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Abstract

We develop a multi-sector sticky-price DSGE model that can endogenously deliver differential

responses of prices to aggregate and sectoral shocks. Input-output production linkages induce

across-sector pricing complementarities that contribute to a slow response of prices to aggregate

shocks. In turn, labor-market segmentation at the sectoral level induces within-sector pricing

substitutability, which helps the model deliver a fast response of prices to sector-specific shocks.

Estimating the Factor Augmented Vector Autoregression specification of Boivin, Giannoni and Mi-

hov (2009) on data generated by a parameterized version of our model, we find results that resemble

what they obtain with disaggregated data for the U.S. economy. We then employ Bayesian meth-

ods to estimate the model using aggregate and sectoral data, and find that it accounts extremely

well for a wide range of sectoral price facts.
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1 Introduction

The increasing availability of very disaggregated price data has generated a renewed flurry of activity

around models of price setting. In particular, there is growing interest in taking models that have

been reasonably successful in accounting for the dynamic behavior of aggregate variables and used

for policy analysis, and confronting their implications for variables at more disaggregated levels with

the new evidence. In addition to the results from the recent literature that analyzes micro price data

sets (Bils and Klenow 2004, and all subsequent papers), we now have a small set of well-established

empirical facts based on sectoral data: data with varying degrees of disaggregation, that fall between

the actual micro price data and aggregate price indices.

A prominent recent paper that produces empirical price facts using sectoral data is Boivin et

al. (2009) (henceforth BGM). They employ a Factor Augmented Vector Autoregression (FAVAR)

framework to analyze the response of quite disaggregated sectoral prices and quantities to different

shocks, considering the natural partition of shocks into common and series-specific that is inherent in

their empirical methodology. Among their many interesting findings, one seems to have caught the

attention of researchers interested in confronting available models of price-setting with new empirical

evidence: sectoral prices seem to respond faster to “idiosyncratic” (series-specific) shocks than to

“aggregate”(common) shocks.1

At first pass this result may seem hard to square with most available models of price setting.

Take, for example, a version of the Calvo (1983) model of price setting with aggregate and sectoral

shocks. The frequency of price changes is exogenous, and the same for all types of shocks. Thus,

intuition might suggest that this model should not be able to produce responses with different speeds

to different shocks. Alternatively, consider a (menu-cost) model in which firms optimally choose when

to incur a fixed cost to change prices. Since paying the cost allows a firm to choose whichever price

it desires, it should take the opportunity to respond to all relevant shocks.

In this paper we assess the ability of a relatively standard sticky-price model to account for the

recently established empirical facts on sectoral prices. Our multi-sector model features input-output

relations, sector-specific labor markets, and heterogeneity in Calvo-type price stickiness across sectors.

In addition to aggregate shocks, the economy is driven by sector-specific demand and supply shocks.

In order to establish a benchmark for comparisons and develop intuition, we start by finding

restrictions on parameter values under which the model conforms with the first-pass intuition laid out

above and delivers the exact same response of sectoral prices to aggregate and sectoral shocks. The

specification that produces this result features an “exogenous monetary policy,”coupled with what we

refer to as “strategic neutrality in price setting.”Because of these two ingredients, nominal marginal

1Maćkowiak et al. (2009) emphasize their similar findings regarding the fast speed of price responses to series-specific
shocks..
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costs become a combination of exogenous driving processes. In that case, if aggregate and sectoral

shocks exhibit the same dynamics, the model delivers the same response of sectoral prices irrespective

of the nature of the shock. In what follows we refer to this case as the “first-pass specification.”

However, we find that more generally our multi-sector sticky-price DSGE model does endogenously

deliver differential responses of prices to aggregate and sectoral shocks. The reason is that, in general,

a firm’s nominal marginal cost depends on endogenous variables - in particular, on other prices. Thus,

despite the frequency of price changes being independent of the nature of the shock, to the extent that

those endogenous variables exhibit differential responses to different shocks, so do sectoral prices.2

We identify three departures from the aforementioned first-pass specification which deliver en-

dogenous differential responses of marginal costs to aggregate and sectoral shocks in our model. The

first departure is the input-output production structure, borrowed from Basu (1995). Firms use other

goods as production inputs, and this creates a direct dependence of their marginal costs on the ag-

gregate price level - what we refer to as a “uniform”strategic complementarity in price setting. In

this context, whenever a shock affects the aggregate price level, such complementarity interacts with

the staggering of price changes to produce a sluggish response of prices - in particular, of sectoral

prices - to that shock. This is what happens when the economy is hit with an aggregate shock. In

contrast, because individual sectors are small, a sectoral shock in our model has only a negligible effect

on the aggregate price level - thus rendering that pricing complementarity irrelevant. As a result,

nominal marginal costs are driven essentially by the exogenous shock, as in the first-pass specification

discussed above.

The second departure is due to our assumption of sector-specific labor markets. This segmentation

creates a direct dependence of a firm’s marginal cost on its sectoral relative price, because of an

“expenditure switching effect.”A higher sectoral relative price implies lower demand for the sector’s

output, which translates into a lower sectoral wage and thus lower marginal costs. This positive

dependence of a firm’s marginal cost on the aggregate price level, and negative dependence on its

own sectoral price level produces what we refer to as a “non-uniform”pricing interaction: a strategic

complementarity in price setting across sectors, and a strategic substitutability within sectors. The

strategic complementarity across sectors contributes to a differential response of sectoral prices to

aggregate and sectoral shocks for the reason outlined in the previous paragraph. In turn, because

sectoral shocks do affect prices in the sector, the within-sector strategic substitutability works to speed

up their response to these shocks.3 This pattern of non-uniform pricing interactions is impossible to

2The last statement is somewhat circular - this is inherent in general equilibrium models. The reason why pricing
interactions can produce differential responses to shocks will become clear subsequently.

3This effect at the sectoral level is exactly analogous to the effect that strategic substitutability in price setting has
in terms of speeding up the response of the aggregate price level to aggregate shocks in standard one-sector sticky-price
models.
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replicate with a version of the model that features economy-wide labor markets, and requires an

arguably unrealistic parameterization in the case of firm-specific labor markets.

The third departure from the first-pass specification is a standard assumption that monetary

policy responds to endogenous variables - in particular, it takes the form of a Taylor interest-rate

rule. This has the implication of turning the nominal wage from an exogenous variable (under the

exogenous monetary policy) into an endogenous one. This change induces a differential response

of prices to aggregate and sectoral shocks for reasons similar to the ones spelled out previously.

A sectoral shock has little effect on aggregate variables, and thus switching from an exogenous to

an endogenous monetary policy specification that responds to aggregate variables does not matter

much. As a result, the response of prices to the shock remains similar to the one in the first-pass

specification. In contrast, endogenous monetary policy leads aggregate shocks to have an impact on

the (now endogenous) nominal wage, thus differentiating the price response relative to the first-pass

specification.

We then move to a quantitative assessment of our model. To that end we apply a Bayesian

approach to estimate the model using aggregate and sectoral price and quantity data. We present

results based on the impulse responses implied by the estimated model, and also by estimating a

FAVAR similar to BGM’s on model-generated data. We find that the model has the ability to match

the differential speed of responses of sectoral prices to aggregate and sectoral shocks, as well as

additional sectoral price facts.

Because of the “ingredients”that we use in the model, our paper is obviously related to different

lines of research. These include papers that follow Basu (1995) in explicitly modeling input-output

production structures as a source of real rigidity, and the growing literature that incorporates hetero-

geneity in price setting behavior in dynamic macroeconomic models.4 In addition, our assumption of

labor market segmentation relates our work to the sticky-price literature that relies on input speci-

ficity as a source of real rigidity (e.g., Woodford 2003, and Gertler and Leahy 2008). However, for

reasons that we discuss in detail subsequently, the implications of labor segmentation in our model

are quite different from the results available in this literature.5 Finally, our use of sectoral data in the

estimation of the structural model connects our paper with Lee (2007) and Bouakez et al. (2009).

Turning to the questions that we address in the paper, Máckowiak et al. (2009) provide a first

assessment of the ability of models with Calvo (1983) pricing to match the sectoral price facts that

they document with their statistical model - in particular the “random-walk-type”response of sectoral

price to series-specific shocks. They conclude that such models require extreme assumptions to match

the latter fact - more specifically, assumptions that produce implausible dynamics for firms’frictionless

4For brevity we refer the reader to Carvalho and Schwartzman (2008) for a review of this literature.
5Our assumption is the same as in Carlstrom et al. (2006). However, they do not explore its implications for the

pattern of pricing interactions in their two-sector economy.

4



optimal prices.

In contrast to Máckowiak et al. (2009), we focus on the ability of our model to match a series of

sectoral price facts derived from BGM’s FAVAR (and variations thereofe that we estimate). These

facts differ in some dimensions from the empirical findings of Máckowiak et al. (2009). Because of

our focus, we discuss in detail the mechanisms that allow our model to match BGM’s sectoral price

facts without the need for extreme assumptions.

Shamloo (2010) is closest to our paper. She studies a sticky-price DSGE model with a hetero-

geneous input-output structure, heterogeneity in price rigidity, and a monetary policy that follows a

Taylor rule. She emphasizes a novel implication of her model: heterogeneous responses of prices to

aggregate shocks, based on the differences across sectors in the importance of intermediate goods as

production inputs - which she relates empirically to the location of the sectors along the “production

chain.” In contrast, she also points out that all sectoral prices respond to their own sectoral shocks

quickly in her model.

While the pattern of price responses produced by Shamloo’s model is consistent with the findings

of Máckowiak et al. (2009) - who emphasize that the distribution of the speed of responses of sectoral

prices to sectoral shocks is tighter than the distribution of the speed of responses to aggregate shocks -

it is in fact opposite to what we find using BGM’s FAVAR framework. We show that in BGM’s FAVAR

- and in alternative specifications that we estimate - the tighter distribution of the speed of responses

of sectoral prices is the one obtained in response to common shocks. Our estimated structural model

matches the finding that we document with BGM’s FAVAR, rather than the opposite finding of

Máckowiak et al. (2009).6

To our knowledge, our paper is the first to undertake a quantitative assessment of the ability

of a fully-specified DSGE model to match the sectoral price facts documented by BGM and related

papers. We also produce a novel empirical fact regarding sectoral prices. In addition, we provide a

novel mechanism to produce what we refer to as non-uniform price interactions across sectors, which

helps the model match the empirical evidence on the differential response of sectoral prices to common

and sectors-specific shocks. Finally, our approach of analyzing both the data and the results of our

estimated model through the lens of a FAVAR produces a tangential contribution to the FAVAR

literature, by providing evidence that such statistical models can reasonably recover some properties

of structural models. At the same time, this approach uncovers differences between model-implied

and FAVAR based impulse response functions that might be important to account for when drawing

conclusions about the ability of structural models to match empirical facts derived from reduced-form

statistical models.

6The implication produced by our estimated structural model is not “hard-wired” into it. Under a suitable para-
meterization it is also capable of producing the opposite result regarding the dispersion of the speeds of responses to
aggregate and sectoral shocks.
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2 The model

The model is a variant of the standard new Keynesian sticky-price model, from which we make

four departures. These are: i) multiple sectors with heterogeneity in price stickiness; ii) sector-

specific demand and supply shocks; iii) intermediate inputs in production; and iv) sector-specific

labor markets.

The economy is divided into a finite number of sectors indexed by k ∈ {1, 2, ...,K}. There is a
continuum of firms indexed by i ∈ [0, 1] and each firm belongs to one of K sectors and produces a

differentiated good that is used for consumption and as an intermediate input. We refer to firm i that

belongs to sector k as “firm ik.”We use Ik to denote the set that contains the indices of firms that

belong to sector k (so that
K⋃
k=1

Ik = [0, 1]). Its measure, denoted nk, gives the size of (mass of firms

belonging to) the sector.

2.1 Representative Household

The representative consumer derives utility from a composite consumption good, supplies different

types of labor to firms in different sectors, and has access to a complete set of state-contingent claims.

Subject to the budget constraint presented below, she maximizes

E0

[ ∞∑
t=0

βtΓt

(
log (Ct)−

K∑
k=1

ωk
H1+ϕ
k,t

1 + ϕ

)]
,

where Ct denotes the household’s consumption of the composite consumption good, and Hk,t denotes

the hours of labor services supplied to sector k. Labor is fully mobile within each sector, but immobile

across sectors. The parameters β, ϕ, and {ωk}Kk=1 are, respectively, the discount factor, the inverse

of the (Frisch) elasticity of labor supply, and the relative disutilities of supplying hours to sector k.

The aggregate preference shock is denoted by Γt.

The flow budget constraint of the household is given by

PtCt + Et [Qt,t+1Bt+1] =Bt +
K∑
k=1

Wk,tHk,t +
K∑
k=1

∫
Ik

Πk,t(i)di,

where Pt denotes the aggregate price level to be defined below, Wk,t is the wage rate in sector k, and

Πk,t(i) denotes profits of firm ki. Households can trade nominal securities with arbitrary patterns

of state-contingent payoffs. Bt+1 denotes household’s holding of one-period state-contingent nominal

securities and Qt,t+1 is the nominal stochastic discount factor.
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The aggregate consumption composite is:

Ct =

(
K∑
k=1

(nkDk,t)
1/η Ck,t

(η−1)/η

)η/(η−1)

,

where η is the elasticity of substitution between the sectoral consumption composites to be defined

below, and Dk,t > 0 is a relative demand shock satisfying
∑K

k=1 nkDk,t = 1. The underlying aggregate

price index is

Pt =

(
K∑
k=1

(nkDk,t)P
1−η
k,t

)1/(1−η)

,

where Pk,t is the sectoral price index associated with the sectoral consumption composite Ck,t. Given

aggregate consumption Ct, and the price levels Pk,t and Pt, the optimal demand for the sectoral

composite goods minimizes total expenditure PtCt:

Ck,t = nkDk,t

(
Pk,t
Pt

)−η
Ct.

Sectoral consumption composites are given by

Ck,t =

((
1

nk

)1/θ ∫
Ik
Ck,t(i)

(θ−1)/θdi

)θ/(θ−1)

,

with corresponding sectoral price indices

Pk,t =

(
1

nk

∫
Ik
Pk,t(i)

1−θdi

)1/(1−θ)
,

where θ denotes the within-sector elasticity of substitution between consumption varieties. Given

Ck,t, the optimal demand for firm ik’s good, Ck,t(i), is:

Ck,t(i) =
1

nk

(
Pk,t(i)

Pk,t

)−θ
Ck,t.

The two remaining first-order conditions for the household’s problem are:

Qt,t+1 = β

(
Γt

Γt+1

)(
Ct
Ct+1

)(
Pt
Pt+1

)
,

Wk,t

Pt
= ωkH

ϕ
k,tCt.
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2.2 Firms

Firms use sector-specific labor and other (intermediate) goods in production according to the following

technology:

Yk,t(i) = AtAk,tHk,t(i)
1−δZk,t(i)

δ,

where Yk,t(i) is the production of firm ik, At is economy-wide productivity, Ak,t is sector-specific

productivity, Hk,t(i) denotes hours of labor that firm ik employs, Zk,t(i) is firm ik’s usage of other

goods as intermediate inputs, and δ denotes the share of intermediate inputs in production.

Firms combine the varieties of goods to form composites of sectoral intermediate inputs through

a Dixit-Stiglitz aggregator. The sectoral intermediate inputs are further assembled into the compos-

ite intermediate input that can be used for production. The total quantity of intermediate inputs

employed by firm ik is a Dixit-Stiglitz aggregator of sectoral intermediate inputs with the same

across-sector elasticity of substitution as the one between consumption varieties (η):

Zk,t(i) =

(
K∑
k′=1

(
nk′Dk′ ,t

)1/η
Zk,k′,t(i)

(η−1)/η

)η/(η−1)

,

where the sectoral intermediate input, Zk,k′,t(i), denotes the amount of firm ik’s usage of sector-k′

goods as intermediate inputs, and is similarly given by

Zk,k′,t(i) =

((
1

nk′

)1/θ ∫
Ik′

Zk,k′,t(i, i
′)(θ−1)/θdi′

)θ/(θ−1)

.

Zk,k′,t(i, i
′) denotes the quantity of goods that firm ik purchases from firm i′k′.

Taking the prices Pt, Pk′,t, Pk′,t(i), and Wk,t as given, firm ik decides how much of each input to

employ in production. The cost minimization problem yields the following optimality conditions:

Zk,t(i) =
δ

1− δ
Wk,t

Pt
Hk,t(i), (1)

Zk,k′,t(i) = nk′Dk′ ,t

(
Pk′,t
Pt

)−η
Zk,t(i),

Zk,k′,t(i, i
′) =

1

nk′

(
Pk′,t(i

′)

Pk′,t

)−θ
Zk,k′,t(i).

Prices are sticky as in Calvo (1983). A firm in sector k adjusts its price with probability 1 − αk
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each period. Thus, the sectoral price level Pk,t evolves as:

Pk,t =

[
1

nk

∫
I∗k,t

P ∗k,t
1−θdi+

1

nk

∫
Ik−I∗k,t

Pk,t−1(i)1−θdi

] 1
1−θ

=
[
(1− αk)P ∗k,t1−θ + αkP

1−θ
k,t−1

] 1
1−θ

, (2)

where P ∗k,t is the common price chosen by the firms that adjust at time t. These firms are grouped

into the set I∗k,t ⊂ Ik, which is a randomly chosen subset with measure nk (1− αk).
Firms that adjust their prices at time t maximize expected discounted profits:

max
Pk,t(i)

Et

∞∑
s=0

αskQt,t+sΠk,t+s(i),

where Qt,t+s and Πk,t+s(i) are respectively the stochastic discount factor between time t and t + s

and firm ik’s nominal profit at time t+ s given that the price chosen at time t is still being charged:

Qt,t+s = βs
(

Γt
Γt+s

)(
Ct
Ct+s

)(
Pt
Pt+s

)
Πk,t+s(i) = Pk,t(i)Yk,t+s(i)−Wk,t+sHk,t+s(i)− Pt+sZk,t+s(i).

The first-order condition that determines price setting is:

Et

∞∑
s=0

αskQt,t+s

(
P ∗k,t
Pk,t+s

)−θ (
Pk,t+s
Pt+s

)−η
Yt+s

[
P ∗k,t −

(
θ

θ − 1

)
MCk,t+s

]
= 0,

where MCk,t+s = Pt+sA
−1
t+sA

−1
k,t+s

1
1−δ

(
δ

1−δ

)−δ (Wk,t+s

Pt+s

)1−δ
is the nominal marginal cost of firm ik

at time t + s. Together with (2), optimal price setting determines equilibrium dynamics of sectoral

prices. The aggregate price dynamics are then determined by aggregation of such sectoral prices.

2.3 Monetary policy7

To close the model, we will make one of two assumptions: i) that monetary policy is explicitly

characterized by a Taylor-type interest-rate rule; or ii) that policy is such that nominal aggregate

consumption follows a given stochastic process.

Under the explicit interest-rate rule the gross nominal interest rate It is set according to

It = β−1

(
Pt
Pt−1

)φπ (Ct
C

)φy
exp(µt),

where µt is a monetary policy shock, and C is the zero-inflation-steady-state level of consumption.

7For simplicity we abstract from any influence of fiscal policy on equilibrium. We assume that the government does
not collect taxes or purchase goods.
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Under the alternative assumption for policy, we impose an exogenous stochastic process for nominal

aggregate consumption, denoted by Mt ≡ PtCt. As usual, this can be rationalized by introducing an
exogenous money supply and a cash-in-advance constraint on consumption.

2.4 Equilibrium

Equilibrium is characterized by an allocation of quantities and prices that satisfy the households’

optimality conditions and budget constraint, the firms’optimality conditions, the monetary policy

rule, and finally the market-clearing conditions:

Bt = 0,

Hk,t =

∫
Ik
Hk,t(i)di ∀k,

Yk,t(i) = Ck,t(i) +
K∑
k′=1

∫
Ik′

Zk′,k,t(i
′, i)di′ ∀i, k.

The first equation is the asset market clearing condition; the second is the labor market clearing

condition for each sector; the last equates supply and demand for each good, and indicates that firm

ik′s output can be either consumed by the household, Ck,t(i), or employed as inputs by other firms,∑K
k′=1

∫
Ik′

Zk′,k,t(i
′, i)di′.

For later use, we define aggregate wage and hours indices as follows:

Wt ≡
∑
k

nkWk,t

Ht ≡
∑
k

Hk,t.

2.5 Log-linear approximate model

We solve the model by log-linearizing the equilibrium conditions around the deterministic zero-

inflation steady state. The Appendix provides a detailed derivation of the steady-state equilibrium

as well as the full set of log-linearized equations. Here we only present the equations necessary to

characterize the equilibrium of the variables of interest:

{ct, πt, it,mt, ht, (wt − pt)} and {ck,t, πk,t}Kk=1 ,

where lowercase letters denote log-deviation from their steady state counterparts. The following

6 + (2×K) equations determine the equilibrium dynamics of the variables above:

ct = Et [ct+1]− (it − Etπt+1) +
(
γt − Etγt+1

)
, (3)
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wt − pt = ϕht + ct, (4)

(1− ψ)ct + ψzt = at +
∑
k

nkak,t + (1− δ)ht + δzt, (5)

wt − pt = zt − ht, (6)

πk,t = βEtπk,t+1 +
1− αk

αk (1− αkβ)−1

[ (
(1−δ)ϕ
1+δϕ + 1

η

)
ck,t +

(
(1−δ)(1−ψϕ)

1+δϕ − 1
η

)
ct + (1−δ)ψϕ

1+δϕ zt

− 1+ϕ
1+δϕat −

1+ϕ
1+δϕak,t −

1
ηdk,t

]
, (7)

πt =
∑
k

nkπk,t, (8)

∆ (ck,t+1 − ct+1) = −η (πk,t+1 − πt+1) + ∆dk,t+1, (9)

it = φππt + φcct + µt

or (10)

mt = exogenous stochastic process,

where ψ = δ (θ − 1) /θ. The first equation (3) is the household’s consumption Euler equation, often

referred to as the dynamic IS equation; (4) is obtained by aggregating the household’s intra-temporal

optimality conditions over sectors, and can be interpreted as an aggregate labor supply schedule; (5)

is obtained by integrating the production functions over all firms; (6) results from the aggregation of

cost minimization conditions; (7) gives the sectoral Phillips curves and (8) delivers aggregate inflation;

the demand function for sectoral consumption goods is given by (9); the last equation, (10), closes

the model.

3 Inspecting the mechanisms

In this section we analyze the mechanisms through which our model can deliver a differential response

of prices to sectoral and aggregate shocks. In the loglinear-approximate version of the model, when a

firm sets a new price it chooses (a markup over) an expected discounted weighted average of future

nominal marginal costs. Given that the frequency of price changes is the same for all types of shocks,

any differential speed in the response of sectoral prices to different shocks can be traced back to

differences in the dynamics of nominal marginal costs in response to these shocks.

It turns out that there are three sources of endogenous responses of marginal costs to shocks:

i) pricing interactions produced by intermediate inputs; ii) pricing interactions produced by labor

market segmentation; and iii) monetary policy responses to endogenous variables.

We start our discussion from a special case in which the first-pass intuition that the Calvo model

should not be able to produce responses with different speeds depending on the shock indeed holds
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true. We then depart from this case to highlight the three sources of endogenous differential responses

one-by-one, and thus illustrate why the first-pass intuition does not hold more generally.

In our analysis, it will be useful to focus on the equations for the sectoral price levels that obtain

from the sectoral Phillips curves (and some additional algebra):

pk,t = λ1pk,t−1 +
1− αk

αk (1− αkβ)−1

1

λ2

∞∑
s=0

(
1

λ2

)s
Et


(1−δ)(1−δ θ−1

θ
ϕ+ϕ)

1+δϕ ct+s +
(1−δ)δ θ−1

θ
ϕ

1+δϕ zt+s

+
(

1 + 1−δ
1+δϕϕη

)
pt+s

+ 1−δ
1+δϕϕdk,t+s −

1+ϕ
1+δϕ (ak,t+s + at+s)

 , (11)
where λ1 and λ2 are the roots of the characteristic polynomial

f(λ) = βλ2 − (β + 1 +
1− αk

αk (1− αkβ)−1

(
1 +

1− δ
1 + δϕ

ϕη

)
)λ+ 1,

and satisfy 0 < λ1 < 1 < λ2. Equation (11) indicates how sectoral price levels evolve, through partial-

adjustment (λ1pk,t−1), toward a weighted average of current and expected future values of exogenous

and endogenous variables.

3.1 Identical responses

To get the model to produce the same response of sectoral prices to aggregate and sectoral shocks we

start by abstracting from intermediate inputs (δ = 0). In addition, we assume linear disutility of labor

(ϕ = 0). This eliminates the effects of labor market segmentation, equalizing wages across sectors.

Under these assumptions the model exhibits what we refer to as “strategic neutrality”- as opposed to

strategic complementarity or substitutability - in price setting, and the sectoral price equations (11)

simplify to:

pk,t = λ1pk,t−1 +
1− αk

αk (1− αkβ)−1

1

λ2

∞∑
s=0

(
1

λ2

)s
Et [mt+s − at+s − ak,t+s] . (12)

Under the additional assumption that nominal consumption evolves exogenously, it is clear that the

speed of the response of sectoral prices to the various shocks will be the same if the shocks have the

same dynamics.8 This result follows from the fact that, under these conditions, nominal marginal

costs equal a linear combination of the exogenous stochastic processes.

3.2 Differential responses

From the result in the last subsection, it follows trivially that one source of differential dynamics in the

response to shocks are differences in the dynamics of the shocks themselves. To isolate this factor from

8Note that in this case demand shocks have no effect on sectoral prices. This arises because wage equalization
implies that pure relative-demand shifts have no effect on marginal costs.
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the mechanisms that endogenously deliver a differential price response to shocks, in the remainder of

this section we assume that all exogenous stochastic processes exhibit the same dynamics. We relax

this assumption when we move to our quantitative analysis in Section 5.2.

Departing from the particular parameterization of the previous subsection, in general the infinite

sum in (11) will involve current and expected future values of endogenous variables. This follows

directly from the fact that, in general, nominal marginal costs depend on endogenous variables.

Thus, any difference in the speed of response to two given shocks will depend on how these shocks

affect the relevant endogenous variables.

3.2.1 The effect of intermediate inputs (δ > 0, ϕ = 0, mt exogenous)

We continue to eliminate the effect of labor market segmentation by setting ϕ = 0, and maintain the

assumption of exogenous nominal consumption. This leads to the following sectoral price equations:

pk,t = λ1pk,t−1 +
1− αk

αk (1− αkβ)−1

1

λ2

∞∑
s=0

(
1

λ2

)s
Et

[
(1− δ)mt+s − (ak,t+s + at+s)

+δpt+s

]
. (13)

In the expression between square brackets, the first line only involves exogenous processes, and can

be thought of as giving the direct effect of the shocks on sectoral prices. The second line, however,

involves the aggregate price level. To the extent that the latter responds to shocks differently, the

same will happen to sectoral prices. Note that this involves a circular argument, since the aggregate

price level is simply a combination of sectoral prices. Thus, understanding the mechanism through

which the model delivers a differential response of prices to shocks amounts to understanding the

dynamics of prices in equilibrium.

Relative to aggregate shocks, sectoral (productivity) shocks have only a small effect on the aggre-

gate price level - which for expositional purposes we take to be zero.9 Thus the speed of the response

of sectoral prices to the latter shocks is mechanically dictated by the dynamics of the shocks them-

selves, since they determine the evolution of nominal marginal costs - just as in the case of identical

responses analyzed previously.

In contrast, an aggregate shock does move the aggregate price level, and thus the speed of its

response matters. As is well known, intermediate inputs lead to strategic complementarity in pricing

decisions: when adjusting their prices, firms do not adjust as much in response to shocks since nominal

marginal costs are “held back”by prices that have not yet adjusted. This interdependence of pricing

decisions manifests itself through the terms Et [δpt+s] in equation (13). This mechanism implies

a slower response of prices to aggregate shocks when compared to the case of identical responses

analyzed previously - and thus a slower response relative to sectoral shocks.

9Recall that this is a statement about the effect of identical shocks.
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3.2.2 The effect of labor market segmentation (δ = 0, ϕ > 0, mt exogenous)

We continue to assume exogenous nominal consumption (output), but now abstract from intermediate

inputs (δ = 0). This leads to the following sectoral price equations:

pk,t = λ1pk,t−1 +
1− αk

αk (1− αkβ)−1

1

λ2

∞∑
s=0

(
1

λ2

)s
Et

 (1 + ϕ)mt+s − (1 + ϕ) at+s

− (1 + ϕ) ak,t+s + ϕdk,t+s

+ϕ (η − 1) pt+s

 . (14)

In the expression between square brackets, the first two lines only involve exogenous processes. The

third line, however, involves the aggregate price level, and, just like in the previous subsection, the

speed of its response matters in the case of aggregate shocks.

Equation (14) is consistent with sectoral prices displaying a slower or faster response to aggregate

shocks - relative to sectoral shocks, depending on whether the coeffi cient in front of the aggregate price

level is, respectively, positive or negative. As we discuss in detail in Subsection (3.3), the sign of this

coeffi cient depends on whether pricing decisions of firms in any given sector are strategic complements

or substitutes relative to pricing decisions elsewhere in the economy. Pricing decisions exhibit this

type of complementarity (substitutability) when the coeffi cient ϕ (η − 1) is positive (negative).10

In the ϕ (η − 1) coeffi cient on the aggregate price level, the −ϕ term is reminiscent of models

with an economy-wide labor market, and pushes toward across-sector strategic substitutability in

price setting.11 The ϕη term, which arises precisely because of the sectoral labor market assumption,

unequivocally pushes toward across-sector strategic complementarity in price setting. This effect is

stronger the lower the (Frisch) elasticity of labor supply is (higher ϕ) and the higher the elasticity of

substitution across sectors, η, is. In Subsection 3.3 we discuss the intuition behind the roles of these

two parameters.

3.2.3 Taylor rule

In addition to the mechanisms discussed in the previous two subsections, a response of monetary

policy to endogenous variables - according to a Taylor-type interest rate rule - may also produce

differential responses of sectoral prices to shocks. A convenient way to think about this case is to

factor in that now nominal consumption (mt ≡ pt + ct) is endogenous. Thus, even in the simplifying

case of strategic neutrality in price setting (δ = 0, ϕ = 0), aggregate shocks should lead prices to

respond differently from sectoral shocks, since the former should affect pt and ct.

10From this coeffi cient it may appear that in general η = 1 is a borderline case between complementarity and
substitutability. However, this is only the case because we assumed logarithmic consumption utility. In the general
case of CRRA preferences with coeffi cient of intertemporal substitution in consumption σ−1, the condition for strategic
neutrality in price setting is (1 + ϕη − (σ + ϕ)) = 0.

11 In the general case of CRRA preferences with coeffi cient of intertemporal substitution in consumption σ−1, the
corresponding term would be 1− (σ + ϕ).
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3.3 The nature of pricing interactions

The previous analysis highlights pricing interactions as a feature that gives the model the ability

to deliver relatively more sluggish responses of sectoral prices to aggregate shocks vis-a-vis sectoral

shocks endogenously. In our model, these interactions may arise due to input-output linkages, and

sectoral labor market segmentation.

Input-output linkages produce complementarities “uniformly”across all pricing decisions, in the

sense that other prices only matter as an average - in particular, the aggregate price level. To see

this, assume linear labor disutility (ϕ = 0) to shut down the effect of labor market segmentation. This

produces the following expression for firm ik’s frictionless optimal price p∗∗k,t(i):
12

p∗∗k,t(i) = pt + (1− δ) ct − at − ak,t

= (1− δ)mt + δpt − at − ak,t.

Note that only the aggregate price level appears, multiplied by the share of intermediate inputs in

production - which in this case dictates the strength of the pricing complementarities. This mechanism

operates in the same way in models with economy-wide labor markets (as in the RBC tradition) or

firm-specific labor (as advocated by Woodford 2003). It follows directly from the fact that goods are

inputs to production, and thus their prices affect marginal costs.

In contrast, labor market segmentation at the sectoral level produces a different type of pricing

interactions. To see this, abstract from intermediate inputs (δ = 0) and make labor segmentation

relevant by assuming ϕ > 0. This produces the following expression for firm ik’s frictionless optimal

price:

p∗∗k,t(i) = (1 + ϕ)mt − ϕpt + ϕηpt − ϕηpk,t (15)

+ϕdk,t − (1 + ϕ) (at + ak,t) .

The first two terms on the right-hand-side of (15) are reminiscent of models with an economy-wide

labor market. They imply a strategic substitutability in price setting. Sectoral labor market segmen-

tation creates a direct dependence of a firm’s marginal cost on its sectoral relative price, because of

an “expenditure switching effect.”This effect shows up in the third and fourth terms on the right-

hand-side of (15). A higher sectoral relative price implies lower demand for the sector’s output, which

translates into a lower sectoral wage and thus lower marginal costs. This new positive dependence

of a firm’s marginal cost on the aggregate price level, and negative dependence on its own sectoral

price level produce a “non-uniform”pricing interaction: a strategic complementarity in price setting

12This is the price that firm ik would choose if it could change prices continuously.
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across sectors (ϕηpt term), and a strategic substitutability within sectors (−ϕηpk,t term). These
non-uniform pricing interactions are more relevant the stronger the expenditure switching effect is.

In turn, the latter is stronger the more elastic the demand for a sector’s output is (higher η), and the

less elastic the sectoral labor supply is (higher ϕ). The reason is that the combination of these two

parameters is what determines the effect that a change in a sector’s relative price has on its sectoral

wage.

The combination of intermediate inputs with sectoral labor market segmentation endows the

model with the ability to produce various configurations of within-sector and across-sector pricing

interactions. This can be seen from the equation for the frictionless optimal price in the general case

(δ, ϕ > 0):

p∗∗k,t(i) =
(1− δ)

(
1 + ϕ− δ θ−1

θ ϕ
)

1 + δϕ
mt

+

(
1 + δϕ− (1− δ)

(
1 + ϕ− δ θ − 1

θ
ϕ− ϕη

))
pt −

1− δ
1 + δϕ

ϕηpk,t

+
(1− δ) δ θ−1

θ ϕ

1 + δϕ
zt +

(1− δ)ϕ
1 + δϕ

dk,t −
1 + ϕ

1 + δϕ
(at + ak,t) .

3.3.1 Economy-wide labor market

A version of the model with an economy-wide labor market does not have the flexibility of producing

different configurations of within-sector and across-sector pricing interactions. In the absence of

intermediate inputs, it produces strategic substitutability uniformly across all pricing decisions (unless

one assumes linear disutility of labor, in which case it produces strategic neutrality).13 Intermediate

inputs move the model toward generating uniform pricing complementarities.

3.3.2 Firm-specific labor

A model with firm-specific labor leads to the following equation for the frictionless optimal price:14

p∗∗k,t(i) =
(1− δ)

(
1 + ϕ− δ θ−1

θ ϕ
)

1 + δϕ+ (1− δ)ϕθ mt

+

(
1 +

(1− δ)ϕ (η − θ)− (1− δ)
(
1 + ϕ− δ θ−1

θ ϕ
)

1 + δϕ+ (1− δ)ϕθ

)
pt +

(1− δ)ϕ
1 + δϕ+ (1− δ)ϕθ (θ − η) pk,t

+
(1− δ)ϕδ θ−1

θ

1 + δϕ+ (1− δ)ϕθzt +
1− δ

1 + δϕ+ (1− δ)ϕθϕdk,t −
1 + ϕ

1 + δϕ+ (1− δ)ϕθ (at + ak,t) .

This model can also break the uniformity of pricing interactions as long as the elasticities of

13Since these results are well known, for brevity we omit the relevant equations and refer the interested reader to
Woodford (2003).

14While we refer to this model as featuring firm-specific labor, in some contexts it might also be consistent with
different intepretations. See our discussion in the next subsection.
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substitution between varieties within (θ) and across (η) sectors are different.15 Under the reasonable

assumption that θ > η, the model strengthens within-sector complementarities at the expense of

across-sector complementarities. Producing either within-sector complementarities that are weaker

than across-sector, or within-sector strategic substitutability requires θ < η.

3.3.3 Difference relative to the Gertler and Leahy (2008) model of local labor markets

Gertler and Leahy (2008) develop a menu-cost model with local labor markets. Labor can flow freely

across firms in the same “island,”but cannot move across islands. In that dimension this is equivalent

to our model of sectoral labor markets. However, the implications of labor segmentation for the nature

of pricing interactions in our models are quite different. Here we explain why this is the case.

From the point of view of the response of the economy to “common”(aggregate and island-specific)

shocks, the local labor market assumption of Gertler and Leahy (2008) is equivalent to one in which

labor is firm-specific and wages are, nevertheless, taken as given. In fact, as Woodford (2003, ch. 3)

discusses in detail, such a model with firm-specific labor can alternatively be thought of as featuring

an additional continuum of firms producing sub-varieties of each variety of the consumption good, all

of which use the same type of labor input hired in a competitive market, and change prices at the same

time. These groups of firms, which Woodford refers to as “industries,”are akin to the Gertler-Leahy

islands.16 As is well known, this setup gives rise to strategic complementarities in price setting across

firms in different islands (industries).17

In our multi-sector model with labor segmentation, price changes are asynchronized even within

a given sector. To gain intuition on the effects of within-sector asynchronization of price changes,

consider the case of a positive sectoral productivity shock in a given sector. If price changes are

infrequent but fully synchronized in each sector, at some point all firms will respond simultaneously

15To our knowledge this point was first highlighted by Carvalho (2006, 2008).
16 In Gertler and Leahy (2008) not all firms in an island necessarily end up changing prices at the same time. However,

whenever an island-specific shock hits they all entertain a price change at the same time (subject to the menu cost).
Moreover, none of them change prices in periods in which island-specific shocks do not hit. As will become clear
shortly, the resulting pattern of “synchronization” of price changes is what matters, and turns out to imply pricing
complementarities just as in the alternative interpretation of Woodford’s model, in which all firms in the industry do
change prices at the same time.

17The equivalence between firm-specific and “industry-”or “island-specific”labor markets breaks down in the presence
of firm-specific shocks that wash out at the industry/island level. In that case the issue of whether a firm’s labor demand
actually affects the wage that it pays becomes crucial. If labor is trully firm-specific, changes in its demand for labor
will affect the wage that it pays, and thus labor attachment will affect the firm’s incentives to change prices in response
to idiosyncratic shocks. Put in terms of the analysis of Ball and Romer (1990) and Kimball (1995), this amounts to a
real rigidity that is internal to the firm, and is a source of ω−type strategic complementarity in price setting (in the
notation of Kimball 1995, which is also used by Nakamura and Steinsson 2010). In contrast, if firms are trully atomistic
they can each change their labor demand in response to idiosyncratic shocks without affecting the wages that they pay.
The latter case, which corresponds to Gertler and Leahy (2008), amounts to a real rigidity that is external to the firm,
and is a source of Ω−type strategic complementarity in price setting. This is why it does not hurt their model’s ability
to match the size of price changes observed in the data under reasonable parameter values. On that point see also the
discussion in Nakamura and Steinsson (2010).
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by lowering their prices, selling more and producing more. Moreover, the (common) price that is

chosen at that time will remain fixed until the next (synchronized) price change. All else equal, the

lower the sectoral price is, the higher are sectoral demand, production, labor input, and wages. The

negative dependence of the sectoral wage on the sectoral relative price, coupled with the fact that

price changes in the sector are synchronized and infrequent, implies a strategic complementarity of

the same kind as in the Gertler and Leahy (2008) model.

Now imagine that price adjustments within the sector are staggered uniformly over time, as in our

model. Relative to the full-synchronization case, firms that do not cut prices produce and sell less,

and thus demand less (sector-specific) labor. This puts downward pressure on the sectoral wage, and

thus induces firms that do change prices to cut them by more than in the case of full synchronization.

Moreover, going forward other firms in the sector will adjust their prices while (some of) the first

movers keep their prices temporarily fixed. The resulting fluctuations in the relative sectoral price will

induce fluctuations in the sectoral wage that are unrelated to the prices chosen by the first movers.18

This is exactly what produces the within-sector substitutability in pricing decisions that we highlight

in Subsection 3.3.19

4 Empirical sectoral price facts

We focus on the findings of BGM regarding the differential speed in the response of sectoral prices to

common and sectoral shocks. We complement them with some of the facts documented by Máckowiak

et al. (2009), and establish a novel empirical fact about sectoral prices.

4.1 BGM FAVAR

We start by reproducing some of the results of BGM, and reporting a few additional results that we

can obtain from their statistical framework. The results in this subsection are based on the exact

same FAVAR specification and data as in BGM.20

Figures 1-2 reproduce the IRFs obtained from their FAVAR. The left figure shows the responses

of sectoral PCE prices (red dotted lines) to an innovation to the common component in their dynamic

18This is in contrast with the case of full synchronization, in which the sectoral price remains fixed until the next
episode of synchronized price changes in the sector. In that case the initial price-setting decisions keep influencing what
happens to the sectoral wage as long as the sectoral price level remains constant.

19Another way to make sense of the implications of our assumption of sectoral labor markets with asynchronized
price changes is as follows. As in the model with an economy-wide labor market, pricing decisions of firms that share the
same labor input are strategic substitutes. What those two assumptions add, then, is an expenditure switching effect
that pushes toward across-sector strategic complementarity, as discussed previously.

20We thank the authors for making their code and data available on their websites. We also thank Marc Giannoni for
providing us with their mapping between the disaggregated PCE price data and the Bils and Klenow (2004) statistics
on the frequency of price changes. For brevity we refer the reader to BGM for details on the FAVAR model that they
employ.
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factor model, and the corresponding unweighted average of the IRFs (black solid line). The right

figure shows the responses of sectoral PCE prices to an innovation to their respective sector-specific

components (red dotted lines), and the corresponding unweighted average of the IRFs (black solid

line).

Figures 1-2: Empirical IRFs - FAVAR
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From these IRFs we compute measures of the speed of the responses to each shock, following

Máckowiak et al. (2009). Given an impulse response function denoted IRFt, the speed of the response

is given by the ratio of the average “short-run”response (first 6 months) to the average “long-run”

response (last 6 months in the two-year horizon):

speed of response =

∑5
t=0 |IRFt|∑24
t=19 |IRFt|

. (16)

Figures 3-4 show the distribution of the speed of the responses of sectoral prices to an innovation to

the common component (left figure), and to their respective sector-specific components (right figure).

Table 1 reports some descriptive statistics based on these two distributions.
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Figures 3-4: Cross-sectional distribution of speed of responses
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Table 1: Statistics on the speed of responses to shocks
Speed of response

to common
component

to specific
components

Average 0.274 1.010
Median 0.261 1.001

Std. deviation 0.066 0.281
Coeff. of variation 0.239 0.278
Corr.with 1− αk 0.4221) 0.1881)

Correlation − 0.306 −
Note: 1) based on a mapping between 108 (out of the 192) PCE price
series included in BGM’s FAVAR and the Bils and Klenow (2004)
statistics on the frequency of price changes.

The average speed of response of sectoral prices to sector-specific components is substantially

higher than to common components. This conclusion is common to BGM and Máckowiak et al.

(2009). The correlation between the sectoral speeds of responses and the sectoral frequencies of price

changes is positive for both the common and sector-specific components. It is higher for the common

component (0.42 vs. 0.19). This is consistent with related regression results reported by Máckowiak

et al. (2009). A novel price fact is that the correlation between the speed of responses to both types

of shocks is positive: sectors that respond quickly to sector-specific shocks also respond quickly to

common shocks. In BGM’s FAVAR this correlation is 0.31.

If measured by the standard deviation, the cross-sectional dispersion in the speed of the responses

to common shocks is smaller than the dispersion in the speed of the responses to specific shocks.

This essentially reflects the different central tendencies of the two cross-sectional distributions, as the

coeffi cients of variation of the two distributions are quite similar.21

21Our finding on the cross-sectional dispersion of the speed of responses is at odds with the results of Maćkowiak
et al. (2009). They conclude that “the cross-section of the speed of response to sector-specific shocks is tight, while
the cross-section of the speed of response to aggregate shocks is dispersed.”We conjecture that the discrepancy is due
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Finally, we reproduce BGM’s results on the cross-section of correlations between the sector-specific

component of PCE inflation rates and the corresponding sector-specific component of quantities (in

growth rates), and the cross-section of correlations between the component of PCE inflation rates

and growth rate of quantities that are driven by the common components. These are depicted in

Figures 5-6. Table 2 provides summary statistics. The main finding is that most correlations are

negative. This led BGM to conclude that supply-type shocks are relatively more important drivers

of fluctuations in prices and quantities. This is a conjecture we verify below.
Figures 5-6: Cross-section of correlations between components of prices and quantities
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4.2 15-sector FAVAR

In our structural estimation in Section 5.2, for computational reasons we use the second-level dis-

aggregation of the PCE, which consists of 15 sectors. To allow a more direct comparison between

our structural and reduced-form empirical results, here we redo the FAVAR analysis of the previous

subsection using only the data that we include in the structural estimation. The observables are the

to differences in empirical methodology between their paper and BGM’s. A first difference between the two papers is
that BGM’s dataset includes sectoral quantities and other macroeconomic and financial variables besides price series,
whereas Maćkowiak et al. (2009) use sectoral inflation data. In terms of modeling assumptions, BGM allow for as
many as 5 unobserved common factors in their estimation, and impose a vector-autoregressive structure on all of them.
They impose weak regularity conditions on the sector-specific components. In contrast, Maćkowiak et al. (2009) impose
one common inflation component, and assume time-series processes of different families for their sectoral and common
components: while the sectoral components follow AR(6) processes, the common component follows an MA(24) process.
Maćkowiak et al.’s (2009) robustness analysis, showing that their results are somewhat sensitive to the number of
common factors (section 6.3 of their paper), hints that these differences is modeling assumptions might be important.
Finally, Maćkowiak et al. (2009) use a Bayesian approach, whereas BGM use a classical estimation approach. We believe
these are potentially important methodological differences between the two papers, the implications of which should be
further investigated in future research.

21



Table 2: Statistics on the correlations between components of prices and quantities
Correlation between inflation
and growth of quantities
Common
component

Specific
components

Average −0.229 −0.296
Median −0.260 −0.239
Max. 0.917 0.913
Min. −0.969 −0.990

nominal interest rate (it), hours growth (∆ht), and all sectoral inflation and sectoral consumption

growth rates {πk,t,∆ck,t}Kk=1. We use total hours from the nonfarm business sector as a measure of

hours, and the effective federal funds rate as the nominal interest rate. Consumption is given by

personal consumption expenditures (PCE), with the corresponding price deflators as the measure of

prices. We otherwise keep the same parameterization of the BGM FAVAR model (5 common factors,

13 lags in the VAR). The data are monthly, and the sample period is 1983:M1 to 2008:M12. In the

Appendix we present details of the sectors used in the estimation.

Figures 7-12 and Tables 3-4 report the results analogous to those in Figures 1-6 and Tables 1-2.

The correlations between the speeds of responses and the frequencies of price changes are based on our

mapping of the price-setting statistics for posted prices reported by Nakamura and Steinsson (2008)

to the 15-sector disaggregation of the PCE.

Figures 7-8: Empirical IRFs - FAVAR

0 12 24 36 48
4.5

4

3.5

3

2.5

2

1.5

1

0.5

0
Response of PCE price series to common component

Months
0 12 24 36 48

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0
Response of PCE price series to sectorspecific component

Months

22



Figures 9-10: Cross-sectional distribution of speed of responses
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Table 3: Statistics on the speed of responses to shocks - 15-sector FAVAR
Speed of response

to common
component

to specific
components

Average 0.423 0.889
Median 0.397 0.855

Std. deviation 0.208 0.269
Coeff. of variation 0.491 0.303
Corr.with 1− αk 0.755 0.331
Correlation − 0.350 −

Table 4: Statistics on the correlations between components of prices and quantities - 15-sector FAVAR
Correlation between inflation
and growth of quantities
Common
component

Specific
components

Average −0.327 −0.109
Median −0.331 −0.149
Max. 0.201 0.144
Min. −0.932 −0.394
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Figures 11-12: Cross-section of correlations between components of prices and quantities
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The results are quite similar across the two FAVAR specifications. Moreover, in our robustness

analysis (reported in the Appendix) we show that these findings are robust to variations in the number

of common factors included in the FAVAR, in the number of lags in the underlying VAR, and in the

number of sectors.

We summarize the empirical evidence with the following facts: i) the average speed of response of

sectoral prices to sector-specific shocks is significantly higher than the average speed of response to

shocks to the common component (by a factor of 2-4); ii) The correlation between the sectoral speeds

of responses and the sectoral frequencies of price changes is positive for both the common and sector-

specific components - it is higher for the common component; iii) The correlation between the speed of

responses to both types of shocks is positive; iv) the cross-sectional standard deviation of the sectoral

speeds of responses to shocks to the common component is smaller than the corresponding standard

deviation for the responses to sector-specific shocks; v) the cross-sectional mean of the correlations

between the sector-specific component of PCE in‡ation rates and the corresponding sector-specific
component of the growth rate in quantities is negative - the same applies to the fluctuations that are

driven by the common component.

5 Quantitative analysis

We focus on the model in which monetary policy responds to endogenous variables according to a

Taylor-type interest-rate rule. To simulate (and subsequently estimate) the model, it is necessary to
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make distributional assumptions on the exogenous shocks. We assume they follow AR(1) processes:

γt+1 = ρΓγt + σΓεΓ,t+1,

at+1 = ρAat + σAεA,t+1,

µt+1 = ρµµt + σµεµ,t+1,

ak,t+1 = ρAkak,t + σAkεAk,t+1,

dk,t+1 = d̃k,t+1 −
K∑
k=1

nkd̃k,t, where d̃k,t+1 = ρDk d̃k,t + σDkεDk,t+1,

with every epsilon being standard Gaussian white noise.

As a preliminary step, in the next subsection we study the properties of a simply parameterized

version of our model to assess whether it can endogenously produce meaningful differences in the speed

of responses of sectoral prices to aggregate and sectoral shocks. We present both results obtained

directly from the solution of the model (what we refer to as “model-implied results”), and results

obtained by estimating a FAVAR on model-generated data. We then move to the estimation of the

model using Bayesian methods, which is the basis for our ultimate quantitative analysis.

5.1 Preliminaries

5.1.1 Model parameterization

As highlighted in Section 3, the speed of the adjustment of sectoral prices depends on the specifica-

tion of the dynamics of the exogenous shocks. To isolate the differential response of sectoral prices

to aggregate and sectoral shocks delivered endogenously by the model, here we assume that every

exogenous shock has the same degree of persistence. Assuming the unit of time is one month, we

set every autoregressive coeffi cient to be 0.91/3, which is equivalent to 0.9 in a quarterly model. In

Section 5.2 we estimate the parameters of the shock processes maintaining the AR(1) assumption.

We set the other parameters to conventional values found in the literature. The discount factor,

β, equals 0.9967, to achieve a 4% annual steady state interest rate. The parameter ϕ is set equal to 2

so that the (Frisch) elasticity of labor supply is 0.5. We set the within-sector elasticity of substitution

between different varieties, θ, to 6, which implies a 20 percent steady-state mark-up for the firms.

The across-sector elasticity of substitution, η, is set equal to 2. The share of intermediate inputs, δ,

is set to 0.7. We adopt standard values for the policy parameters, setting φπ and φc equal to 1.5 and

0.5/12, respectively.

The size of the shocks does not matter for the results based on “theoretical” impulse response

functions (i.e. those obtained from the solution of the model). But it does matter for the results

obtained by estimating a FAVAR on model-generated data. For the aggregate productivity and

preference shocks we assume a standard deviation of 0.01/
√

3 (1% quarterly); for the monetary shock

we assume 0.002/
√

3. Sectoral shocks are likely much larger than aggregate shocks. For sectoral

demand shocks we assume σDk = 0.025/
√

3, and for sectoral productivity shocks we assume that
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innovations are three times as volatile, and set σAk = 0.075/
√

3.22

We simulate the parameterized economy with 50 sectors, mirroring the third-level disaggregation

of PCE data. The corresponding distribution of price stickiness is constructed by suitably aggregating

consumption categories from the Nakamura and Steinsson (2008) price-setting statistics. The sectoral

weights are the PCE expenditure weights averaged over our sample period.

5.1.2 Model-implied results

We start with results taken directly from the solution of the parameterized model. Figures 13-

14 present the theoretical IRFs of sectoral prices to an aggregate productivity shock, and to the

respective sectoral productivity shocks. In the sequence, Figures 15-16 show the distributions of the

speed of the responses to an aggregate productivity shock (left figure), and to the respective sector-

specific productivity shocks (right figure). Table 5 reports descriptive statistics based on these two

distributions.

Figures 13-14: Theoretical IRFs
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The cross-sectional distributions of the speed of responses to both shocks, calculated according to

(16), are shown in Figures 15-16. Summary statistics are provided in Table 5.

Table 5: Speed of response to productivity shocks
Speed of response

to aggregate
shock

to sectoral
shock

Average 0.268 0.824
Median 0.262 0.726

Std. deviation 0.061 0.428
Coeff. of variation 0.226 0.519
Corr.with 1− αk 0.880 0.899
Correlation − 0.977 −

22This is motivated by the results in Burstein and Hellwig (2008).
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Figures 15-16: Cross-sectional distribution of speed of responses
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The results illustrate the potential of the model to deliver relatively faster responses of sectoral

prices to sector-specific productivity shocks, when compared to aggregate productivity shocks.23

Given that all shocks are assumed to follow the same exogenous dynamics, these results illustrate

the ability of the parameterized model to produce such differential responses endogenously. The

model also endogenously produces less dispersion in the speed of responses of sectoral prices to the

aggregate shock when compared to the responses to sectoral shocks.24 This results naturally from pric-

ing complementarities, which strengthen the comovement of sectoral prices in response to aggregate

shocks for the reasons discussed in Section 3.

This simply parameterized model also produces the right signs for the correlations between the

speed of responses to shocks and the frequencies of price changes, and for the correlation between

the speeds of responses to the two types of shocks. However, because the dynamics of the exogenous

shocks are identical, heterogeneity in the frequency of price changes is the only relevant source of

differences across sectors. As a result, there is a very tight link between the speeds of responses to

aggregate and sectoral shocks and the frequencies of price changes, which is apparent in the very high

correlations reported in Table 5.

The role of each “ingredient” We also analyze the model by introducing each of the three

ingredients discussed in Section 3 at a time into the first-pass specification with strategic neutrality

in price setting and exogenous monetary policy. We then combine the Taylor rule with each of the

other two ingredients. In quantitative terms, the combination of the endogenous response of monetary

policy through the Taylor rule with labor-market segmentation seems to be the driving force behind

the ability of the model to produce price responses to sectoral and aggregate shocks with differential

speeds. For brevity we present the details of this analysis in the Appendix, and from now on we focus

23The patterns with other types of shocks are similar.
24Recall that in the first-pass specification without the three “ingredients” discussed in detail in Section (3), the

impulse response functions of sectoral prices to both types of shocks are indentical. As a result, the cross-sectional
distributions of the speeds of responses to both types of shocks are also indentical.
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on the quantitative performance of the model with all three ingredients.

5.1.3 FAVAR results with model-generated data

While the results of the previous subsection involve responses conditional on particular shocks, the

empirical evidence that we summarize in Subsection 4 involves responses to shocks extracted from

the statistical FAVAR framework. As such, they can be thought of as involving a combination of

structural shocks. To produce results from the model that are more comparable to the empirical

evidence, we estimate a FAVAR on data generated by simulating the model with all the shocks, and

produce figures and tables in the exact same way as in Subsection 4. The artificial dataset comprises

consumption growth, inflation, the nominal interest rate, hours growth, and all sectoral inflation and

sectoral consumption growth rates. The specification of the FAVAR is identical to the one we estimate

for the 15-sector disaggregation of the PCE (Subsection 4.2).

Figures 17-18 present the IRFs from the FAVAR estimation on artificial data.25

Figures 17-18: IRFs from FAVAR
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Figures 19-20 show the distribution of the speed of the price responses to an innovation to the

common component (left figure), and to the sector-specific components (right figure). Table 6 reports

descriptive statistics based on these two distributions.

25We produce a sample with twelve thousand observations and discard the first two thousand to minimize the effects
of initial conditions.
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Figures 19-20: Cross-sectional distribution of speed of responses
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Table 6: Statistics on the speed of responses to shocks
Speed of response

to common
component

to specific
components

Average 0.264 0.704
Median 0.234 0.674

Std. deviation 0.084 0.272
Coeff. of variation 0.320 0.386
Corr.with 1− αk 0.947 0.717
Correlation − 0.633 −

A comparison between Tables 5 and 6 reveals that, qualitatively, the FAVAR framework captures

all of implications of our structural model for those sectoral-price statistics. At first this may seem

surprising, since the artificial data underlying the results in Table 6 are driven by a variety of shocks.

As such, they are not conditional on (aggregate and sectoral) productivity shocks, unlike the model-

implied results reported in Table 5. The reason why conditional and “unconditional” results are

somewhat close is this simply parameterized model produces similar statistics in response to the

other structural shocks.

Finally, we report the results on the cross-section of correlations between the sector-specific com-

ponent of inflation rates and the corresponding sector-specific component of quantities (in growth

rates), and the cross-section of correlations between the component of inflation rates and growth rate

of quantities that are driven by the common components. These are depicted in Figures 21-22, and

summarized in Table 7.
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Figures 21-22: Cross-section of correlations between components of prices and quantities
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Table 7: Statistics on the correlations between components of prices and quantities
Correlation between inflation
and growth of quantities
Common
component

Specific
components

Average −0.129 −0.693
Median −0.068 −0.731
Max. 0.238 −0.265
Min. −0.774 −0.963

Overall, the results show that in response to “reduced-form”sectoral and common shocks extracted

through the FAVAR framework, the model manages to produce quantitative results that are similar

to the empirical facts summarized in the previous section. In addition to the statistics on the speed

of sectoral price adjustment to shocks, the quantitative results on the cross-section of correlations

between inflation rates and the growth rates of quantities are also in line with the empirical evidence

- in particular of strong negative correlations between the sector-specific component of inflation rates

and the corresponding sector-specific component of the growth rate in quantities. In unreported

results we confirm BGM’s conjecture that such negative correlations arise when supply-type shocks

are dominant.

The quantitative analysis carried out in this and the previous subsections suggests that the model

has enough flexibility to produce quantitative results that are similar to the empirical facts summarized
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in the previous section. This underscores our effort to move to estimation of the structural model in

order to assess its ability to match those facts.

5.2 Model estimation

Although the parameterized version of the model analyzed in the previous subsections is a useful

starting point for a quantitative analysis, it only provides a partial picture about the ability of our

model to match the empirical findings reported in Section 4. In particular, because the response of

sectoral prices depends on the dynamic properties of exogenous shocks, parameterizing the shocks

symmetrically can be problematic.

In this section we estimate the model employing Bayesian methods. We incorporate prior informa-

tion about the structural parameters θ by specifying a prior distribution f(θ). With data set XT , we

can obtain the likelihood function f(XT |θ) implied by the model economy. The posterior distribution

of θ, f(θ|XT ) is then determined by Bayes theorem: f(θ|XT ) = f(XT |θ)f(θ)/
∫
f(XT |θ)f(θ)dθ.

We simulate the posterior distribution by Markov Chain Monte Carlo methods as detailed in the

Appendix.

We take the model to the aggregate and sectoral data described in Subsection 4.2. We normalize

total hours and the sectoral consumption measures by the total civilian non-institutional population

over age of 16. We also detrend the real variables using a linear trend, and demean the nominal

interest rate and the sectoral inflation rates. The sectoral weights are set to the expenditure weights

averaged over our sample period.

5.2.1 Priors and posteriors

We fix some parameters in the estimation, setting the same values as in the parameterized version of

the model studied in the previous subsections. The fixed parameters are β, ϕ, θ, η, δ, and the set

of parameters {αk, nk}Kk=1. As for the remaining parameters, our prior distribution mostly follows

the convention in the literature on Bayesian estimation of DSGE models. Regarding the Taylor

rule coeffi cients, we select normal distributions. The mean of φπ is set to be 1.5 with standard

deviation of 0.25. We set the mean of φc to be 0.5/12 and its prior standard deviation to be 0.05.

The autoregressive parameter of monetary shock, ρµ, has a beta distribution with mean of 0.7 and

standard deviation of 0.1, whereas the innovation parameter, σµ, has an inverse gamma distribution

with mean of 0.125% and standard deviation of 0.125%.

Similarly to the monetary shock, we assume that the autoregressive parameters for the remaining

exogenous shocks have a beta distribution and the coeffi cients on the innovations have an inverse

gamma distribution. We treat the aggregate shocks, γt and at, symmetrically. The prior mean of ρΓ

and ρA is 0.7, and the standard deviation is 0.1. The standard deviations of the innovations σΓ and

σA are assumed to have mean of 0.5% and standard deviation of 0.5%.

We also treat the sectoral shocks symmetrically in the prior distribution. The autoregressive

parameters have the same prior distribution as their counterparts in aggregate shocks. However,

due to the likely more volatile nature of sectoral shocks, we set the prior mean of σAk and σDk to
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5% and the prior standard deviation to 2%. Finally, we assume that all parameters are distributed

independently.

The Appendix reports the point estimates of the parameters at the joint posterior mode, along

with moments from the prior distributions. The quantitative analysis that follows is based on these

point estimates.

5.2.2 Results

For comparability with the empirical evidence we present results obtained by estimating a FAVAR

on artificial data generated by the model.26 The artificial dataset comprises consumption growth,

inflation, the nominal interest rate, hours growth, and all sectoral inflation and sectoral consumption

growth rates. The specification of the FAVAR is identical to that of Subsection 5.1.3.

Figures 23-24 present the IRFs from the FAVAR estimation on model-generated data.

Figures 23-24: IRFs from FAVAR - 15 sectors
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Figures 25-26 show the distribution of the speed of the responses to an innovation to the com-

mon component (left figure), and to the sector-specific components (right figure). Table 8 reports

descriptive statistics based on these two distributions.

26 Iin the Appendix we reproduce the estimated-model-implied impulse responses of sectoral prices to aggregate and
sectoral productivity and shocks, as well as to the aggregate preference and sectoral demand shocks.
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Table 8: Statistics on the speed of responses to shocks - estimated 15-sector model
Speed of response

to common
component

to specific
components

Average 0.258 1.050
Median 0.248 1.080

Std. deviation 0.041 0.185
Coeff. of variation 0.158 0.177
Corr.with 1− αk 0.682 0.383
Correlation − 0.151 −

Figures 25-26: Cross-sectional distribution of speed of responses - 15 sectors
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Finally, we report the results that the estimated model produces for the cross-section of correla-

tions between the sector-specific component of inflation rates and the corresponding sector-specific

component of quantities (in growth rates), and the cross-section of correlations between the com-

ponent of inflation rates and growth rate of quantities that are driven by the common components.

These are depicted in Figures 27-28, and summarized in Table 9.

Table 9: Statistics on the correlations between components of prices and quantities - estimated 15-
sector model

Correlation between inflation
and growth of quantities
Common
component

Specific
components

Average −0.188 −0.304
Median −0.157 −0.461
Max. 0.186 0.856
Min. −0.677 −0.690
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Figures 27-28: Cross-section of correlations between components of prices and quantities - 15 sectors
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Regarding the joint distribution of the speed of price responses to common and sector-specific

components, a comparison of Tables 1 and 8 reveals that the estimated model captures its main

features very well. Specifically, i) the average speed of response of sectoral prices to sector-specific

shocks is roughly four times higher than the average speed of response to shocks to the common

component; ii) The correlation between the sectoral speeds of responses and the sectoral frequencies

of price changes is positive for both the common and sector-specific components - it is higher for

the common component; iii) The correlation between the speed of responses to both types of shocks

is positive; iv) the cross-sectional standard deviation of the sectoral speeds of responses to shocks

to the common component is smaller than the corresponding standard deviation for the responses

to sector-specific shocks; v) the cross-sectional mean of the correlations between the sector-specific

component of PCE inflation rates and the corresponding sector-specific component of the growth

rate in quantities is negative - the same applies to the fluctuations that are driven by the common

component.

A major improvement in quantitative performance relative to the simply parameterized model

of Subsection Subsections 5.1.2 and 5.1.3 is the much lower correlation between the speed of price

responses to common and specific shocks produced by the estimated model. In those subsections, with

identically-parameterized sectoral shocks, the model produces an extremely high correlation between

those speeds of price responses, due to their tight link with the sectoral frequencies of price changes.

Heterogeneity in the estimated shock dynamics breaks that tight link and helps the estimated model

get closer to the data. This result underscores the importance of accounting for heterogeneity in the
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dynamics of the shocks.

Regarding the cross-section of correlations between components of inflation and growth rates of

consumption, a comparison of Tables 2 and 4 with Table 9 reveals that the estimated model captures

the main qualitative features of the two distributions, although it misses more nuanced features such

as the tails. Importantly, the estimated model produces (on average) a negative correlation between

the sector-specific component of inflation rates and the corresponding sector-specific component of

the growth rate of quantities, and also between the component of inflation rates and growth rate of

quantities that are driven by the common component. This is consistent with supply-type shocks

driving most of the variation in these series, which in turn is consistent with our point estimates for

the parameters of the sectoral shocks (see Tables 18 and 19 in the Appendix).

6 Conclusion

We construct a relatively simple variant of the new Keynesian model that can endogenously deliver

differential responses of sectoral prices to aggregate and sectoral shocks. In particular, the model is

able to produce faster response of sectoral prices to sector-specific shocks than to aggregate shocks.

We illustrate the economic mechanisms behind the result, and make a quantitative assessment of the

model’s ability to match facts about sectoral prices established by the recent empirical literature.

Despite the fact that the model is still highly stylized, the results are somewhat close to the data.
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A The mechanism: the role of each ingredient

Table 10 reports the results for the first-pass specification. After that, Tables 11-15 present the

results for specifications that deviate from the first-pass one by “activating”the three ingredients of

our model. Table 11 considers only the Taylor rule, Table 12 considers only input-output linkages,

and Table 13 considers only labor segmentation. After that, Tables 14 and 15 consider specifications

that combine the Taylor rule with, respectively, input-output linkages, and labor segmentation. The

values for the model parameters are the ones described in Subsection 5.1.

Table 10: Speed of response to productivity shocks - first-pass specification
Speed of response

to aggregate
shock

to sectoral
shock

Average 0.810 0.810
Median 0.678 0.678

Std. deviation 0.433 0.433
Coeff. of variation 0.535 0.535
Corr.with 1− αk 0.936 0.936
Correlation − 1.0 −

Table 11: Speed of response to productivity shocks - Taylor rule only
Speed of response

to aggregate
shock

to sectoral
shock

Average 0.263 0.768
Median 0.252 0.653

Std. deviation 0.060 0.403
Coeff. of variation 0.228 0.525
Corr.with 1− αk 0.890 0.929
Correlation − 0.984 −

Table 12: Speed of response to productivity shocks - input-output only
Speed of response

to aggregate
shock

to sectoral
shock

Average 0.550 0.799
Median 0.487 0.671

Std. deviation 0.238 0.427
Coeff. of variation 0.433 0.535
Corr.with 1− αk 0.922 0.936
Correlation − 0.998 −
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Table 13: Speed of response to productivity shocks - labor segmentation only
Speed of response

to aggregate
shock

to sectoral
shock

Average 0.989 1.184
Median 0.993 1.181

Std. deviation 0.348 0.454
Coeff. of variation 0.352 0.383
Corr.with 1− αk 0.799 0.807
Correlation − 0.999 −

Table 14: Speed of response to productivity shocks - Taylor rule and input-output linkages
Speed of response

to aggregate
shock

to sectoral
shock

Average 0.287 0.757
Median 0.272 0.645

Std. deviation 0.077 0.400
Coeff. of variation 0.266 0.529
Corr.with 1− αk 0.900 0.925
Correlation − 0.985 −

Table 15: Speed of response to productivity shocks - Taylor rule and labor segmentation
Speed of response

to aggregate
shock

to sectoral
shock

Average 0.238 1.085
Median 0.242 1.092

Std. deviation 0.026 0.417
Coeff. of variation 0.109 0.385
Corr.with 1− αk 0.742 0.770
Correlation − 0.960 −
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B Details of the estimation algorithm

Our specific estimation strategy is as follows. We run two numerical optimization routines sequentially

in order to maximize the posterior distribution. This determines the starting point of the Markov

chain and provides a first crude estimate of the covariance matrix for our Random-Walk Metropolis

Gaussian jumping distribution. The first optimization routine is csminwel by Chris Sims, while the

second is fminsearch from Matlab’s optimization toolbox. Following the first optimization, we run

additional rounds, starting from initial values obtained by perturbing the original initial values, and

then the estimate of the first optimization round.

Before running the Markov chains we transform all parameters to have full support on the real

line. Then we run a so-called adaptive phase of the Markov chain, with three sub-phases of 100,

200, and 600 thousand iterations, respectively. At the end of each sub-phase we discard the first half

of the draws, update the estimate of the posterior mode, and compute a sample covariance matrix

to be used in the jumping distribution in the next sub-phase. Finally, in each sub-phase we rescale

the covariance matrix inherited from the previous sub-phase in order to get a fine-tuned covariance

matrix that yields rejection rates as close as possible to 0.77.27 Next we run the so-called fixed phase

of the MCMC. We take the estimate of the posterior mode and sample covariance matrix from the

adaptive phase, and run 5 parallel chains of 300,000 iterations each. Again, before making the draws

that will form the sample we rescale such covariance matrix in order to get rejection rates as close

as possible to 0.77. To initialize each chain we draw from a candidate normal distribution centered

on the posterior mode estimate, with covariance matrix given by 9 times the fine-tuned covariance

matrix. We check for convergence for the latter 2/3s of the draws of all 5 chains by calculating

the potential scale reduction28 (psr) factors for each parameter and inspecting the histograms of all

marginal distributions across the parallel chains. Upon convergence, the latter 2/3s of the draws of

all 5 chains are combined to form a posterior sample of 1 million draws.

27This is the optimal rejection rate under certain conditions. See Gelman et al. (2003, p. 306).
28For each parameter, the psr factor is the ratio of (square root of) an estimate of the marginal posterior variance

to the average variance within each chain. This factor expresses the potential reduction in the scaling of the estimated
marginal posterior variance relative to the true distribution by increasing the number of iterations in the Markov-chain
algorithm. Hence, as the psr factor approaches unity, it is a sign of convergence of the Markov-chain for the estimated
parameter. See Gelman et al. (2003, p. 294 ff) for more information. For all specifications we require that the factor
be below 1.01 for all parameters.
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C About the estimated model

Table 16: Sectors and weights, 15-sector model

k Categories Weights (nk) in % α
1)
k

Duration2)

in months
1 Motor vehicles and Parts 4.56 0.596 2.48
2 Furnishings and durable household equipment 2.41 0.785 4.64
3 Recreational goods and vehicles 1.82 0.826 5.75
4 Other durable goods 1.27 0.82 5.55
5 Food and beverages purchased for off-premises consumption 8.97 0.689 3.21
6 Clothing and footwear 3.32 0.692 3.25
7 Gasoline and other energy goods 4.19 0.148 1.17
8 Other nondurable goods 7.48 0.815 5.41
9 Housing and utilities 19.59 0.596 2.48
10 Health care 15.65 0.95 20.00
11 Transportation services 3.35 0.721 3.59
12 Recreation services 3.68 0.899 9.90
13 Food services and Accommodations 6.65 0.843 6.36
14 Financial services and insurance 8.10 0.921 12.60
15 Other services 8.97 0.864 7.35
1) monthly “infrequency”of price changes. 2) expected duration of price spells:(1− αk)

−1.

Table 17: Priors and posteriors - Taylor rule and aggregate shocks, 15-sector model
Prior Prior Mean (Std) Posterior Mode

φy N 0.5/12 (0.05) 2×10−14

φπ N 1.5 (0.25) 1.04
ρµ B 0.7 (0.1) 0.39
ργ B 0.7 (0.1) 0.99
ρa B 0.7 (0.1) 0.98
σµ IG 0.00125 (0.00125) 0.0022
σγ IG 0.005 (0.005) 0.0102
σa IG 0.005 (0.005) 0.0033
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Table 18: Priors and posteriors - sectoral productivity shocks, 15-sector model
Prior Prior Mean (Std) Posterior Mode Prior Prior Mean (Std) Posterior Mode

ρA1
B 0.7 (0.1) 0.93 σA1

IG 0.05 (0.02) 0.0124
ρA2

B 0.7 (0.1) 0.80 σA2
IG 0.05 (0.02) 0.0346

ρA3
B 0.7 (0.1) 0.93 σA3 IG 0.05 (0.02) 0.0304

ρA4
B 0.7 (0.1) 0.77 σA4

IG 0.05 (0.02) 0.0910
ρA5

B 0.7 (0.1) 0.77 σA5
IG 0.05 (0.02) 0.0141

ρA6
B 0.7 (0.1) 0.81 σA6 IG 0.05 (0.02) 0.0243

ρA7
B 0.7 (0.1) 0.95 σA7

IG 0.05 (0.02) 0.0407
ρA8

B 0.7 (0.1) 0.82 σA8
IG 0.05 (0.02) 0.0325

ρA9
B 0.7 (0.1) 0.92 σA9 IG 0.05 (0.02) 0.0057

ρA10
B 0.7 (0.1) 0.94 σA10

IG 0.05 (0.02) 0.0569
ρA11

B 0.7 (0.1) 0.66 σA11
IG 0.05 (0.02) 0.0358

ρA12
B 0.7 (0.1) 0.78 σA12 IG 0.05 (0.02) 0.0689

ρA13
B 0.7 (0.1) 0.77 σA13

IG 0.05 (0.02) 0.0265
ρA14

B 0.7 (0.1) 0.95 σA14
IG 0.05 (0.02) 0.1681

ρA15
B 0.7 (0.1) 0.80 σA15 IG 0.05 (0.02) 0.0334

Table 19: Priors and posteriors - sectoral demand shocks, 15-sector model
Prior Prior Mean (Std) Posterior Mode Prior Prior Mean (Std) Posterior Mode

ρD1
B 0.7 (0.1) 0.78 σD1

IG 0.05 (0.02) 0.0594
ρD2

B 0.7 (0.1) 0.98 σD2
IG 0.05 (0.02) 0.0099

ρD3
B 0.7 (0.1) 0.98 σD3 IG 0.05 (0.02) 0.0137

ρD4
B 0.7 (0.1) 0.98 σD4

IG 0.05 (0.02) 0.0158
ρD5

B 0.7 (0.1) 0.98 σD5
IG 0.05 (0.02) 0.0081

ρD6
B 0.7 (0.1) 0.94 σD6 IG 0.05 (0.02) 0.0128

ρD7
B 0.7 (0.1) 0.97 σD7

IG 0.05 (0.02) 0.0867
ρD8

B 0.7 (0.1) 0.95 σD8
IG 0.05 (0.02) 0.0076

ρD9
B 0.7 (0.1) 0.97 σD9 IG 0.05 (0.02) 0.0104

ρD10
B 0.7 (0.1) 0.99 σD10

IG 0.05 (0.02) 0.0064
ρD11

B 0.7 (0.1) 0.97 σD11
IG 0.05 (0.02) 0.0133

ρD12
B 0.7 (0.1) 0.92 σD12 IG 0.05 (0.02) 0.0074

ρD13
B 0.7 (0.1) 0.97 σD13 IG 0.05 (0.02) 0.0086

ρD14
B 0.7 (0.1) 0.93 σD14

IG 0.05 (0.02) 0.0169
ρD15

B 0.7 (0.1) 0.98 σD15 IG 0.05 (0.02) 0.0086
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C.1 Model-implied IRFs

Figures 29-30: Estimated-model-implied IRFs - 15 sectors
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Figures 31-32: Estimated-model-implied IRFs - 15 sectors
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D Robustness

D.1 50-sector FAVAR

We re-estimate the FAVAR using the nominal interest rate, hours growth, and all sectoral inflation

and sectoral consumption growth rates for the 50 sectors in the third-level disaggregation of the PCE.

Figures 33-34 and Tables 20-21 report the results analogous to those in Figures 1-6 and Tables

1-2. The bottom line is that the results are very similar to those of the 15-sector FAVAR.
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Figures 33-34: Empirical IRFs - FAVAR
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Figures 35-36: Cross-sectional distribution of speed of responses
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Table 20: Statistics on the speed of responses to shocks - 50-sector FAVAR
Speed of response

to common
component

to specific
components

Average 0.427 0.891
Median 0.370 0.912

Std. deviation 0.184 0.249
Coeff. of variation 0.431 0.280
Corr.with 1− αk 0.427 0.264
Correlation − 0.177 −
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Figures 37-38: Cross-section of correlations between components of prices and quantities
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Table 21: Statistics on the correlations between components of prices and quantities - 50-sector
FAVAR

Correlation between inflation
and growth of quantities
Common
component

Specific
components

Average −0.204 −0.261
Median −0.252 −0.186
Max. 0.773 0.478
Min. −0.952 −0.927

D.2 Fewer common factors

[To be completed]

D.3 Fewer lags in the VAR

[To be completed]
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E Steady state

As mentioned in the main text, we solve the model by log-linearizing equilibrium conditions around a

symmetric non-stochastic zero-inflation steady state, which is detailed here. A non-stochastic steady-

state equilibrium is, in fact, not generally symmetric. In particular, it depends on the steady-state

levels of sector-specific productivity {Ak}Kk=1, and the sector-specific parameters that measure the

relative disutilities of supplying hours, {ωk}Kk=1. For simplicity, we make two assumptions that deliver

a symmetric steady state: i) the steady-state levels of sector-specific productivities are the same across

sectors: specifically, Ak = 1 for all k, without loss of generality;29 ii) ωk = n−ϕk for all k. This last

assumption relates the relative disutilies of labor to the size of the sectors, and equalizes steady-state

sectoral wages.

We solve for
{
Y,C, Z,H, WP ,

Π
P

}
: the steady state values of aggregate gross output, aggregate value

added-output (i.e. GDP), aggregate intermediate input usage, aggregate hours, real wage, and real

profits. Once we obtain these aggregate variables, it is trivial to characterize the steady-state values for

sectoral and micro variables using the symmetric nature of the steady state (i.e. Yk = nkYk(i) = nkY ,

Ck = nkCk(i) = nkC, Zk = nkZk(i) = nkZ, Hk = nkHk(i) = nkH, Πk(i) = Π, Wk = W , and
P (i)
P = Pk

P = 1).

After exploiting the symmetry and market-clearing conditions, the system of equilibrium condi-

tions can be reduced to the following seven equations:

C =

(
W

P

)
H +

(
Π

P

)
(17)(

W

P

)
= HϕC (18)

Y = H1−δZδ (19)

Y = C + Z (20)(
Π

P

)
= Y −

(
W

P

)
H − Z (21)

Z =
δ

1− δ

(
W

P

)
H (22)

1 =

(
θ

θ − 1

)
χ

(
W

P

)1−δ
, (23)

where χ ≡ 1
1−δ

(
δ

1−δ

)−δ
.

First, it is trivial to solve for the real wage from (23):

(
W

P

)
=

(
1

χ

θ − 1

θ

) 1
1−δ

.

29Similary, we fix the steady-state level of all other exogenous processes at unity.
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Next, we substitute out Z in (19) and (21) using (22), which gives:

Y = H

(
δ

1− δ

)δ (W
P

)δ
(

Π

P

)
= Y −

[
1

1− δ

](
W

P

)
H.

Combining the two equations above, we substitute out H and express real profits as a function of the

real wage and output: (
Π

P

)
=

[
1− χ

(
W

P

)1−δ
]
Y.

But χ
(
W
P

)1−δ
= θ−1

θ from (23), and consequently we obtain:(
Π

P

)
=

1

θ
Y.

Equation (17) indicates that aggregate value-added output should be equal to the sum of labor income

and real profits:

C =

(
W

P

)
H +

(
Π

P

)
=

1− δ
δ

Z +
1

θ
Y

=
1− δ
δ

(Y − C) +
1

θ
Y

=⇒ C =

[
1− δ

(
θ − 1

θ

)]
Y.

Consequently, aggregate intermediate input usage is obtained as:

Z = Y − C = Y −
[
1− δ

(
θ − 1

θ

)]
Y

=⇒ Z = δ

(
θ − 1

θ

)
Y.

From (22), total labor hours are given by:

H =
1− δ
δ

(
W

P

)−1

Z

=

(
W

P

)−1

(1− δ)
(
θ − 1

θ

)
Y

=

(
1

χ

θ − 1

θ

) −1
1−δ

(1− δ)
(
θ − 1

θ

)
Y

=

[
δ

(
θ − 1

θ

)]− δ
1−δ

Y.
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So far, we have expressed the steady-state values of
{
Y,C, Z,H, Π

P

}
in terms of Y , which can be

obtained using (18):(
W

P

)
= HϕC(

W

P

)
=

[
δ

(
θ − 1

θ

)]− δϕ
1−δ
[
1− δ

(
θ − 1

θ

)]
Y 1+ϕ

(
1

χ

θ − 1

θ

) 1
1−δ

=

[
δ

(
θ − 1

θ

)]− δϕ
1−δ
[
1− δ

(
θ − 1

θ

)]
Y 1+ϕ

Y 1+ϕ =

(
1

χ

) 1
1−δ
(
θ − 1

θ

) 1
1−δ
[
δ

(
θ − 1

θ

)] δϕ
1−δ
[
1− δ

(
θ − 1

θ

)]−1

Y =

{(
1

χ

) 1
1−δ
(
θ − 1

θ

) 1
1−δ
[
δ

(
θ − 1

θ

)] δϕ
1−δ
[
1− δ

(
θ − 1

θ

)]−1
} 1

1+ϕ

.

In the special case in which δ = 0, the expression for aggregate gross output simplifies to Y =(
θ−1
θ

) 1
1+ϕ , which is the standard result in models without intermediate inputs.

F Loglinear approximation

Here we present full set of log-linearized equations.

F.1 CES Aggregates, market clearing, and definitions

pt =
∑
k

nkpk,t, pk,t =
1

nk

∫
Ik
pk,t(i)di,

yt =
∑
k

nkyk,t, yk,t =
1

nk

∫
Ik
yk,t(i)di,

ct =
∑
k

nkck,t, ck,t =
1

nk

∫
Ik
ck,t(i)di,

zk,t(i) =
∑
k′

nkzk,k′,t(i), zk,k′,t(i) =
1

nk

∫
Ik′

zk,k′,t(i, i
′)di′,

hk,t =
1

nk

∫
Ik
hk,t(i)di, yt = (1− ψ)ct + ψzt, with

ψ ≡ δ

(
θ − 1

θ

)
and zt ≡

∑
k

∫
Ik
zk,t(i)di.
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F.2 Demand functions

yk,t − yt = −η (pk,t − pt) + dk,t,

yk,t(i)− yk,t = −θ (pk,t(i)− pk,t) ,
ck,t − ct = −η (pk,t − pt) + dk,t,

ck,t(i)− ck,t = −θ (pk,t(i)− pk,t) ,
zk,k′,t(i)− zk,t(i) = −η

(
pk′,t − pt

)
+ dk′,t,

zk,k′,t(i, i
′)− zk,k′,t(i) = −θ

(
pk′,t(i)− pk′,t

)
.

F.3 Household’s additional FOCs

ct = Et [ct+1]− (it − Etπt+1) +
(
γt − Etγt+1

)
,

wk,t − pt = ϕhk,t + ct.

F.4 Firms

Production function:

yk,t(i) = at + ak,t + (1− δ)hk,t(i) + δzk,t(i).

Cost minimization:

wk,t − pt = zk,t(i)− hk,t(i).

A firm’s nominal marginal cost:

mck,t = (1− δ) (wk,t − pt)− ak,t − at + pt.

Here we provide a little detail on the derivation of the generalized Phillips curves presented in the

text. To derive the Phillips curve, log-linearize the firm’s FOC:

Et

∞∑
s=0

αsQt,t+s

(
P ∗k,t
Pk,t+s

)−θ (
Pk,t+s
Pt+s

)−η
Yt+s

[
P ∗k,t −

(
θ

θ − 1

)
MCk,t+s

]
= 0.

It yields:

Et

∞∑
s=0

αskβ
sp∗k,t = Et

∞∑
s=0

αskβ
smck,t+s.

Solve for p∗k,t:

p∗k,t = (1− αkβ)Et

∞∑
s=0

αskβ
smck,t+s.

p∗k,t = (1− αkβ) [mck,t − pk,t + pk,t] + αkβEt
[
p∗k,t+1

]
.

Loglinearizing (2) yields:

pk,t = (1− αk)p∗k,t + αkpk,t−1.
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Combining the two delivers the sectoral Phillips curve:

πk,t = βEtπk,t+1 +
1− αk

αk (1− αkβ)−1 [mck,t − pk,t] .

Note that from the two equations:

wk,t − pt = ϕhk,t + ct (labor supply),

wk,t − pt = zk,t − hk,t (cost minimization),

we can obtain:

zk,t = (1 + ϕ)hk,t + ct.

Also, from the production function, we get:

yk,t = at + ak,t + (1− δ)hk,t + δzk,t

= at + ak,t + (1− δ)hk,t + (δ + δϕ)hk,t + δct

= at + ak,t + (1 + δϕ)hk,t + δct.

Therefore we obtain:

hk,t =
1

1 + δϕ
yk,t −

δ

1 + δϕ
ct −

1

1 + δϕ
ak,t −

1

1 + δϕ
at.

Then:

mck,t = (1− δ) (wk,t − pt)− ak,t − at + pt

= (1− δ)
(

ϕ

1 + δϕ
yk,t −

δϕ

1 + δϕ
ct −

ϕ

1 + δϕ
ak,t −

ϕ

1 + δϕ
at + ct

)
− ak,t − at + pt

=
(1− δ)ϕ
1 + δϕ

yk,t +
(1− δ) 1

1 + δϕ
ct −

1 + ϕ

1 + δϕ
at −

1 + ϕ

1 + δϕ
ak,t + pt.

So the sectoral Phillips curve can be written as:

πk,t = βEtπk,t+1 +
1− αk

αk (1− αkβ)−1

[
(1−δ)ϕ
1+δϕ yk,t + 1−δ

1+δϕct − (pk,t − pt)
− 1+ϕ

1+δϕat −
1+ϕ
1+δϕak,t

]
.

Finally, note that:

− (pk,t − pt) =
1

η
(ck,t − ct)−

1

η

(
dk,t − d̄t

)
.

Therefore, the sectoral Phillips curve can be alternatively written as:

πk,t = βEtπk,t+1 +
1− αk

αk (1− αkβ)−1

[
(1−δ)ϕ
1+δϕ yk,t + 1

η ck,t +
(

1−δ
1+δϕ −

1
η

)
ct

− 1+ϕ
1+δϕat −

1+ϕ
1+δϕak,t −

1
η

(
dk,t − d̄t

) ]
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If we are interested in the aggregate Phillips curve, we can obtain using the relation:

πt =
K∑
k=1

nkπk,t.

F.5 Equilibrium conditions

We are interested in the dynamics of aggregate variables:

{yt, ct, zt, ht, (wt − pt) , πt, it} ,

and sectoral variables:

{yk,t, πk,t, pk,t} .

Then the following equations are suffi cient for determining the equilibrium dynamics:

monetary policy : it = φππt + φyct + µt

or

mt = exogenous stochastic process,

IS: ct = Et [ct+1]− (it − Etπt+1) +
(
γt − Etγt+1

)
,

agg. labor supply: wt − pt = ϕht + ct,

agg. production: yt = at +
∑
k

nkak,t + (1− δ)ht + δzt,

agg. cost-min relation: wt − pt = zt − ht,

resource constraint: yt = (1− ψ)ct + ψzt,

aggregate PC: πt = βEtπt+1 +
∑
k

nk
1− αk

αk (1− αkβ)−1

[
(1−δ)ϕ
1+δϕ yk,t + 1

η ck,t +
(

1−δ
1+δϕ −

1
η

)
ct

− 1+ϕ
1+δϕat −

1+ϕ
1+δϕak,t −

1
η

(
dk,t − d̄t

) ] ,
sectoral PC: πk,t = βEtπk,t+1 +

1− αk
αk (1− αkβ)−1

[
(1−δ)ϕ
1+δϕ yk,t + 1

η ck,t +
(

1−δ
1+δϕ −

1
η

)
ct

− 1+ϕ
1+δϕat −

1+ϕ
1+δϕak,t −

1
η

(
dk,t − d̄t

) ] ,
sectoral demand: yk,t − yt = −η (pk,t − pt) + dk,t,

Definition of inflation: πk,t = pk,t − pk,t−1.

Alternatively we could use πt =
∑K

k=1 nkπk,t instead of aggregate Phillips curve.

F.6 Alternative expression for equilibrium equations

When we estimate the model, we focus on the dynamics of:

{it, ht} , {ck,t, πk,t}Kk=1
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Thus it is convenient to substitute out {yk,t, yt, pk,t} from the system we presented in the previous sub-
section. The following 6 + (2×K) linear difference equations characterizes the equilibrium dynamics

of those variables in the model that we take to the data:

monetary policy: it = φππt + φyct + µt,

IS: ct = Et [ct+1]− (it − Etπt+1) +
(
γt − Etγt+1

)
,

agg. labor supply: wt − pt = ϕht + ct,

agg. production: (1− ψ)ct + ψzt = at +
∑
k

nkak,t + (1− δ)ht + δzt,

agg. cost-min relation: wt − pt = zt − ht,

aggregate PC: πt = βEtπt+1+
∑
k

nk
1− αk

αk (1− αkβ)−1

[ (
(1−δ)ϕ
1+δϕ + 1

η

)
ck,t +

(
(1−δ)(1−ψϕ)

1+δϕ − 1
η

)
ct + (1−δ)ψϕ

1+δϕ zt

− 1+ϕ
1+δϕat −

1+ϕ
1+δϕak,t −

1
η

(
dk,t − d̄t

) ]
,

sectoral PC: πk,t = βEtπk,t+1+
1− αk

αk (1− αkβ)−1

[ (
(1−δ)ϕ
1+δϕ + 1

η

)
ck,t +

(
(1−δ)(1−ψϕ)

1+δϕ − 1
η

)
ct + (1−δ)ψϕ

1+δϕ zt

− 1+ϕ
1+δϕat −

1+ϕ
1+δϕak,t −

1
η

(
dk,t − d̄t

) ]
,

sectoral demand: ∆ (ck,t+1 − ct+1) = −η (πk,t+1 − πt+1) + ∆
(
dk,t+1 − dt+1

)
.
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