e1,1900, e2,1900, . . . , eK,1900) tells us the effect of age on outcome y in 1900. We can

interpret ya(e1,1900, e2,1900, . . . , eK,1900) as a prediction for the outcomes of the 1900 birth cohort

if conditions never changed after the cohort’s birth. In other words, ya(e1,1900, e2,1900, . . . , eK,1900)

describes the effect of age on outcomes y, holding time effects constant. Similarly, the profile

ya(e1,2000, e2,2000, . . . , eK,2000) tells us the effect of age on outcome y in 2000. By comparing the

profiles, we can see how the effect of age on y changed over the 20th century. This comparison

applies not to particular cohorts but to history — it can help us see whether, and in what

way, conditions changed between two perhaps widely separated eras.

We can address the second question — how do outcomes depend on current conditions?

— by examining both the period effects ek,t and the age weights wk,a. Suppose we are

examining mortality, and suppose that for some age a, wk,a is positive. Also suppose that

for two years s and t, ek,s < ek,t. The immediate impact of conditions in year t on people of

age a is wk,aek,t. Thus, all else equal, mortality for people of age a is predicted to be lower in

year s than in year t.

We can address the third question — is a cohort theory appropriate? — by examining

the rates of decay rk. A cohort theory predicts that past events continue to affect a cohort’s

outcomes at much later ages. Recall that the impact at age a of conditions at age a′ < a

is ra−a
′

k wk,a′ek,t−a+a′ . A cohort theory says that even if a′ is much less than a, this impact

is large. But in that case, rk must be close to one. Therefore, we can tell whether a cohort

theory describes the data by examining whether any rk is close to one.

By combining all of the parameters, we can use our model to see how a particular

cohort evolves over the life course. For simplicity, suppose K = 1, so there is only one type

of time effect, and suppose we are studying mortality. Consider the mortality rate of cohort
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j. At age a, its mortality is

ya,j+a = µ+
a∑

a′=0

ra−a
′

1 w1,a′e1,j+a′ . (10)

The next year, at age a+ 1, the cohort’s mortality is

ya+1,j+a+1 = µ+
a+1∑
a′=0

ra+1−a′
1 w1,a′e1,j+a′ . (11)

The change in mortality from age a to age a+ 1 is thus

ya+1,j+a+1 − ya,j+a = w1,a+1e1,j+a+1 + (r1 − 1)
a∑

a′=0

ra−a
′

1 w1,a′e1,j+a′ . (12)

In words, the change between age a and age a + 1 is a combination of what happens to the

cohort when it reaches age a+ 1 (the term w1,a+1e1,j+a+1) and a decrease in the influence of

its past experiences (the term consisting of (r1 − 1) multiplied by an accumulation of time

effects at ages a′ < a + 1). The cohort evolves because it has new experiences and because

the influence of the past diminishes.

3. Identification

We have claimed that one advantage of our model over the additive model (1) is that

the parameters of our model are identified. We now make this claim precise. Because the

additive model is unidentified even when (1) does not contain an error term, we assume for

now that the outcomes yat are measured without error; in section 4, we show how to handle

measurement error.
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We say the parameters of our model are identified if there exists a unique set of

parameters that can generate any given matrix of outcomes yat for a = 0, . . . , A and t =

1, . . . , T . That is, the parameters are identified if there is a unique vector

θ =
[
µ,
{
{ek,t}Tt=1−A, {wk,a}Aa=1, rk

}K
k=1

]

such that (5) holds for all a = 0, . . . , A and t = 1, . . . , T . It turns out that our model is

identified for some values of the true parameters and not for other values. The following

definition is therefore helpful:

Definition. The parameter vector θ, an element of a parameter space Θ, is identified with

respect to Θ if there does not exist any vector θ̃ ∈ Θ distinct from θ such that, given{
{yat}Aa=0

}T
t=1

, (5) holds for both θ and θ̃ for all a = 0, . . . , A and t = 1, . . . , T .

Under normalizations on the parameter space Θ that do not affect the interpretation

of the model, the set of parameter vectors that are not identified with respect to Θ is of

measure zero. The normalizations are:

Normalization 1. rk ≤ rk′ for all k < k′.

Normalization 2. wk,0 = 1 for all k.

Normalization 3. If K > 1, then ek,s = 0 for s < k − A.

Normalization 1 puts the time effect types in order, which is necessary because switch-

ing k with k′ would not change the model. (We show below that the unidentified set of measure

zero includes the case rk = rk′ , so the ordering is strict.) Normalization 2 fixes the sign and
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scale of the age weights wk,a and the time effects ek,s; for any ck 6= 0, replacing wk,a by ckwk,a

for all a and ek,s by ek,s/ck for all s would not change the model. The normalization does not

affect the interpretation of results since only the product wk,aek,s enters the age profiles (7).

Finally, we need normalization 3 because the data do not contain adequate information about

time effects in the distant past. The normalization is equivalent to dropping all data on the

K oldest cohorts. To see why, notice that time effects ek,s at any date s ≤ K − A influence

only the K oldest cohorts; that there are K2 such time effects eks in the model; and that

we have K(K + 1)/2 ≤ K2 observations (with strict inequality for K > 1) on the K oldest

cohorts. We therefore have no hope of identifying all the time effects at dates s ≤ K −A. In

addition, by appropriately choosing {ek,s}s≤k−A, we can perfectly fit the data on the K oldest

cohorts regardless of how we choose r, w, µ, and {ek,s}s>K−A. Since the K oldest cohorts

are uninformative, we could drop them and avoid estimating {ek,s}s≤k−A. Equivalently, we

can normalize some elements of {ek,s}s≤k−A to zero. Since the normalization does not affect

r,w, µ, {ek,s}s>K−A, it does not affect the substantive results.

Proposition 1. Let K ∈ {1, 2, 3} be known, and let the parameter space Θ consist of all

vectors
[
µ,
{
{ek,t}Tt=1−A, {wk,a}Aa=0, rk

}K
k=1

]
that satisfy normalizations 1 to 3. Suppose further

that A ≥ K, that T ≥ A+K, and that if K = 1, then T ≥ 4; if K = 2, then T ≥ 12; and if

K = 3, then T ≥ 32. Then there exists a set XK ⊂ Θ such that XK is of measure zero and

all θ ∈ Θ \XK are identified with respect to Θ.

Proposition 1 says there may be parameter vectors θ that are not identified: For each

of these θ, there exists some θ′ 6= θ that would generate the same data as θ. However, the

set X of unidentified parameter vectors is of measure zero. For almost all θ, therefore, there
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does not exist any θ′ 6= θ that would generate the same data, and by observing yat, we can

uniquely determine the true parameter vector θ. We have not proved versions of proposition

1 for K > 3, but we conjecture that it holds; a proof would require tedious algebra.

The conditions in proposition 1 are sufficient but not necessary for identification. In

particular, the parameters may be identified for T smaller than the values stated, so long

as A is sufficiently large. We have not completely characterized the sets XK of unidentified

parameter vectors. In one sense, this is unimportant since almost all parameter vectors lie

outside XK . However, to understand the source of identification, it is helpful to partially

characterize XK . The next proposition gives some necessary conditions for a parameter

vector to be identified.

Proposition 2. Under the hypotheses of proposition 1, any parameter vector θ ∈ Θ is not

identified if either:

(a) ek,t = ēk for some k and all t = 1− A, . . . , T , or

(b) K > 1 and rk = rk′ for some k 6= k′.

Further, θ remains unidentified in each of these cases even if µ is known.

Condition (a) in proposition 2 is the case where the model contains pure age effects.

Therefore, although the additive model (1) is a special case of our model, it is an unidentified

special case. We emphasize that the potential need to identify the intercept µ has nothing

to do with this failure of identification. It is clear that pure age, period, or cohort effects will

be unidentified in our model without some normalization on µ for the usual reason that —

even without the APC identification problem — one dummy variable in any given category

must be omitted in any linear model that contains an intercept. But proposition 2 shows
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that pure age effects will remain unidentified even with a normalization on µ. The intuition

is as follows. Suppose the same time effect happens over and over, i.e., ek,t = ēk. Then it will

be impossible to distinguish whether this time effect has a transitory impact that directly

affects people of all ages (a period effect) or a persistent impact that directly affects only the

young (so that the effect on the old is indirect, a cohort effect). Pure age effects, in other

words, make it impossible to distinguish period from cohort.

4. Identification with Measurement Error in y

Suppose that, instead of observing yat, we have data only on a noisy measurement ȳat,

where

ȳat = yat + εat. (13)

For example, yat could be the probability of death for individuals age a in year t, and ȳat

could be the observed mortality rate, which is a random variable with mean yat when the

population is finite. Alternatively, yat could be a measure of consumption inequality among

all people age a in year t, and ȳat could be an estimate of inequality calculated from a random

sample of the population. We now show conditions on the measurement error εat under which

our model remains identified.

Assumption 1. E[εat|yat] = 0 and E[ε2a,t|yat] = σ2 for all a, t, and E[εa,tεa′,t′ |yat, ya′t′ ] = 0

whenever a′ 6= a or t′ 6= t.

Assumption 1 restricts the variance-covariance matrix of the measurement error. We

must impose such a restriction because age-period-cohort analysis is, in essence, a decom-

position of variance. In section 5, we will consider an application in which assumption 1 is
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plausible.

Proposition 3. Suppose assumption 1 and the hypotheses of proposition 1 hold. Let

θ̂ = arg min
θ̃

A∑
a=0

T∑
t=1

(
ȳat − µ̃−

K∑
k=1

a∑
a′=0

r̃a−a
′

k w̃k,a′ ẽk,t−a+a′

)2

. (14)

Then, subject to regularity conditions on εat:

(a) θ̂
p→ θ in the limit as σ2 → 0 with A and T fixed, and

(b) If ek,t is a stationary and ergodic process, then
({
{ŵk,a}Aa=1, r̂k

}K
k=1

, µ̂
) p→({

{wk,a}Aa=1, rk
}K
k=1

, µ
)

in the limit as T →∞ with A fixed.

Proposition 3 says certain parameters can be consistently estimated by nonlinear least

squares when outcomes are measured with serially uncorrelated, homoskedastic, mean-zero

error. In the limit as the variance of the measurement error goes to zero, all of the parameters

can be consistently estimated; this limit applies when ȳat is computed from large populations

in each (a, t) cell, as in the case of mortality rates calculated from vital records. In the limit as

T goes to infinity with A fixed — as when small samples are collected in each of many years —

all parameters except the time effects ek,t can be consistently estimated; parameters indexed

by t cannot be consistently estimated because adding data on new time periods does not

add information about parameters relevant only to earlier time periods. We do not consider

limits as A goes to infinity because the human life span is finite. One can test whether the

homoskedasticity requirement (E[ε2a,t|yat] = σ2) in assumption 1 holds by examining whether

the squared residuals
(
ȳat − µ̂−

∑K
k=1

∑a
a′=0 r̂

a−a′
k ŵk,a′ êk,t−a+a′

)2

are systematically related

to the predicted values ŷat = µ̂+
∑K

k=1

∑a
a′=0 r̂

a−a′
k ŵk,a′ êk,t−a+a′ .

16



5. Example: Mortality Rates in Sweden

The demographic transition in Western developed countries over the past 200 years

featured gradual mortality declines in response to improvements in features of the environ-

ment including water quality, sanitation, nutrition, prevalence of infectious diseases, and

medical technology (Elo and Preston, 1992; Omran, 1982). When did these changes occur?

How did they differentially affect people of different ages? And did they have lasting impacts

on particular birth cohorts? We answer these questions by estimating our model on the long

time series of high-quality mortality data from Sweden in the Human Mortality Database

(2007).

We analyze data from 1861 to 2005 on ages 64 and younger. (We drop earlier years and

older ages due to data quality concerns described in the Human Mortality Database documen-

tation.) To keep the sample size and number of parameters manageable, we use only data on

ages that are multiples of two (0, 2, . . . , 64) and at two-year intervals (1861, 1863, . . . , 2005).

Figure 1 displays the data. Infant mortality has decreased proportionately much more than

adult mortality over the past two centuries — exactly the kind of shift in an age profile of

outcomes that our model aims to capture.

The dependent variable we analyze is the natural logarithm of the realized mortality

rate among people who are age a in year t. We treat (5) as a model of the underlying log

probability of death and (13) as a model of log realized mortality, which randomly differs from

the log probability of death in a finite population. We estimate the model by nonlinear least

squares as in (14), weighting each age-year cell by a consistent estimate of the inverse of the

variance of observed log mortality in that cell. Appendix A4 shows this procedure is equivalent

to maximum likelihood estimation and generates residuals that satisfy assumption 1.
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We estimate the additive model (1) as well as the continuously accumulating model

(5) for K = 1, K = 2 and K = 3. (We did not attempt models with K > 3 because of

the large number of parameters involved.) Our purpose in estimating the additive model is

not to interpret its parameters but only to test it against the more general K = 3 model in

which it is nested. For this purpose, the failure of identification in the additive model does

not cause problems: We need to obtain only the log likelihood of the additive model, which

does not depend on which single identifying constraint we impose on the parameters.

Table 1 reports goodness-of-fit statistics for the additive and continuously accumulat-

ing models. The continuously accumulating model with K = 3 fits best by any criterion:

log likelihood, Akaike information criterion (AIC), or Bayesian information criterion (BIC).

A likelihood ratio test of the K = 3 continuously accumulating model against the additive

model nested within it rejects the additive model with a p-value of zero. A possible concern

is that our model uses so many parameters that it may overfit the data. However, even when

we penalize our model for using more parameters by examining the BIC, we still find that

our model is preferred to the additive model.

Figure 2 plots the residuals for each model. We observe a great deal of heteroskedas-

ticity in the additive and K = 1 models, but relatively little heteroskedasticity in the K = 3

model, further evidence that the K = 3 model accounts better for the data. (The unusually

small residuals at the highest predicted values for K = 3 correspond to data points for early

years and young ages; one can show that our weights are noisily estimated for these data

points and thus that the points may be overweighted in a finite sample, leading to incor-

rectly small residuals.) None of the models fits perfectly: Even with K = 3, the estimated

dispersion is 1.89 times what it would be if our model accounted perfectly for the individual
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probability of death and the residuals were due only to randomness in realized death rates.

Still, the fit of the K = 3 model is quite good. It accounts for 99.84 percent of the variation

in the data and has one-eighth the overdispersion of the additive model. Also, as long as

the residuals are homoskedastic, the overdispersion does not make our parameter estimates

inconsistent.

We investigate the overdispersion by estimating two alternative models besides the

additive model. The first alternative is the Lee and Carter (1992) model, which takes the

form yat = w1,a + w2,ae2,t. The Lee-Carter model is a widely adopted statistical method

for forecasting age-specific mortality rates (United Nations, 2003); although our model is

explicitly not intended for forecasting, it is still interesting to compare our model fit with that

of another model commonly estimated on mortality data. The second alternative is a three-

factor model without lagged effects, yat =
∑3

k=1wk,aek,t. This model is simply our model (5)

with K = 3 under the restriction that r1 = r2 = r3 = 0 — that is, under the restriction that

lagged effects do not accumulate over time — so estimating the three-factor nonaccumulating

model is a way to tell whether the process of accumulation that we model is important. The

K = 3 continuously accumulating model fits better than either of these two alternatives

by all criteria considered. The Lee-Carter model has four times as much overdispersion as

the continuously accumulating model, demonstrating that the overdispersion problem is not

limited to our model; mortality clearly is a complex phenomenon that any simple statistical

model can only imperfectly describe. The rejection of the nonaccumulating model provides

evidence that the accumulation of lagged effects is important in mortality data.

One possible reason for the overdispersion may be that we use a simple functional

form for r(k, a, a′), the impact on outcomes at age a of time effects at age a′ < a. If the
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true relationship between time effects in youth and subsequent mortality is not exponential

— for example, if early life conditions can cause mortality in early life and old age but not in

between (e.g., Horiuchi, 1983) — then the form we use for r(k, a, a′) will not adequately fit

the data. As discussed in section 2, more complicated forms for r(k, a, a′) would be difficult

to implement, and we leave them for future research.

Because the K = 3 continuously accumulating model fits the data best, we present

parameter estimates only from that model. Table 2 reports the estimated rates of decay, and

figure 3 shows the estimated age weights and sequences of time effects.

The first type of time effect, k = 1, has short-lasting effects, with an estimated half-life

of about four months. The estimated age weights w1,a show that these time effects impact

mainly the young, not the middle-aged or the old. The estimated time effects e1,t show

that mortality related to these time effects first rose and then fell over the years we study.

Examining the estimated age weights and time effects together, we conclude that there was

a sharp spike in mortality related to these time effects in 1919, when there was a global

influenza epidemic.

The second type of time effect, k = 2, displays an interesting pattern: It has opposite

impacts on the very young as on all others. A time effect of type k = 2 that lowers the

mortality of 2-year-olds by one log point is predicted to raise the mortality of 18-year-olds by

about the same amount; impacts on older people are smaller but still raise mortality. In other

words, time effects of type k = 2 describe a process in which falling infant mortality and rising

adult mortality, especially young-adult mortality, are two sides of the same coin. At least

two explanations are possible. First is a selection pattern: Reductions in infant mortality

may mainly save the lives of unhealthy people who will soon die anyway, so that saving in-
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fants inevitably raises adult mortality. Second is a historical explanation: Technological and

social changes that reduced infant mortality, such as better sanitation, may have happened

in Sweden around the same time as other technological changes, such as the introduction of

machinery and motor vehicles, that raise the “accident hump” frequently observed among

young adults (Heligman and Pollard, 1980). Our model is not designed to discriminate be-

tween these or other possible explanations for the estimated pattern, but further investigation

via other methods would be worthwhile. There is a downward spike in these time effects in

1919, which raises mortality of young adults and lowers mortality of infants. Combined with

the impact of time effects of type 1, events in 1919 then have little impact on infants but

increase the mortality of young adults, consistent with the findings of Noymer and Garenne

(2000).

The third type of time effect, k = 3, has the longest-lasting effects, with a half-life

of more than four years. It impacts mainly infants, with smaller impacts on the young and

virtually no impact on the old. These findings are somewhat consistent with a theory of

cohort effects in mortality, since they demonstrate that conditions early in life have lasting

consequences. However, given the estimated half-life, the consequences do not necessarily

last into old age. Thus, our findings fall in the middle of the debate between Finch and

Crimmins (2004), who proposed the cohort morbidity phenotype hypothesis that suggests

reductions in early-life mortality due to infections are associated with reductions in mortality

at all subsequent ages for the same cohort, and Barbi and Vaupel (2005), who contend that

cohort effects are unimportant.

The estimated sequences of time effects ek,t show that mortality related to time effects

of type k = 1 and k = 3 largely fell over the 20th century. For time effects of type k = 2,
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infant mortality largely fell, but the decrease was disrupted around the time of the Great

Depression and World War II.

Figure 4 shows the observed mortality rates of several birth cohorts and the predicted

age profile of mortality based on conditions in each cohort’s birth year. Forecasting is not

our goal, so differences between the predicted and observed outcomes do not reflect a failure

of our model; rather, these differences are interesting because they show us how conditions

changed over a cohort’s life course. For the 1881 birth cohort, the predicted age profile closely

matches the observed mortality rates, showing that conditions changed little over the cohort’s

life course. The findings for the 1881 cohort are in sharp contrast with those for later cohorts,

where observed mortality at most ages is strikingly lower than the predicted age profile based

on conditions in the cohort’s birth year. The gap between predicted and observed mortality

grows larger with each successive cohort, suggesting not only that conditions improved during

each cohort’s life course but also that the rate of improvement grew over time.

Figure 5 shows the predicted age profiles of mortality based on conditions in several

birth years. The graph allows us to examine historical declines in mortality through the lens

of age profiles — that is, we can analyze how the effect of age on mortality has changed over

time. Except for 1881 conditions, we see continuous improvements over time in mortality at

all ages. However, the improvements are larger at young adult ages, and improvements in

mortality among people in their 50s and 60s are quite small until recent years. Thus, the rate

of increase of mortality with age among adults became more steep from 1881 to 1941, but

since then the rate of increase of mortality with age among adults has been roughly constant.

In the future, it would be worthwhile to extend this analysis to ages beyond 64 when data

quality permits.
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6. Conclusion

The conventional linear model of additive age, period, and cohort effects has been

widely used to analyze tabular population-level data. The literature, however, often con-

cludes that it is impossible to obtain meaningful estimates of the distinct contributions to

social change of age, time period, and cohort. The methodological problem underlying this

conclusion is well recognized: In the additive model, one must resolve the identification prob-

lem induced by the exact linear dependency between age, period, and cohort indicators by

imposing some identifying constraint, and in many applications, there is no consensus as to

what constitutes a satisfactory constraint.

In this paper, we emphasize that the APC identification problem is inevitable only

under the conventional specification of fixed, additive age, period, and cohort effects. But

additive effects are merely one approximation to the process of social change. A prominent

example of an alternative process is that of continuously accumulating or evolving cohort

effects, described decades ago by social demographers who also noted the absence of proce-

dures for empirically investigating such a process (Hobcraft et al., 1982; Ryder, 1965). It is

this process that we attempt to model in this paper.

The new model relaxes the assumption of the conventional additive model that the

influence of age is the same in all time periods, the influence of present conditions is the

same for people of all ages, and cohorts do not change over time. We show that the failure

of identification in the conventional model stems precisely from the strong assumptions it

makes. When we generalize the model to allow age profiles to change over time, period

effects to have different influences on people of different ages, and cohorts to evolve from one

period to the next, we obtain a model that is identified. More important, we can better
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capture the essence of social change by directly modeling the process that generates cohort

effects: As they age, cohorts are continuously exposed to influences that cumulatively alter

their trajectories. Our substantive model of cohort effects is what allows identification in our

model, because the model restricts the possible forms that cohort effects can take. As an

example, our data analysis illustrates the utility of our model in studying the evolution of

human mortality. We believe that, beyond demography, the model can find application in

economics, sociology, and other social sciences and can potentially provide new stylized facts

that are useful for explaining and evaluating theories of social change and structure.
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Appendix

A1. Proof of Proposition 1

We prove the result separately for K = 1, K = 2, and K = 3. In each case, the

strategy will be to construct a set XK ⊂ Θ such that XK is of measure zero and such that,

unless θ =
[
µ,
{
{ek,t}Tt=1−A, {wk,a}Aa=1, rk

}K
k=1

]
is in XK , the equality

µ+
K∑
k=1

a∑
a′=0

ra−a
′

k wk,a′ek,t−a+a′ = µ̃+
K∑
k=1

a∑
a′=0

r̃a−a
′

k w̃k,a′ ẽk,t−a+a′ , a = 0, . . . , A, t = 1, . . . , T,

(A1)

implies, under the hypotheses of the proposition, that
[
µ,
{
{ek,t}Tt=1−A, {wk,a}Aa=1, rk

}K
k=1

]
=[

µ̃,
{
{ẽk,t}Tt=1−A, {w̃k,a}Aa=1, r̃k

}K
k=1

]
≡ θ̃.

Case 1: K = 1. Let X1 be the set of θ ∈ Θ such that either r1+w1,1 = 1 or the vectors

(e1,1, . . . , e1,T−1) and (e1,2, . . . , e1,T ) are collinear with a constant. X1 is a set of measure zero.

Assume θ ∈ Θ \X1. Specializing (A1) to K = 1, a = 0, and a = 1 (by hypothesis, A ≥ 1)

and using normalization 2, we have

µ+ e1,t = µ̃+ ẽ1,t, t = 1, . . . , T, (A2a)

µ+ r1e1,t−1 + w1,1e1,t = µ̃+ r̃1ẽ1,t−1 + w̃1,1ẽ1,t, t = 2, . . . , T. (A2b)

Substituting (A2a) into (A2b) and collecting terms gives

0 = (µ− µ̃)(1− r̃1 − w̃1,1)− (r̃1 − r1)e1,t−1 − (w̃1,1 − w1,1)e1,t, t = 2, . . . , T. (A3)
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By hypothesis, T ≥ 4, so (A3) contains at least three equations. Since (given θ /∈ X1) e1,t−1

and e1,t are not collinear with a constant, (A3) can hold only if (µ − µ̃)(1 − r̃1 − w̃1,1) = 0

and the coefficients on e1,t−1 and e1,t are both zero. Hence r̃1 = r1, w̃1,1 = w1,1, and, since

1 − r1 − w1,1 6= 0 for θ /∈ X1, we must have µ̃ = µ. It follows from (A2a) that ẽ1,t = e1,t

for t = 1, . . . , T . Finally, substituting the foregoing results into (A1) for a ≥ 2 shows that

ẽ1,t = e1,t for t ≤ 0 and w̃1,a = w1,a for a ≥ 2.

Case 2: K = 2. Define the following sets:

X2,1 = {θ ∈ Θ : ∃k s.t. rk = 0}, X2,2 = {θ ∈ Θ : r1 = r2},

X2,3 = {θ ∈ Θ : w1,1 = w2,1},

X2,4 =


θ ∈ Θ : rank


1

...

1


ek,j

...

ek,T−4+j


k∈{1,2},

j∈{1,2,3,4}


< 9


,

X2,5 = {θ ∈ Θ : (w1,1 − w2,1)[−r2w1,1 + r1w2,1] + (w1,2 − w2,2)(r2 − r1) = 0},

X2,6 = {θ ∈ Θ : w1,1 − w2,1 + r1 − r2 + (r2
2 + r2w2,1 + w2,2)(1− r1 − w1,1)

− (w1,2 + r1w1,1 + r2
1)(1− r2 − w2,1) = 0}.

(A4)

Let X2 = ∪6
j=1X2,j. X2 has measure zero. Our web appendix shows that under normalizations

1 to 3 and the hypotheses of the proposition, if θ ∈ Θ \X2, then the unique solution to (A1)

is θ̃ = θ. The algebra proceeds by using (A1) at a = 0 and a = 1 to eliminate ẽ2,t and

obtain a first-order difference equation in ẽ1,t; substituting the difference equation into (A1)

at a = 2 to eliminate ẽ1,t; and observing that coefficients in a linear combination of a constant

with {ek,t−3, . . . , ek,t}2
k=1 must be zero given θ /∈ X2,4. Setting the coefficients to zero yields
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quadratic equations with two solutions, (r̃1, r̃2) = (r1, r2) and (r̃1, r̃2) = (r2, r1); normalization

1 rules out the latter to give uniqueness.

Case 3: K = 3. The approach parallels the K = 2 case; see the web appendix.

A2. Proof of Proposition 2

We must show that under each of conditions (a) and (b), (A1) has multiple solutions

for (µ̃, r̃, ẽ, w̃) in terms of (µ, r, e,w), and that this is so even if µ̃ = µ.

Condition (a): Without loss of generality, suppose e1,t = ē1. Choose any r∗ ∈ [0, 1].

Let {w∗a}Aa=1 be the unique solution to the following nonsingular triangular system of linear

equations given r∗, r1 and {w1,a}Aa=1:

a∑
a′=1

(r∗)a−a
′
w∗a′ = −(r∗)a +

a∑
a′=0

ra−a
′

1 w1,a′ , a = 1, . . . , A. (A5)

Given e1,t = ē1, the following solves (A1): µ̃ = µ; ẽj,t = ej,t ∀ j, t; r̃1 = r∗; r̃j = rj ∀ j > 1;

w̃1,a = w∗a ∀ a; w̃j,a = wj,a ∀ j > 1, a. Therefore, (A1) has a continuum of solutions indexed

by r∗ ∈ [0, 1].

Condition (b): Without loss of generality, suppose r1 = r2. Choose any x ∈ (1/2, 1].

Given r1 = r2, the following solves (A1): µ̃ = µ; r̃j = rj ∀ j; w̃1,a = xw1,a + (1− x)w2,a ∀ a;

w̃2,a = (1 − x)w1,a + xw2,a ∀ a; ẽ1,t = (1−x)e2,t−xe1,t
1−2x

∀ t; ẽ2,t = (1−x)e1,t−xe2,t
1−2x

∀ t; ẽj,t =

ej,t ∀ j > 2, t; w̃j,a = wj,a ∀j > 2, a. Therefore, (A1) has a continuum of solutions indexed by

x ∈ (1/2, 1].
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A3. Proof of Proposition 3

We assume the distribution of εat satisfies regularity conditions such that a uniform

law of large numbers (ULLN) holds. Case (a): If σ2 = 0, (14) becomes (A1); hence

the true parameters uniquely solve (14) when σ2 = 0. Since the objective function in

(14) is continuous, a ULLN applies, and solutions for σ2 > 0 converge to the solution for

σ2 = 0. Case (b): The predicted values can be written as ŷ(w̃, r̃, µ̃, ẽ) = X(w̃, r̃, µ̃)ẽ.

Hence if we solve (14) for ê as a function of the remaining parameters, we obtain ê =

[X(w̃, r̃, µ̃)′X(w̃, r̃, µ̃)]−1X(w̃, r̃, µ̃)′(y + ε). (Interpret the inverse as a generalized inverse

when X(w̃, r̃, µ̃) is not of full rank.) Substituting this solution into (14), we obtain

(ŵ, r̂, µ̂) = arg min
w̃,r̃,µ̃

1

T
[y′M(w̃, r̃, µ̃)y + 2y′M(w̃, r̃, µ̃)ε + ε′M(w̃, r̃, µ̃)ε], (A6)

where M(w̃, r̃, µ̃) = I − X(w̃, r̃, µ̃)[X(w̃, r̃, µ̃)′X(w̃, r̃, µ̃)]−1X(w̃, r̃, µ̃)′ is a symmetric and

idempotent matrix. Since ek,t is stationary and ergodic, so is yat, and so the ergodic theorem

and ULLN apply to the new objective function. Hence as T → ∞, the second term in the

objective function converges uniformly in probability to zero. Further, since εat is serially

uncorrelated and homoskedastic by assumption 1, the third term converges uniformly in

probability to σ2tr[M(w̃, r̃, µ̃)]. Since M is idempotent, its trace equals its rank, which is no

smaller than its rank when X(w̃, r̃, µ̃) has full rank. At the true parameters, X has full rank.

Hence, in the limit as T →∞, the true parameters minimize the third term. Further, in the

limit as T → ∞, the first term converges uniformly in probability to a function that is zero

at the true parameters and, by proposition 1, strictly positive otherwise. Thus the objective

function converges uniformly in probability to a function minimized by the true parameters.

28



Thus (ŵ, r̂, µ̂) converges in probability to the true parameters.

A4. Equivalence of Weighted NLS and MLE

Suppose each individual who is age a at time t has a probability of death pat, and

let Nat be the population at risk in cell (a, t). If p̄at is the realized mortality rate in the

cell, then by the central limit theorem,
√
Nat(p̄at − pat)

d→ N [0, pat(1 − pat)] as Nat → ∞.

(The smallest cell in our data has Nat = 19, 856, and the median cell has Nat = 92, 794,

so approximating the distribution by the limit as Nat → ∞ seems reasonable.) By the

delta method,
√
Nat(ln p̄at − ln pat)

d→ N [0, (1 − pat)/pat]. We observe realized log mortality

ȳat ≡ ln p̄at and population Nat but not true log mortality yat ≡ ln pat; indeed, the goal

is to estimate parameters determining yat. But p̄at
p→ pat, so by the continuous mapping

theorem,
√
Natp̄at/(1− p̄at)(ȳat − yat)

d→ N (0, 1). If pat depends on parameters θ, the log

likelihood for data on ages a = 0, . . . , A and years t = 1, . . . , T is lnL = − (A+1)T
2

ln (2π) −

1
2

∑A
a=0

∑T
t=1

Natp̄at
1−p̄at [ȳat− yat(θ)]2. Maximizing the likelihood is thus equivalent to minimizing

the weighted nonlinear least squares objective function for the model ȳat = ln (pat(θ)) + εat

with weights σ̂−2
at = Natp̄at/(1 − p̄at). The minimized WNLS objective function, divided by

the residual degrees of freedom, is an estimate of dispersion; the dispersion should be 1 if

the model fully accounts for variation in mortality. In practice, since we estimate dispersion

greater than 1, we compute the log likelihood and standard errors without assuming the

dispersion equals 1.
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Figure 1: Mortality in Sweden, 1861–2005.

Each line shows the realized mortality of a particular birth cohort at various
ages. Cohorts included are those born in 1781, 1783, . . . , 2005. Lines for cohorts
born before 1861 or after 1925 omit some ages because the dataset does not cover
those ages for those cohorts. Data source: Human Mortality Database (2007).
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Figure 2: Scaled residuals vs. predicted values.

Graphs plot scaled residuals (ȳat− ŷat)/σ̂at against predicted values ŷat for each
model estimated.
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Figure 4: Predicted age profiles vs. actual mortality.

Each solid line shows the observed mortality of a particular birth cohort at
various ages. The dashed line represents the mortality that the K = 3 continu-
ously accumulating model would predict for that cohort if conditions in its birth year
continued throughout its life span.
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Figure 5: Comparing predicted age profiles.

Each line represents the mortality that the K = 3 continuously accumulating
model would predict for the cohort born in a given year if conditions in the birth year
continued throughout the cohort’s life span.
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Table 1: Goodness-of-fit statistics for six models.

continuously accumulating 3-factor

additive K=1 K=2 K=3 Lee-Carter nonaccum.

log likelihood -7728 -9321 -6446 -5163 -7048 -5969
AIC 15872 18920 13444 11150 14371 12567
BIC 17075 19724 15041 13535 15164 14390
weighted R2 0.9900 0.9561 0.9965 0.9984 0.9943 0.9976
dispersion 14.4 52.5 5.13 1.89 7.94 3.52

cells 2409 2409 2409 2409 2409 2409
parameters 208 139 276 412 137 315
residual d.f. 2201 2270 2133 1997 2272 2094

R2 calculated using the estimation weights shown in appendix A4. Data source:
Human Mortality Database (2007).

Table 2: Estimated rates of decay for K = 3 continuously
accumulating model.

parameter estimate standard error half-life (years)

r1 0.138 0.0000 0.35
r2 0.582 0.0005 1.28
r3 0.845 0.0005 4.11

Rates of decay are for one-year intervals. Half-life in years

t1/2 solves r
t1/2
k = 1/2. Data source: Human Mortality

Database (2007).
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