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Abstract

This paper presents a uni�ed framework for understanding the determinants of both CEO

incentives and total pay levels in competitive market equilibrium. It embeds a modi�ed

principal-agent problem into a talent assignment model to endogenize both elements of

compensation. The model�s closed form solutions yield testable predictions for how incen-

tives should vary across �rms under optimal contracting. In particular, our calibrations

show that the negative relationship between the CEO�s e¤ective equity stake and �rm

size is quantitatively consistent with e¢ ciency and need not re�ect rent extraction. Our

model and data both also imply that the dollar change in wealth for a percentage change

in �rm value, scaled by annual pay, is independent of �rm size. This may render it an

attractive incentive measure as it is comparable between �rms and over time. The theory

also predicts a positive relationship between pay volatility and �rm volatility, and that

risk and e¤ort a¤ect total pay along the cross-section but not in the aggregate. Finally,

we demonstrate that incentive compensation is e¤ective at solving large agency problems,

such as selecting corporate strategy, but smaller issues such as perk consumption are best

addressed through direct monitoring. (JEL: D2, D3, G34, J3)
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This paper presents a uni�ed framework for understanding the determinants of both the level

and sensitivity of CEO pay in neoclassical market equilibrium. In our model, both elements

of compensation are simultaneously governed by the market for scarce talent and the nature

of the agency con�ict. Holding total pay constant, e¤ort considerations determine its division

into �xed and performance-sensitive components. To endogenize the level of total pay, and

thus fully solve for the absolute level of incentive compensation, we embed this result into a

general equilibrium model of the competitive assignment of CEO talent. As in Gabaix and

Landier (2008), the most skilled CEOs are matched with the largest �rms and earn the highest

salaries, leading to a positive association between total pay and �rm size. Dollar incentive

compensation therefore also varies with size. We further extend the competitive assignment

model to incorporate risk aversion and allow for general contracts, deriving further implications

on the e¤ect of risk on pay and the e¤ectiveness of compensation in addressing agency problems.

The model has two key contributions over and above existing theories. First, while many

incentive models are partial equilibrium, taking the level of pay as given, we endogenize it

in market equilibrium to produce a single, parsimonious model of both incentives and total

pay. The model therefore combines many issues related to executive compensation in a single

framework, demonstrating how incentives and salary should optimally vary across companies,

between countries, and over time according to managerial talent, �rm size, volatility and the

cost of e¤ort. Second, our model is particularly tractable and yields closed-form solutions.

These features remain when allowing for general incentive contracts and general risk-averse

utility functions. Indeed, the full market equilibrium can be summarized in just three simple

equations. Not only may this make the model an attractive benchmark on which future theories

can build, but it also leads to clear, quantitative empirical implications and thus readily lends

the model to empirical analysis.

We explore three such implications. The �rst is the relationship between �rm size and

wealth-performance sensitivity. This issue is important for at least two reasons. It has been

widely documented that the CEO�s �e¤ective equity stake�or �dollar-dollar incentives� (the

dollar change in wealth for a dollar change in �rm value) are signi�cantly decreasing in �rm

size (e.g. Jensen and Murphy (1990), Schaefer (1998)). Why is this? One interpretation is

that rent extraction is particularly pronounced in large �rms, thus allowing incentives to be

suboptimally low (e.g. Bebchuk and Fried (2004)). If this argument is correct, the implications

are profound. If the CEOs in charge of the largest companies have the weakest incentives to

exert e¤ort, then billions of dollars of value may be lost each year. This explanation would also

imply a pressing need for intervention: the current system of pay determination is broken, and

must be �xed.

Our model can be used to evaluate this hypothesis as it provide a quantitative benchmark

for how incentives should scale with size under optimal contracting. In our theory, e¤ort has

a multiplicative e¤ect on �rm value, and so the dollar gains from working are proportional to
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size. The CEO�s utility gain from shirking (in dollar terms) rises with wealth, but wealth only

has a 1/3 elasticity with size. Therefore, dollar-dollar incentives should have a size elasticity of

-2/3, which is very close to our empirical estimate of -0.58. Therefore, the observed negative

relationship is exactly what a frictionless model would predict �a smaller e¤ective equity share is

su¢ cient to induce e¤ort in large companies. Note that unlike other determinants of incentives

studied by the literature, size can be measured with little error. This limits our �exibility in

calibration, allowing the model to be subject to particularly close empirical scrutiny, and its

predictions to be rejectable.

Understanding the scaling of incentive measures with �rm size is also important to evaluate

the various metrics available to empiricists. We demonstrate both theoretically and empirically

that �scaled wealth-performance sensitivity� (the dollar change in wealth for a percentage

change in �rm value, scaled by annual pay) is invariant to �rm size, unlike other commonly

used measures. This property may make it particularly attractive for empirical analysis, as it

is comparable across �rms and over time.

Second, we examine the model�s implications for the e¤ect of �rm risk on total pay, the level

of incentives, and pay volatility. Traditional theories have an unbounded level of e¤ort and so

optimal incentives are a trade-o¤ between the gains from working and the cost of risk-bearing.

Firm risk therefore reduces both the level of incentives and pay volatility. Our model features a

maximum level of e¤ort, which the �rm always wishes to implement as the gains from e¤ort are

proportional to �rm size, but the cost imposed on the CEO is proportional to his wage, which

is substantially smaller. Incentives are set to induce maximum e¤ort regardless of risk, and

so are independent of volatility. Since pay volatility equals the product of incentives and �rm

risk, we predict a positive link between pay volatility and risk, contrary to calibrated existing

models but supported by our data.

For total pay, the theory predicts that variations in volatility generate cross-sectional salary

di¤erences as riskier �rms have to pay a compensating di¤erential. We con�rm this empirically.

However, market-wide increases in risk have negligible impact on the pay of the most talented

CEOs. Since the pay of top CEOs is only driven by �rm size and the scarcity of CEO talent, it

is not compensation for aggregate-level risk. The e¤ects of disutility of e¤ort are very similar �

it explains pay di¤erences along the cross-section, but has no aggregate impact.

The third application of the model is to assess whether observed levels of incentive com-

pensation are e¤ective in solving agency problems. Jensen and Murphy (1990) �nd that CEO

wealth falls by only $3.25 for every $1,000 loss in shareholder value. As this �gure appears low,

it is frequently interpreted as evidence that current practices are inadequate to induce share-

holder value maximization (see however Hall and Liebman (1998)). Since this issue concerns

magnitudes, not directions, a calibratable model is particularly suited to shed light upon the

debate. We �nd that observed incentives are able to deter suboptimal actions (such as shirking,

pursuit of pet projects, or empire-building acquisitions) if such behavior increases the CEO�s
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utility by a monetary equivalent no greater than 0.9 times his annual wage. Since it appears

plausible that the private bene�ts from most potential value-destructive actions fall below this

upper bound, incentives are able to solve the majority of agency problems. Apparently small

incentives can have substantial power because the disutility cost of e¤ort is proportional to the

manager�s consumption and thus his wealth, but its bene�t is proportional to �rm value. Since

�rm value is extremely large compared to the manager�s wealth, the dollar gains from e¤ort are

very high and so the manager only needs a small equity stake to achieve incentive compatibility.

While the above calibration focuses on the potency of current levels of incentives, a related

contribution is to analyze the e¤ectiveness of incentives in general (for any reasonable levels)

at addressing agency problems. The seminal model of Jensen and Meckling (1976) implies

that all agency issues can and should be solved by incentives, but we show that there are

certain problems for which compensation is ine¤ective. First, some actions may yield the CEO

substantial private bene�ts, which may exceed the loss in wealth implied from any plausible

level of incentives. One example is managerial entrenchment �by failing to (optimally) resign

voluntarily, the CEO may enjoy his salary and private bene�ts of control for many future years.

Second, some actions may have too small an e¤ect on the �rm�s stock returns for the CEO�s

equity holdings to be sensitive. The core model considers actions which have a multiplicative

e¤ect on �rm value (such as changes in strategy) and thus a¤ect stock returns, regardless of

�rm size. However, certain actions such as perk consumption (e.g. the purchase of a corporate

jet) reduce �rm value by a �xed dollar amount, independent of size, and thus have a very small

e¤ect on the returns of a large company. The manager�s equity stake is thus insu¢ cient to

deter perks. When we allow for general contracts, perks can be deterred by using extremely

sensitive instruments, but these impose such a large risk-bearing cost on the manager that

total surplus falls. Hence, in our model, perk prevention has no explanatory power for incentive

compensation, and can only achieved through active corporate governance, e.g. direct rules

imposed on the CEO. Incentive compensation is e¤ective at solving large agency problems with

a signi�cant impact on returns, but smaller issues such as perk consumption are best addressed

through direct monitoring.

While individual predictions may be achievable from alternative models, to our knowledge

the combination of the above implications, plus the relationships between total pay and �rm

size stated in Gabaix and Landier (2008), are unique to our unifying framework. Uniting all

of these predictions in a single parsimonious model is not the only advantage of endogenizing

both total pay and incentives together. Our market equilibrium approach generates results not

achievable by simply combining the conclusions of separate models of pay and incentives. In

particular, it allows us to understand the factors that do not determine CEO pay. For example,

we show that the CEO�s incentives can be determined independently of the level of his overall

compensation �the latter is entirely driven by forces in the managerial labor market. Therefore,

high overall pay does not come from the requirement to give the CEO strong incentives, but
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rather from the marginal productivity of CEO talent in market equilibrium. Even when risk

aversion is introduced, incentive considerations in the aggregate change the sensitivity of pay

to performance, but not expected pay. Conversely, talent determines the level of pay but not

its incentive component.

This paper builds on the empirical literature quantifying CEO incentives, and in particu-

lar their relationship with �rm size. Jensen and Murphy�s (1990) seminal study showed that

CEOs�dollar-dollar wealth-performance sensitivity is economically very small, particularly for

large �rms. Schaefer (1998) later con�rmed this negative scaling. Hall and Liebman�s (1998)

more recent evidence illustrates that the recent rise in stock option compensation has signi�-

cantly increased incentives since the Jensen and Murphy sample period. However, a �rst-best

benchmark is necessary to evaluate whether they are now �high enough.�

The most closely related theory papers are calibrations of the CEO incentive problem. While

the main focus of our calibrations is the scaling of CEO incentives with size, Dittmann andMaug

(2007) and Armstrong, Larcker and Su (2007) explore the optimal structure of compensation,

in particular whether options are a feature of an e¢ cient remuneration package. Garicano and

Hubbard (2005) also calibrate a high-talent labor market, the market for lawyers. Gayle and

Miller (2007) explore the contribution of moral hazard to the rise in CEO pay. Baker and Hall�s

(2004) calibrations estimate the relationship between CEO productivity and �rm size. They are

the �rst to recognize that this relationship a¤ects the relevant measure of wealth-performance

sensitivity for use in empirical analysis. An analysis of percentage equity holdings implicitly

assumes the e¤ect of a CEO�s actions is constant in dollar terms, but if the CEO�s impact is

linear in �rm size, the relevant variable is the manager�s dollar stake. However, neither measure

is stable across size, unlike our proposed metric. Their purpose is to estimate the scaling of

managerial productivity with size, not the e¤ect of size on incentives or the e¤ectiveness of

incentives at solving di¤erent types of agency problems.

Our paper di¤ers from the above papers owing to its contrasting objectives (principally,

the e¤ect of size on incentives) and its modeling approach (general equilibrium incorporating

both pay and incentives). The general equilibrium framework also di¤erentiates our paper from

Haubrich (1994), who identi�es the parameter values in the traditional principal-agent model

that would be consistent with the 0.325% e¤ective equity stake found by Jensen and Murphy

(1990). He notes that the large number of free variables makes it relatively easy to match one

moment. We evaluate the ability of a simple neoclassical model to explain the level of incentives

and total pay, and their scaling with �rm size and volatility.

In contemporaneous work, Baranchuk, Macdonald and Yang (2007) and Falato and Kadyrzhanova

(2007) also model the equilibrium determination of both total pay and its incentive component.

The former study focuses on the e¤ect of product market conditions on CEO compensation;

the latter analyzes the e¤ect of industry dynamics (in particular the importance of industry

structure and a �rm�s position versus its industry peers.)
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A separate literature to which this paper relates examines the optimality of CEO compen-

sation practices. Bebchuk and Fried (2004) argue that certain features of CEO pay re�ect rent

extraction; see Kuhnen and Zwiebel (2007) for a recent model of hidden pay. However, others

have argued that such features may in fact be e¢ cient. Examples include the level of total

pay (Gabaix and Landier (2008)), severance pay (Almazan and Suarez (2003), Manso (2006),

Inderst and Mueller (2006)), pensions (Edmans (2007)), and perks (Rajan and Wulf (2006)).

This paper is organized as follows. In Section 1 we model equilibrium compensation for a

risk-neutral CEO, generating predictions for the e¤ect of size on incentives. Section 2 studies

the optimal contract for a risk-averse CEO and explores the e¤ect of risk and cost of e¤ort

on pay. Section 3 presents empirical evidence quantitatively consistent with the model�s main

predictions for the scaling of incentives with �rm size. Section 4 considers further implications

of the model and Section 5 concludes.

1 The Basic Model

We start in Section 1.1 by deriving the optimal division of CEO compensation into stock and

cash salary, in a partial equilibrium analysis that takes total compensation as given. In Section

1.2 we embed this analysis into a general equilibrium where total pay is endogenously deter-

mined, and present the implications for pay-performance sensitivity in Section 1.3. Section

1.4 illustrates that these results naturally extend to measures of wealth-performance sensitiv-

ity, where CEO incentives are principally provided by existing security holdings, rather than

�ow compensation. Since our objective is to provide calibratable predictions, we maximize

tractability by building a deliberately parsimonious model where the CEO is risk-neutral, the

e¤ort decision is binary, and the contract is restricted to comprise cash and shares. In addition,

risk neutrality gives us one fewer degree of freedom in calibration. Since risk aversion is di¢ cult

to measure accurately, a wide range of inputs can be used, thus making it easier to match the

data. Section 2 will later show that our predictions are robust to relaxing these assumptions,

and analyze the e¤ect of risk on compensation.

1.1 Incentive Pay in Partial Equilibrium

The CEO�s objective function is:

U = E [cg (e)] ; (1)

where c is the CEO�s monetary compensation and e 2 fe; eg denotes CEO e¤ort. We normalize
e = 0 > e, g (e) = 1 and set g (e) = 1= (1 + �e), where � 2 [0; 1). Shirking reduces �rm

value by a fraction e and increases the CEO�s utility by (approximately) a fraction � jej. �
parameterizes the e¤ort cost required to increase �rm value by a given amount, which we will

refer to this as the �unit cost of e¤ort�. The CEO is subject to limited liability (c � 0) and has
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a reservation utility of w, the wage available in alternative employment. This is endogenized

in Section 1.2.

Equation (1) is a multiplicative functional form, generalized in Section 2 to other forms

such as E [u (cg (e))]. If the CEO exerts an e¤ort e, which increases the �rm value by e%,

he decreases his dollar-equivalent utility by �e%. The cost of �e¤ort� is a given fraction

of his utility. We use this speci�cation as it seems highly plausible that the utility gains

from shirking are increasing in the CEO�s wage. For example, shirking allows the CEO to

enjoy consuming goods and services that he can purchase with his salary, and so leisure and

consumption are complementary goods. Multiplicative preferences mean that the share of total

pay allocated to consumption and leisure is independent of the wage �changes in salary do not

a¤ect the composition of the �bundle�of consumption and leisure purchased by the CEO, only

the overall size of the bundle. In addition to a positive consumption-leisure relationship being

psychologically appealing, it also has empirically consistent implications for the scaling of labor

supply with the wage, since it implies labor supply does not have diverging trends over time.1

This empirical consistency explains its common use in macroeconomics, a �eld in which models

are frequently calibrated to the data. By contrast, the additive functional forms commonly used

in qualitative corporate �nance models (such as E [c�]� g (e)) are both arguably less plausible
(implying that the bene�ts from shirking are independent of the wage) and have empirically

inconsistent implications, such as predicting that leisure falls to zero as the wage rises over

time. In Section 4.3 we detail further counterfactual predictions of additive preferences.

The initial stock price is P , and the end-of-period stock price is given by

P1 = P (1 + �) (1 + e) ; (2)

where � is stochastic noise with mean 0. Low e¤ort (e = e) reduces �rm value by a fraction e.

We assume that S > w�, where S is the �rm�s market capitalization2: the �rm value gains

from high e¤ort exceed the manager�s disutility, and so it is optimal to elicit e¤ort.3

This paper de�nes �e¤ort� broadly, to apply to any action that increases �rm value but

involves a non-pecuniary cost to the manager. In the literal interpretation, e = 0 represents

high e¤ort and e = e is shirking. A second interpretation is the choice of an investment

project, strategy or acquisition target, where e = 0 is the �rst best project and e = e yields the

CEO private bene�ts, such as an empire-building expansion. The e¤ects of e¤ort or project

1For example, consider the labor supply l of a worker living for one period, with a wage w, consumption
c = wl, and utility v (c; l). He solves maxl v (wl; l). If utility is v (c; l) = � (cg (l)), then the problem is
maxl � (wl g (l)), and the optimal labor supply l is independent of w.

2For simplicity, we assume an all-equity �rm. If the �rm is levered, S represents the aggregate value of the
assets of the �rm (debt plus equity) and P denotes the aggregate value per share.

3The proof is as follows. If the manager works, he is paid w and �rm value (net of wages) is S � w, leading
to total surplus of S. If the manager shirks, he is paid w(1 + �e), to keep his utility at w. Firm value, net of
wage, is V = S(1 + e)� w(1 + �e) and total surplus is V + w = S(1 + e)� w�e. Hence total surplus is higher
if the manager works if and only S � S(1 + e)� w�e, i.e. (ase < 0), S � w�.

7



choice plausibly have a proportional e¤ect on �rm value, explaining the formulation in equation

(2). However, certain actions have a �xed dollar e¤ect independent of �rm size, such as perk

consumption or managerial rent extraction through stealing. We consider such additive actions

in Section 4.1.

The CEO�s compensation c is composed of a �xed cash salary f � 0, and � shares:4

c = f + �P1: (3)

The optimal contract elicits high e¤ort (e = 0) and pays the CEO his reservation wage,

i.e. E [c] = w. Since the manager is risk neutral (for c > 0), many compensation packages are

optimal. In Proposition 1 below, we derive the contract that minimizes the number of shares

given to the manager, since this would be optimal if the CEO had vanishingly small but positive

risk aversion.

Proposition 1 (CEO incentive pay in partial equilibrium). Fix the manager�s expected pay at
w and assume � < 1 (the cost of e¤ort is not too strong). The optimal contract pays a fraction

� of the wage in shares, and the rest in cash. Namely, it comprises a �xed base salary, f �, and

��P worth of shares, with:

��P = w�; (4)

f � = w (1� �) ; (5)

where � is the unit cost of e¤ort. The manager�s realized compensation is:

c = w (1 + � (r � E [r])) ; (6)

where r = P1=P � 1 is the �rm�s stock market return.

In the optimal contract described by Proposition 1, realized CEO compensation is not

indexed to the market and CEOs are rewarded for luck. Therefore, the empirical observation of

these practices (e.g. Bertrand and Mullainathan (2001)) need not be inconsistent with optimal

compensation. This result stems from the assumption that the CEO is risk neutral and so the

informativeness principle of Holmstrom (1979) does not apply. In reality, CEOs likely exhibit

some degree of risk aversion, providing a motive for indexation. This is counterbalanced by the

costs of additional complexity in writing indexed contracts. Reality likely re�ects a trade-o¤

between these two factors.
4Section 2 extends the model to general contracts under risk aversion. In the online appendix (Appendix E)

we show the results are unchanged by generalizing to other instruments, such as options, while retaining risk
neutrality.
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1.2 Incentive Pay in Market Equilibrium

We now embed the previous analysis into a market equilibrium where the equilibrium wage

w is endogenously determined. We directly import the model of Gabaix and Landier (2008)

(�GL�), the essentials of which we review in the Appendix. There is a continuum of �rms of

di¤erent size and managers with di¤erent talent. Since talented CEOs are more valuable in

larger �rms, the nth most talented manager is matched with the nth largest �rm in competitive

equilibrium, and earns the following competitive equilibrium pay:5

w (n) = D (n�)S(n�)
�=�S (n)��=� ; (7)

where S (n) is the size of �rm n, n� is the index of a reference �rm (e.g. the median �rm in the

economy), S (n�) is the size of that reference �rm, D (n�) is a constant independent of �rm size,

and �; � and  are also constants. In particular, CEOs at large �rms earn more as they are

the most talented, with a pay-�rm size elasticity of � =  � �=�. GL calibrate to � =  = 1,

� = 2=3.

GL only specify the total compensation that the CEO must be paid in market equilibrium.

We now seamlessly incorporate the incentive results of Section 1.1 to determine the form of

compensation. We allow � to di¤er across �rms, and so index it �n. We need not make any

assumptions on how �n varies with n: as long as �n < 1 for each �rm, e¤ort can be induced

by the incentive contract. Since there is no shirking, the �baseline��rm value remains at S, as

in GL. The equilibrium incentive pay is analogous to Proposition 1:

Proposition 2 (CEO incentive pay in market equilibrium). Assume 8 n; �n < 1 (the cost

of e¤ort is not too strong). Let n� denote the index of a reference �rm. In equilibrium, the

manager of index n runs a �rm of size S (n), and is paid an expected wage:

w (n) = D (n�)S(n�)
�=�S (n)��=� ; (8)

where S(n�) is the size of the reference �rm and D (n�) = �Cn�T 0 (n�) = (� � �) is a constant

independent of �rm size. The optimal contract pays manager n a �xed base salary, f �n, and

��nPn worth of shares, with:

��nPn = w (n) �n;

f �n = w (n) (1� �n) ;
5Throught this paper, we consider the domain of very large �rms, i.e. take the limit n=N ! 0, where N is

the total mass of �rms.
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where �n is the manager�s disutility of e¤ort. The manager�s realized compensation is:

c (n) = w (n) (1 + �n (r (n)� E [r (n)])) ;

where r (n) = P1n=Pn � 1 is the �rm�s stock market return during the period.

To our knowledge, the above Proposition yields the �rst closed-form solution for a market

equilibrium determination of optimal CEO incentives, in a model where CEOs have di¤erent

talents. The most similar antecedent is Himmelberg and Hubbard (2000), which does not have

closed forms.

Note that the total level of pay w(n) is determined entirely by the CEO�s marginal product,

and is independent of incentive considerations. The latter only a¤ects the division of total

pay into cash and stock components. Hence high pay is not �justi�ed�by the need to reward

CEOs for good performance, or to compensate them for the risk associated with incentive

compensation: CEOs are currently risk-neutral. As in GL, high levels of pay are entirely

justi�ed by scarcity in the market for talent, not by incentive considerations. Simply put, total

compensation is driven by �pay-for-talent�, not �pay-for-performance�. Empirically observing

high pay despite poor �rm performance need not automatically imply ine¢ ciency, since in a

competitive market, high pay may have been necessary to attract a skilled manager.6 As long

as pay would have been even higher had the manager delivered stronger performance, it can be

consistent with optimal contracting.

1.3 Pay-Performance Sensitivities in Market Equilibrium

The empirical literature uses a variety of measures for pay-performance sensitivity. These are

de�ned below (we suppress the dependence on �rm n for brevity).

De�nition 1 Let c denote realized compensation, w the expected pay, S the market value of

the �rm, and r the �rm�s return. We de�ne the following pay-performance sensitivities:

bI =
@c

@r

1

w
=
� lnCompensation
� lnFirm Value

(9)

bII =
@c

@r

1

S
=
�$Compensation
�$Firm Value

(10)

bIII =
@c

@r
=
�$Compensation
� lnFirm Value

: (11)

bI is used (or advocated) by Murphy (1985) and Rosen (1992); bII by Demsetz and Lehn

(1985), Yermack (1995) and Schaefer (1998); and bIII by Holmstrom (1992). The next Propo-

6For example, the large severance package given to Robert Nardelli of Home Depot appears ex post ine¢ cient,
but it may have been necessary ex ante to attract a manager of his talent.
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sition derives predictions for these quantities, in the case where �n = � across all �rms.7

Proposition 3 (Pay-performance sensitivities). Equilibrium pay-performance sensitivities are
given by:

bI = � (12)

bII = �
w

S
(13)

bIII = �w; (14)

where w is given by (7).

Share-based compensation can be implemented in a number of forms, such as stock grants,

bonuses and reputational concerns. If the incentive component is implemented purely using

shares, these sensitivities have natural interpretations. bI represents the dollar value of the

CEO�s shares as a proportion of the CEO�s total pay, bII is the percentage of shares outstanding

held by the CEO, and bIII denotes the dollar value of the CEO�s shares. If the incentive

component is implemented using other methods, the above coe¢ cients constitute the �e¤ective�

share ownership.

Proposition 4 (Scaling of pay-performance sensitivities with �rm size). Let � denote the cross-
sectional elasticity of expected pay to �rm size: w / S�. For instance, in GL, � =  � �=�.

The pay-performance sensitivities scale in the following way:

1. In the cross-section, bI is independent of �rm size:

bI / S0:

2. In the cross-section, bII scales as S��1:

bII / S��1:

3. In the cross-section, bIII scales as S�:

bIII / S�:

In particular, in the calibration � = 1=3 used in GL,

bI / S0, bII / S�2=3, and bIII / S1=3: (15)

7We make this assumption to maintain the simplicity of our model and limit our degrees of freedom in
calibration. The model can be extended to allow the e¤ort parameters to vary across �rms, as in Baker and
Hall (2004).
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Proposition 5 (Dependence of pay-performance sensitivities on the size of the reference �rm).
Let n� denote the index of a reference �rm and S(n�) its size. The pay-performance sensitivities

scale with S(n�) in the following way:

bI / S0S (n�)
0

bII / S�(1��)S (n�)
��

bIII / S�S (n�)
�� :

where  is the elasticity of CEO impact in GL (equation (38)). In particular, in the calibration

� = 1=3;  = 1, used in GL,

bI / S0S (n�)
0 , bII / S�2=3S (n�)

2=3 , and bIII / S1=3S (n�)
2=3 :

Table 1 summarizes our results for the di¤erent measures of pay-performance sensitivity.

Insert Table 1 about here

Propositions 4 and 5 imply that the log-log measure of pay-performance sensitivity is in-

dependent of both �rm size and the size of reference �rms. The intuition is as follows. In

our model, e¤ort has a percentage e¤ect on both �rm value and the CEO�s utility. Since this

percentage is constant across �rms, the required %-% (or log-log) incentives to achieve incentive

compatibility should be constant across size.

This result suggests that bI is the most appropriate measure of CEO incentives to use when

comparing between �rms or di¤erent time periods. Note that this proposal stems from our

assumption that e¤ort has multiplicative costs and bene�ts. Baker and Hall (2004) show that,

under di¤erent assumptions, bII or bIII may be appropriate. Which assumptions are closest to

reality is therefore an empirical question. Section 3 presents evidence that supports the model�s

prediction that bI is stable and that other measures are size-dependent.

Proposition 4 also predicts that bII should decline with �rm size, a relationship widely

documented empirically. Since bII = bI w
S
and the wage w scales with S1=3 in market equilibrium,

bII is predicted to scale with S�2=3. Existing interpretations of this stylized fact are greater

managerial entrenchment and ine¢ ciency in large �rms (Bebchuk and Fried (2004)), stronger

political constraints on high pay in large, visible �rms (Jensen and Murphy (1990)), greater

volatility imposing higher risk on the CEO (Schaefer (1998)), and wealth constraints limiting

the percentage of a large �rm that a CEO can hold (Demsetz and Lehn (1985)). Our explanation

does not rely on any of these constraints; bII optimally falls with size because managerial e¤ort

is multiplicative in �rm value and thus substantially increases the dollar value of a large �rm.

Therefore, a smaller percentage equity holding is required to induce e¤ort: applied to a large

dollar value change, this creates a su¢ cient incentive to work. It is e¢ cient for CEOs of large

12



�rms to be �paid like bureaucrats�, as found by Jensen and Murphy (1990). This point has

been previously noted by Hall and Liebman (1998) and modeled by Baker and Hall (2004); we

form a quantitative prediction for this scaling in market equilibrium.

Finally, bIII is the e¤ective dollar equity stake. Section 1.1 shows that this should be

proportional to total pay. However, since total pay is less than proportional to �rm size (it

scales with S1=3), dollar equity holdings should also be less than proportional to �rm size.

While this paper models incentive pay as the solution to an e¤ort problem, incentives

can be used for alternative purposes such as screening out low-ability CEOs (Lazear (1995),

Holmstrom (1999)). In future work, it might be interesting to analyze variants of the model

that incorporate other reasons for incentive pay and explore the resulting empirical implications.

By seeing which model�s predictions most closely match the data, we may understand better

the main motivations for incentive pay in practice: solving agency problems, screening, or

alternative theories.

1.4 Wealth-Performance Sensitivities in Market Equilibrium

Thus far, we have assumed the CEO�s incentives stem purely from his �ow compensation.

However, for many CEOs, the vast majority of incentives stem from changes in the value of

existing holdings of stock and options (see Hall and Liebman (1998), Core, Guay and Verrecchia

(2003) among others). Appendix B presents a full model that extends the previous results to a

multiperiod setting. The key results are summarized here.

Replacing �ow compensation in the numerator of De�nition 1 with the overall change in

wealth yields the following de�nitions of wealth-performance sensitivity:

De�nition 2 Let W denote total CEO wealth (including NPV of future consumption), w the

expected �ow pay, S the market value of the �rm, and r the �rm�s return. We suppress the

dependence on �rm n for brevity and de�ne the following wealth-performance sensitivities:

BI =
@W

@r

1

w
=

�$Wealth
� lnFirm Value

1

$Wage
(16)

BII =
@W

@r

1

S
=

�$Wealth
�$Firm Value

(17)

BIII =
@W

@r
=

�$Wealth
� lnFirm Value

: (18)

BII is used by Jensen and Murphy (1990). Hall and Liebman (1998) report both BII and

BIII , as well as a variant of BI where the denominator is �ow compensation w plus the median

return applied to the CEO�s existing portfolio of shares and options.8

8Note that we scale BI by the wage, not by wealth which may seem more intuitive. The reason is data
limitations: in the U.S., the only wealth data we have is on the CEO�s security holdings in his own �rm.
Therefore, measured wealth will mechanically have a (close to) constant �rm value elasticity �for example, if
he holds stock and no options, @Wt

@rt
1
Wt

would equal 1.
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Multiplying the pay-performance sensitivities in Proposition 5 by W
w
gives the following

magnitudes for wealth-performance sensitivities:

Proposition 6 (Wealth-performance sensitivities). Let W denote total CEO wealth (including

NPV of future consumption) and w the expected �ow pay. Then:

BI = �
W

w
(19)

BII = �
W

S
(20)

BIII = �W: (21)

The scalings with �rm size S and the size of the reference �rm S� are as in Propositions 4 and

5.

Proposition 6 predicts that all three measures of wealth-performance sensitivity are higher

for wealthier CEOs. This has been empirically con�rmed by Becker (2006) for BII and BIII

(he does not investigate BI). Becker�s explanation is that risk aversion declines with wealth,

therefore rendering incentive pay less costly. Our model o¤ers a di¤erent explanation that

does not rely on risk aversion. Since shirking and consuming are complementary goods, higher

wealth raises current consumption and thus the utility gains from shirking. Pay-performance

sensitivity must therefore rise to continue to induce e¤ort.

The numerical scalings for pay-performance sensitivity in equation (15) were obtained using

the well-documented 1/3 elasticity of the wage with size. Using the data from Section 3, in

unreported results we con�rm that this elasticity holds for the relationship between wealth

and size: we �nd a coe¢ cient of 0.40 with a standard error of 0.05. By contrast, W=w has

an elasticity of 0.04, less than its standard deviation. Note that we only have data on the

CEO�s �nancial wealth in his own �rm (plus accumulated annual �ow compensation), and so

our results assume the proportion of own-�rm �nancial wealth to total wealth is constant across

�rm size.

2 ExtendedModel with Risk Aversion and General Con-

tracts

The previous section assumed a risk-neutral CEO, a binary e¤ort decision, and limited our

instruments to cash and shares. This was to maximize the model�s tractability and thus cal-

ibratability. This section introduces risk aversion and multiple e¤ort levels into a continuous

time setup, and derives the optimal contract without restricting the contracting space. In

addition to testing the robustness of our predictions, the extended model also allows us to
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analyze the e¤ect of risk on compensation. Section 2.1 considers the extended model in partial

equilibrium and in Section 2.2 we embed it in market equilibrium.

2.1 Partial Equilibrium: A �Detail-Independent�Optimal Contract

Let e 2 [e; e] denote the CEO�s e¤ort. The end-of period �rm return on assets, R = P1=P0, is:

R = (1 + �)L (e) (22)

where L is continuously di¤erentiable, positive, increasing, and lnL is weakly concave. The

maximum action is normalized to L (e) = 0. � is a random disturbance outside the CEO�s

control. ln (1 + �) has a bounded support. We assume that CEO sees the realization of � before

choosing e¤ort e. This assumption substantially simpli�es the analysis and is discussed in detail

at the end of this subsection.

The CEO�s utility function is

u (cg (e)) (23)

where c is terminal consumption, g (e) captures the disutility of e¤ort and is decreasing and posi-

tive, and ln g is concave. u has domainR�+, is increasing and weakly concave, and limc!+1 u (c) =

+1. The CEO�s reservation utility is u.
The utility function (23) preserves and generalizes (1) in a number of ways. First, the utility

function u can be a general concave function. Second, e¤ort and consumption continue to a¤ect

each other multiplicatively rather than additively. Third, e¤ort is no longer a binary variable.

We consider the case where the highest level of e¤ort, e = e, maximizes total surplus.9

As before, this is optimal under weak assumptions, because the �rm (and thus the bene�t

from e¤ort) is very large compared to the CEO (and thus the cost of e¤ort). The cost of

e¤ort now comprises both the direct disutility and the ine¢ cient risk sharing that results from

incentivizing the manager to exert e¤ort.

At the maximum e¤ort level, if the CEO increases �rm returns by 1%, he decreases his

utility (in consumption equivalent units) by �%, where:

� � � (ln g (e))0 = (lnL (e))0 (24)

As in Section 1, � represents the �cost of e¤ort�: the marginal rate of substitution between

�rm value and CEO utility.

The CEO has a reservation utility u (w) given by the competitive market, and we seek the

optimal (unrestricted) contract, a function c (R) of the realized return that implements e = e,

satis�es the participation constraint U � u, and has the minimum cost E[c] to the �rm.10 We

9Lemma 1 in Appendix A shows that this the case if the �rm is su¢ ciently large.
10More precisely, the �rm minimizes the market value of compensation, i.e. EQc, where Q is the risk-neutral
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can also allow compensation to depend on messages sent by the CEO to the �rm, but as shown

in the proof, they have no e¤ect. The optimal contract is derived in Appendix A and stated

below. 11

Theorem 1 (Optimal unrestricted contract, with a risk-averse CEO). The unrestricted optimal
contract pays the CEO an amount W1 de�ned by:

W1 = W0R
� (25)

where W0 is a constant that ensures that the participation constraint binds (E
�
u
�
W0R

�
��
= u)

and R is the gross �rm return at the end of the period. The functional form R� is independent

of the utility function u and the distribution of the noise �.

The contract in equation (25) has a simple practical implementation, in the case where �rm

returns follow a continuous-time di¤usion between period 0 and 1. For simplicity of exposition,

we normalize the interest rates and risk premia to 0. At time 0, the CEO is given a portfolio

of value E[W1], of which a fraction � is invested in the stock and the remainder in cash. This

portfolio is continuously rebalanced between periods 0 and 1, so that the fraction in the stock

remains constant at �. The CEO�s �nal wealth therefore becomes (25).12

Theorem 1 yields a particularly simple optimal contract. We describe it as �detail-independent�

as its functional form does not depend on the distribution of the noise, nor on the CEO�s utility

function �these only a¤ect the speci�c value of W0. In particular, the shape of the optimal

contract R� depends only the cost of e¤ort �, but not on risk aversion. This simple form

contrasts with the great complexity of traditional contracts under risk aversion (e.g. Grossman

and Hart (1983)).

The link with the optimal contract in Section 1 is as follows. Equation (25) can be rewritten

lnW1=W0 = � lnP1=P0, so that bI = E [@ lnW=@r] = �. Changes in log CEO wealth must be

proportional to changes in log �rm value, with a constant of proportionality of �. Therefore,

�nal compensation is proportional to the stock price to the power �.

We conclude this subsection with some remarks on our model setup. Our framework makes

three small departures from conventional models. First, we postulate multiplicative production

and utility functions, which lead to scale-independent contracts. Second, the �rm always wishes

to implement maximum e¤ort, since the bene�ts of e¤ort outweigh the costs, which removes

the need to analyze small trade-o¤s. Third, the CEO observes the realization of the noise

before taking his action. The combination of these three departures leads to the particularly

probability. This leads to the same solution.
11If the CEO has any initial wealth, the contract is still given by (25), with a fraction � of both existing and

new wealth being continuously invested in the stock.
12The proof is thus. The �rm evolves as dPt=Pt = �dzt The CEO wealth Vt starts at V0 = E [W1], and for

t 2 [0; 1], evolves at dVt=Vt = ��dzt, so that d lnVt = ��dzt � �2�2dt=2, and the �nal value of the portfolio is
V1 = E[W1] exp

�
��z1 � �2�2=2

�
= R�W0:
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simple form of our optimal contract. Note that only the third assumption was deliberately

made to maximize tractability; the �rst two were made as we believe they correspond most

closely to the economics of the situation. The third assumption leads to tractability since, if

the CEO observes � before choosing his e¤ort level, the realization of � is immaterial for his

decision problem. (This is shown most clearly in the �rst few lines of the proof). Therefore,

the form of the contract is independent of the noise distribution. While it is unclear whether

it is more plausible for noise to be observed prior or after the CEO�s e¤ort decision, the online

appendix13 (Appendix D) shows that the optimal contract is exactly the same in a continuous

model, where at each point in time, the CEO exerts e¤ort and stochastic noise occurs. Since the

continuous-time model features e¤ort and noise occurring simultaneously yet attains the same

contract, the economics of Theorem 1 do not depend on the assumption made for the temporal

resolution of uncertainty �this only a¤ects tractability rather than driving the results.14 We

suspect that, if we changed the third assumption, the qualitative features of the contract would

be little a¤ected; however, the solution would be substantially more complicated.

We also note that, even though this is a hidden information model (the CEO learn the noise

� before taking the action), there is no need for the CEO to send messages to the �rm, and there

is no need for �menus of contracts,�as shown in detail in the proof. Intuitively, the reason is

that the �rm wishes to implement maximal e¤ort in all cases. Hence, on the equilibrium path,

there is a one to one correspondence between the �rm�s return and the noise, which makes

messages redundant.

The simplicity of the contract in Theorem 1 allows it to be easily embedded in market

equilibrium, a task to which we now turn.

2.2 Market Equilibrium

We now derive the market equilibrium with risk averse CEOs, using the optimal contract of the

previous section. To obtain speci�c quantitative results, we specialize the utility function to

u (c) = c1��= (1� �) for � � 0, � 6= 1, and u (c) = ln c for � = 1. We take the return to be R =
exp (e� e+ �"� �2=2), where " is a standard Gaussian variable, so that L (e) = exp (e� e).15

We normalize the risk premium and interest rate to 0, and take g (e) = exp (��e), which is
consistent with (24).16 We allow for heterogeneity in the �rm�s cost of e¤ort, scope of e¤ort

13The online appendix can be found at http://�nance.wharton.upenn.edu/~aedmans/CEOIncentivesAppendix.pdf.
14The consistency of our contract with a continuous-time setup may explain the super�cial similarity between

our contract, where log pay is a¢ ne in log performance, and that of Holmstrom and Milgrom (1987), where pay
is a¢ ne in performance, even though our setup cannot be mapped into that of Holmstrom and Milgrom.
15Formally speaking, this Gaussian distribution of " is unbounded, contradicting an assuption made in section

2.1. One can approach that condition arbitrarily closely, by truncating the distribution of " to � [A;A], for
some very large, but �nite, upper bound.
16If the �rm�s earnings are a0 at time 0, the earnings next period are: a0

�
1 + CT �1

�
exp

�
e� e+ �"� �2=2

�
.

The e¤ects of talent, e¤ort, and noise enter all multiplicatively. As in the Online Appendix to Gabaix and Landier
(2008), the net present value of the CEO�s action is proportional to the �rm�s market capitalization, to a very
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and volatility.17 The CEO working for �rm n receives an expected wage wn. His utility is given

by:

U = u (wn exp (��n)) ;

where

�n = �nen +
��2n�

2
n

2
(26)

denotes the �equivalent variation�associated with �rm n, i.e. the utility loss su¤ered by the

manager by exerting e¤ort (the �nen term) and bearing risk (the ��2n�
2
n=2 term). The latter

arises because a fraction �n is invested in the �rm, which has volatility �n. After adjusting for

the cost of e¤ort and risk aversion, CEO n�s �e¤ective�wage is �n = wne
��n.

As in Section 1.2, we derive the market equilibrium with a continuum of CEOs and a contin-

uum of �rms. To simplify the analysis, we assume that the �rms��n�s are drawn independently

of �rm size. Also, from GL, we recommend the calibration  = � = 1, � = 2=3.

Theorem 2 (Pay and optimal incentive contract in market equilibrium). Let n� denote the
index of a reference �rm. In equilibrium, the manager of rank i runs a �rm whose �e¤ective

size�e��n=S is ranked i, and receives an expected pay:

wn = D (n�)S(n�)
�=�S��=�n exp

�
�

�
(�n � �)

�
; (27)

where D (n�) = �n�CT 0 (n�) = (� � �), �n is as de�ned in (26) and � is de�ned by e
�� =

E
�
e�e�=(�)�� where e� is the average of the �rms�equivalent variations. The optimal contract

is as given by Theorem 1, so that the �nal payo¤ Wn depends on the gross �rm return R

according to:

Wn = wn
R�n

E [R�n ]
; (28)

where E
�
R�n
�
= exp (�2n (�

2
n � �n) =2). As before, the wealth-performance sensitivity of CEO i

is bI = E [@ lnW=@ lnR] = �, and the scaling with size are as in Proposition 3.

To interpret Theorem 2, �rst note that the equivalent variation (26) �n increases in the

cost of e¤ort required by the �rm (�nen) and �rm risk (�n). A �rm with higher equivalent

variation �
n
will, ceteris paribus, choose a lower quality manager (since its e¤ective size is

Sne
��n=), but with a higher pay. This is because the e¤ective size Sne��n= leads to a net wage

vn _
�
Sne

��n=
���=�

, and a full wage wn = vne
�n _ S

��=�
n e�n�=�, which is increasing in �n.

Therefore, in the cross-section, �rms with high equivalent variations pay more.

However, in the aggregate, there is no such e¤ect: if the equivalent variation of all �rms

increases by the same amount �, wages do not change. In equation (27), both �n and �

close �rst-order approximation.
17Cross-sectional variation in en re�ects the fact that there is greater scope to add value through e¤ort in

certain companies and industries (e.g. those intensive in human capital).
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increase by �, so the wage is unchanged: even though working for his present �rm becomes

less attractive, the outside options also become less attractive.18 To understand the result,

for clarity we consider the case where all equivalent variations �n are the same, �n = � = �.

The least talented CEO (number N) has a reservation wage wN . To compensate for the above

utility loss, he must be paid wNe
�. Hence the pay of CEO n is the following variant of equation

(39):

w (n) = �
Z N

n

CS (s) T 0 (s) ds+ wNe
�n (29)

and scales according to

w (n) = D (n�)S(n�)
�=�
�
S (n)��=� � S (N)��=�

�
+ wNe

� � D (n�)S(n�)
�=�S (n)��=�

Changes in � have negligible e¤ect on the the pay of top CEOs, and zero e¤ect in the limit

as n=N ! 0. Equation (29) shows that the pay of CEO n is composed of the rent to talent

(the �rst term) and the wage of the least talented CEO (the second term). An increase in �

a¤ects only the wage of the least talented CEO, and does not a¤ect the rent to talent. Since

the �rst term is much larger, particularly for highly talented CEOs, the overall wage is barely

a¤ected, and not a¤ected at all in the asymptotic limit of top CEOs.

The main theoretical results of this paper �the determinants of incentives and total pay

in market equilibrium �can be summarized in just three simple closed-form equations, (26)-

(28).The wage depends on own �rm size Sn, aggregate �rm size S (n�), the supply of talent

D (n�), the cost �n of e¤ort and risk aversion that the �rm imposes on the CEO, the market av-

erage of this cost, �. Its incentive component is given by equation (28), an optimal unrestricted

contract with a natural economic interpretation.

3 Empirical Evaluation

This section calculates empirical measures of wealth-performance sensitivity and assesses the

extent to which current practices are consistent with our neoclassical benchmark. Section 3.1

shows that the data is quantitatively consistent with the model�s predictions for the scalings of

incentives with �rm size. In particular, BI is independent of size and we therefore propose it

as the preferred empirical measure of incentives. Section 3.2 calibrates the level of incentives

and show that they can be explained by optimal contracting.

18This assumes that a CEO�s only outside option is to become a CEO of another �rm. If CEOs can �nd a job
outside of the CEO market, the more general prediction is that the cross-sectional elasticity of wage to e¤ort is
higher than the market-wide elasticity.
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3.1 Determinants of CEO Incentives

We start by examining the model�s predictions for the cross-sectional scaling of incentive pay

with �rm size. These are summarized in Proposition 5 for the basic model, and are unchanged in

the extended model. Our model predicts that the dollar-dollar wealth-performance sensitivity,

BII , should optimally decline with size. This directional association has been consistently

documented by a number of existing studies, such as Demsetz and Lehn (1985), Jensen and

Murphy (1990), Gibbons and Murphy (1992), Schaefer (1998), Hall and Liebman (1998) and

Baker and Hall (2004). Moreover, our calibratable framework allows us to derive quantitative

predictions of the elasticity of bII with respect to size. Speci�cally,  � �=� = 1=3 (as found

by GL) implies an elasticity of �2=3. Consistent with our model, Schaefer �nds BII � S��,

with � ' 0:68.19 Existing research is also consistent with the model�s prediction that BI is

independent of size (Gibbons and Murphy (1992), Murphy (1999)). We do not know of any

studies that investigate the link between BIII and size.

However, prior �ndings cannot be interpreted as conclusive support of the model. Some of

the above studies focus on the compensation �ows (salary, bonus and new grants of stock and

options) but do not have full data on the CEO�s stock of shares and options which provide the

vast majority of CEO incentives.

We therefore conduct our own empirical tests of the model, using measures of wealth-

performance sensitivity. We merge Compustat with ExecuComp (1992-2005) and select the

largest 500 �rms in aggregate value (debt plus equity) in each year.20 We calculate the wealth-

performance sensitivities as follows:

BI =
1

wt

�
Value of stock + Number of options� @V

@P
� P

�
(30)

BII =
1

St

�
Value of stock + Number of options� @V

@P
� P

�
(31)

BIII =

�
Value of stock + Number of options� @V

@P
� P

�
(32)

We use the Core and Guay (2002) methodology to estimate the option deltas. (Appendix

C describes our calculations in further detail.) Controlling for year and industry �xed e¤ects,

19This � is taken from Table 4 of Schaefer (1998), and is equal to 1�2 (�� ) using his notation. We average
over his four estimates of �. Note that Schaefer estimates a non-linear model that is closely related to ours, but
not identical, so his �ndings only constitute weak support.
20Our results are very similar if we use sales as a measure of �rm size, and if we select the top 1000 or 200

�rms.
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and clustering standard errors at the �rm level, we estimate the following elasticities:21

ln(BI
i;t) = �+ � � ln(Si;t)

ln(BII
i;t ) = �+ � � ln(Si;t)

ln(BIII
i;t ) = �+ � � ln(Si;t):

Table 2 illustrates the results, which are consistent with the predictions of equation (15).

Speci�cally, BI is independent of �rm size: the coe¢ cient of 0.06 is slightly less than its standard

deviation. BII (BIII) have size elasticities of �0:58 (0.42), statistically indistinguishable from
the model�s prediction of �2=3 (1/3). Our model can therefore quantitatively explain the size
elasticities of all three measures of wealth-performance sensitivity.

In unreported results, adding the Gompers, Ishii and Metrick (2003) governance index as

an explanatory variable yields a coe¢ cient of �0:057, statistically signi�cant at just greater
than the 1% level. The standard deviation of the governance index is 2.7, implying that a

one standard deviation rise in the index (i.e. a worsening of governance) is associated with BI

falling by 15%.

Insert Table 2 about here

The empirical literature has used a wide variety of measures of CEO incentives, but there

has been limited theoretical guidance over which measure is appropriate. A notable exception

is Baker and Hall (2004), who show that the optimal measure depends on the scaling of CEO

productivity with �rm size. If productivity is constant in dollar terms regardless of �rm size, bII

(or BII) is appropriate as it is size-invariant; if it is linear in �rm size, bIII (or BIII) is the correct

measure as it becomes size-invariant. However, their calibrations estimate the size-elasticity of

CEO productivity of 0.4, in between the two extremes, suggesting that both measures may be

problematic.

Our model predicts that BI is independent of �rm size. While this stemmed from our

assumption that e¤ort has multiplicative costs and bene�ts, Table 2 empirically con�rms its

size invariance (thus supporting our modeling assumptions) as well as the size dependence of

BII and BIII . This property may render BI an attractive measure of CEO incentives in a

number of empirical applications. Size independence permits meaningful comparisons of the

strength of incentives across �rms or over time. In regressions, it ensures that the explanatory

power of the incentives measure does not simply arise because it proxies for size. If size is

included separately as a regressor, it ensures that the coe¢ cient on size is not distorted by the

inclusion of another size proxy (i.e. incentives) on the right-hand side.
21We use the standard panel-data method which assumes the coe¢ cients � are constant across �rms. An

alternative approach would be to allow � to vary between �rms according to observed characteristics, as in
Hermalin and Wallace (2001). They estimate the pay-performance relationship and that inter-�rm di¤erences
will lead to this sensitivity di¤ering between �rms. Our focus here is instead the WPS-size relationship, and it
is not clear that this will vary between �rms. We therefore use the standard approach.
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The extended model in Section 2 shows that the size scalings are unchanged when intro-

ducing risk aversion and general contracts. It also derives further predictions for the e¤ect of

cost of e¤ort and risk on compensation. As predicted by equation (27), we �nd that the wage

is signi�cantly increasing in �rm risk along the cross-section, with a coe¢ cient of 0.61 on log

volatility and a standard error of 0.09. This result is not reported in a table for brevity. Un-

fortunately, we cannot test the related predictions for the cost of e¤ort as this measure cannot

be quanti�ed.

3.2 The Level of CEO Incentives

We now use our model to assess whether currently observed levels of wealth-performance sen-

sitivity are consistent with e¢ ciency. Our primary measure is the log-log pay-for-performance

sensitivity; the other measures are mechanical transformations. The model predicts BI = �W
w

(equation (19)). We present �gures for 2001, the median year in our sample by level of incen-

tives. The median BI in 2001 is 9.22

We therefore calibrate � = BIw=W = 9w=W . Shirking increases the CEO�s utility by a

fraction � jej = 9 w
W
jejof his wealth, i.e. $9w jej in dollar terms. jej is the percentage amount by

which CEO can reduce �rm value by shirking or empire-building (through organic expansion or

an acquisition). A natural starting point is the average takeover premium of 30%.23 However,

the takeover premium can be motivated by factors other than managerial misbehavior, such as

synergies or undervaluation. Since a high input for jej would make it easier to match the BI

found in the data, we conservatively set e ' �10% which yields � jejW = $0:9w. The current

level of incentive pay is able to deter actions for which the �private bene�ts of shirking�increase

the CEO�s utility by an amount no greater than 0.9 times his annual salary.

This appears a high upper bound which incorporates the majority of potential value-

destructive actions, and so it may seem that observed incentives are able to address a number

of agency issues. However, incentives are not e¤ective in two cases: if the utility from shirking

is very high, or the e¤ect on the stock price is low. For certain actions, the private bene�ts from

suboptimal behavior may exceed the upper bound. One example may be managerial entrench-

ment, as by failing to (optimally) resign, the manager retains his salary (plus private bene�ts

of control) in many future years, the present value of which may plausibly exceed his annual

pay.24 Moreover, our estimate of $0:9w hinges upon our chosen input for e (it does not require

an estimation of W=w, since it cancels out). For actions with smaller negative e¤ects on the

22Hall and Liebman (1998, Table VIII) estimate BI = 3:9. Their denominator includes not only �ow com-
pensation but also the expected appreciation of the CEO�s stock and options.
23Bennedsen, Perez-Gonzalez and Wolfenzon (2007) quantify the value lost from CEO distraction resulting

from family deaths. Since distraction is not an example of wilful misbehavior, we base our calibrations on the
takeover premium.
24Another example may be acquisitions that substantially boost �rm size. Bebchuk and Grinstein (2007) �nd

that increases in size lead to higher CEO pay in many future periods.

22



stock price, observed incentives will be too low to deter misbehavior even if it leads to modest

private bene�ts. For example, if a managerialist acquisition or pet project only reduces stock

returns by 1%, the manager will undertake it if the private bene�ts are greater than $0:09w.

We consider these cases in more detail in Section 4.1.

To calibrate � as a percentage of wealth, we would need to estimate W=w. Unfortunately,

there is no data available on the wealth W of U.S. CEOs.25 However, ExecuComp provides

data on a CEO�s �nancial wealth in his own �rm. Across our sample, we estimate a median

value of (Financial wealth in the �rm) / (Pay) equal to 9.6. We assume that the CEO�s wealth

in his own �rm is half his total �nancial wealth, and that his human wealth (NPV of future

wages) approximately equals his entire �nancial wealth. This leads to an estimate of W=w of

38.4. We therefore have � jej = 9 w
W
0:1 ' 0:9

38:4
= 0:23:This means that, if the CEO shirks, his

utility increases by an amount equivalent to 2.3% of his wealth.

Since BII and BIII are mathematically linked to BI , our ability to explain BI means that

the model can also match the measures of wealth-performance sensitivity more commonly used

by empiricists. For example, BII = BI w
S
. The median size of the top 500 �rms in 2001 is $10

billion, with median pay of $4.7 million. BI = 9 is therefore consistent with a Jensen-Murphy

semi-elasticity of BII = 9� ($4:7 million) = ($10 billion). This represents a wealth rise of $4.23
for a $1; 000 increase in �rm value, close to our directly measured �gure of $3.68.26

4 Extensions

This section considers extensions and other speci�cations of the model. Section 4.1 shows that

actions that are additive in �rm value, such as perk consumption, either cannot or should not be

deterred by incentive compensation. In Section 4.2 we show that our model predicts a positive

relationship between �rm volatility and wealth volatility, which we support empirically. By

contrast, traditional models that feature an unbounded e¤ort domain have the opposite pre-

diction. Section 4.3 shows that our multiplicative functional forms are necessary and su¢ cient

to explain the size-independence of BI found in the data, since additive speci�cations do not

generate the same prediction. Section 4.4 reconciles our results with the empirical results of

Baker and Hall (2004).

25We thank David Yermack for discussions on this point. See Becker (2006) for a study with Swedish CEOs.
26This �gure is smaller than the $5.29 reported by Hall and Liebman because we are considering only the top

500 �rms. Across the whole sample, the median is $8.37.
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4.1 Perks

4.1.1 Perks in the Risk-Neutral Model

In the basic model, where the contract consists of cash and shares, the analysis assumed that

� < 1, and thus incentive problems were solvable through the contract speci�ed in Proposition

1. However, if the assumption is violated, the manager�s disutility from working is so high

that a large equity stake is needed to induce the correct action. If expected pay is kept at

w, this necessitates a negative �xed component f , which violates limited liability. One im-

portant agency problem for which � > 1 might apply is CEO entrenchment, since resigning

adversely impacts the CEO�s utility in many future periods. Since incentive pay is ine¤ective

at inducing underperforming CEOs to leave, this issue must instead be addressed by corporate

governance, such as active boards. (This solution is also not unproblematic since boards may

be endogenously chosen by the CEO, as modeled by Hermalin and Weisbach (1998)).

Moreover, the necessary condition for incentive pay to be e¤ective is substantially stronger

if the e¤ort decision is additive in �rm value. This is likely the case for perks, such as corporate

jets: the value loss from perk consumption is relatively independent of �rm size. It also may

hold for managerial rent extraction (e.g. stealing corporate resources).

Proposition 7 (Impossibility of deterring perk consumption through incentive pay). Assume
e = e reduces �rm value by $L. Let L > w�, so that e = 0 maximizes total surplus. It is

impossible to elicit high e¤ort while keeping expected pay �xed at w if S > L=�, i.e. the �rm is

su¢ ciently large.

Hence if w� < L < S�, perk consumption is ine¢ cient but cannot be prevented with simply

cash and shares. Since the perk is �xed in absolute terms, the stock price of a large �rm is

relatively insensitive to perk consumption: stock returns only fall by L=S. (The same holds for

multiplicative actions for which e is small in magnitude, as considered earlier). Therefore, the

CEO�s equity stake does not decline su¢ ciently in dollar terms to outweigh the utility gain of

perk consumption. Note that perks cannot be prevented even if the �rm is willing to pay the

CEO rents (i.e. a pay in excess of w(n)), by awarding him a large number of shares. Raising

the CEO�s pay augments his utility from perk consumption (as this equals w� jej) so incentive
compatibility is still not achieved. The only possible solution would be to give the CEO a large

equity stake and reduce his �xed salary, to keep his total pay constant, but this is not possible

as f � 0.
Although seemingly intuitive, this result is contrary to the view modeled by Jensen and

Meckling (1976) and implied by empirical papers such as Jensen and Murphy (1990), that

agency costs can (and should) be addressed by incentive pay. Equity compensation is primarily

e¤ective in addressing agency costs that are a proportion of �rm value, such as e¤ort or M&A.27

27For example, Morck, Shleifer and Vishny (1990) �nd that higher managerial equity stakes are associated
with greater value creation in mergers.
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However, perks are typically independent of �rm value, and thus cannot be addressed by incen-

tives. As with the entrenchment issue, perks should instead be controlled by active corporate

governance. For example, the board could intensely scrutinize the purchase of a corporate jet

or a large investment project. Empirical evidence linking governance to shareholder returns

(e.g. Gompers, Ishii and Metrick (2003) and Yermack (2006)) can be interpreted as consistent

with this result. If all agency costs could be solved by incentive compensation, governance

would not matter (except for ensuring that the CEO is given the optimal contract). Since in-

centive compensation is not universally e¤ective, there remains an important incremental role

for governance, particularly in large �rms.

Overall, these results show that incentives are e¤ective in solving large agency problems,

which have a signi�cant e¤ect on the stock price, but not smaller issues as these do not a¤ect

stock returns and thus the CEO�s portfolio. However, these smaller issues are less important for

overall �rm value. Any agency problem that would have a substantial e¤ect on �rm value also

would have a substantial e¤ect on stock returns, and so incentives are e¤ective. Any agency

problem that cannot be prevented by incentive compensation, because it has too small an

e¤ect on stock returns, is also less value-destructive if unchecked. Therefore, a greater problem

may be an overcon�dent CEO. His actions may have signi�cant negative e¤ects on the stock

price, yet incentives may be ine¤ective at deterring them as he genuinely believes that they are

maximizing shareholder value.

4.1.2 Perks With Risk Aversion and Unrestricted Contracting

We now extend the above result to general incentive contracts. We will see that, although perk

consumption can be deterred through the use of highly sensitive instruments, the required con-

tract would impose substantial risk on the CEO that vastly outweighs the gains from deterring

the perk. Direct control therefore remains the optimal method of perk prevention.

We use the optimal incentive scheme of Theorem 1, which states the optimal contact is

to make the CEO invest a fraction � = � of his wealth in the portfolio. Perk consumption

reduces �rm value by L per unit of time and increases the CEO�s utility by �L, so the net loss

is (1� �)L. The ine¢ ciency of perk consumption is thus decreasing in �, where 0 < � < 1.

Perk consumption reduces stock returns by L=S, so, if the CEO has a fraction � of his wealth

invested in the �rm, the perk consumption reduces the value of his portfolio falls by W�L=S.

The CEO therefore avoids the perk if and only if �L�W�L=S � 0, i.e. � � �S=W . Therefore

the optimal contract entails � = �S=W .28

To illustrate the extreme sensitivity of incentives required, we consider a simple numerical

example. If � = 1=2, S = $10 billion and W = $100 million, perk prevention requires � = 50.

28This condition can also be derived using the framework of Section 2.1. Consuming perks �e 2
�
0; L

�
for a

time �t impacts CEO utility by g (e) = exp
�
��e
W�t

�
, and multiplies �rm value by L (e) = exp

�
e
S�t

�
. Hence,

the marginal cost of e¤ort (24) is � = �S=W , so the optimal portfolio share in Theorem 1 is � = �S=W .
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This implies that the CEO must invest 5,000% of his wealth in the �rm, borrowing to reach

that amount (and continuously rebalancing, to maintain this exposure to �rm return, and avoid

personal bankruptcy). This is clearly extreme, and very costly for any non-trivial level of risk

aversion. The reason for this high sensitivity is that consuming (say) $10 million of perks for

one year reduces the market capitalization by only 0.1%, an amount very hard to detect.

We now quantify the cost of ine¢ cient risk-sharing and compare it to the bene�ts of perk

prevention in a total surplus analysis. Since the CEO�s utility is:

U = u
�
We��e���

2�2=2
�
;

the loss to total surplus is (per unit of time): W��2 �
2

2
= �2 S

2

W
��

2

2
. Total surplus rises with

perk prevention if and only if
LW

S2
� �2

1� �

��2

2
.

With � = 1 and �2 = 0:04 (an annual volatility of 20%), the right-hand side is equal to 1%. If

the perk reduces �rm value by $10million, the left-hand size is ($10million)($100million)/($104

million)2 = 10�5. Hence, the losses from risk-bearing are several orders of magnitude higher

than the gains from perk prevention. (The exception is for very small �rms, where W is of a

similar magnitude to S).

If the relative risk aversion of the CEO, �, is greater than 0.1, any perk less than $1 billion

( �
2

1��
��2

2
S2

W
, should not be deterred via incentives and can only be prevented through monitoring.

If monitoring is not possible, then it is simply more cost-e¤ective to let the CEO consume the

perk, rather than try to deter it by incentives.

We summarize this result in the next Proposition:

Proposition 8 (Perk prevention with general incentive contracts). Perks can be deterred with
general incentive contracts if the CEO receives a share:

� � �
S

W
: (33)

It is e¢ cient to deter perk consumption if and only if:

L � �2

1� �

��2

2

S2

W
: (34)

where S is �rm size, W CEO wealth, � CEO relative risk aversion, � the �rm volatility, and �

the e¢ ciency of perks.

While Proposition 7 could be achieved with simple partial equilibrium models, a calibratable

framework is necessary to extend the result to general contracts (Proposition 8). It quanti�es
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the cost of risk-bearing imposed by highly sensitive instruments, and shows that this exceeds

the cost of the perk.

4.2 Bounded E¤ort and the Link Between Wealth Volatility and

Firm Volatility

This section shows that the unbounded e¤ort, featured by traditional models, leads to a pre-

dicted negative association between pay volatility and �rm volatility. By contrast, our model

has the opposite prediction, which we show to be empirically supported.

We �rst brie�y review the additive (exponential-normal) model. In this model, the CEO

has utility u = E[c]� a
2
var (c)� 1

2
e2, where a denotes absolute risk aversion and e 2 [0;1). His

reservation utility is u. Firm value next period is S1 = S (1 + �+ Le+ �), where L measures

the CEO�s productivity, and � is normal noise with mean 0 and variance �2r. � accounts for the

�rm�s expected returns in equilibrium. The �rm maximizes S (1 + �+ Le)�E [c], its expected
value next period net of CEO pay. As before, compensation comprises �xed pay f , plus �

shares.

The solution is standard.29 The CEO�s dollar-dollar-pay-performance sensitivity is bII =

@c=@S1 = L= (L2 + a�2r), and thus is decreasing in �rm volatility. This well-known prediction

stems from the fact that there is always an interior solution to the optimal e¤ort level, and

so it re�ects a trade-o¤ between risk and incentives at the margin. As �r rises, the trade-o¤

leads to optimal incentives being lower. By contrast, our model predicts that pay-performance

sensitivity is independent of risk (see Section 1). There is a corner solution and no trade-o¤:

since the �rm (and thus the bene�ts of e¤ort) is much larger than the manager (and thus the

cost of e¤ort in terms of risk-bearing), it is always e¢ cient to implement the maximum level

of e¤ort. Indeed, Prendergast�s (2002) survey of the evidence �nds no systematic negative

relationship between incentives and �rm risk. He o¤ers an explanation based on the allocation

of responsibility to employees; ours is a complementary hypothesis.

In addition, models with bounded e¤ort predict a negative relationship between pay volatil-

ity and �rm volatility. Since pay volatility is stdev (c) = ��r = �rSL= (L
2 + a�2r), its sensitivity

to �rm volatility is given by @stdev (c) =@�r = �S
�
1� 2bII

�
bII . Since empirical studies �nd

that bII is substantially less than 1=2, these models predict @stdev (c) =@�r < 0:, i.e. that the

CEO wealth volatility is smaller in very volatile �rms.

By contrast, in our model there is a corner solution to e¤ort and so the number of shares �

is independent of volatility. Hence stdev (c) = ��r is increasing in volatility. Indeed, we predict

29Normalizing the initial share price to P = 1, the CEO�s realized pay is c = f + � (1 + Le+ �). The CEO
chooses e to maximize his utility, U = f + � (1 + Le)� a

2�
2
r�
2 � 1

2e
2, and selects e = �L. The �rm chooses � to

maximize its net value, S
�
1 + �L2

�
� a

2�
2
r�
2 � �2L2

2 , and selects � = SL2=
�
L2 + a�2r

�
. The CEO�s total pay is

therefore c = f + S1L=
�
L2 + a�2r

�
.
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that the CEO�s wealth volatility is proportional to �rm volatility, i.e.

stdev(Wt+1 �Wt) = BIII�r / S��r; (35)

where �r is the volatility of the �rm�s returns and � = 1=3 is the elasticity of pay with respect

to size (see Proposition 4).

We now evaluate these contrasting predictions using the same dataset as before.30 As

discussed more fully in Appendix C, there are two main ways to estimate wealth volatility,

stdev(Wt+1 �Wt). The �rst is the ex ante measure used in Section 3, i.e. stdev(Wt+1 �Wt) =

BIII
t �r.31 The second uses ex post realized volatility, i.e. stdev(Wt+1 �Wt) = ln jWt+1 �Wtj.
(We calculate wealth by starting with the CEO�s initial holdings of stock and options and, each

year, adding the appreciation in value of this portfolio plus any new �ow compensation. We do

not have data on the CEO�s wealth outside of his �rm.) In both cases, the model predicts that

regressing stdev(Wt+1 �Wt) = �S lnS + �S ln�r will yield �S = 1=3 and �� = 1.

We can also scale the dependent variable. Scaling by the wage leads toBI
t �r or ln (jWt+1 �Wtj =wt)

and the model predicts �S = 0 and �� = 1. Scaling by size yields B
II
t �r or ln (jWt+1 �Wtj =St),

with a prediction of �S = �2=3 and �� = 1.

Insert Table 3 about here

The results are shown in Table 3. In all six speci�cations we �nd that wealth volatility

is signi�cantly positively linked to �rm volatility. In three speci�cations, we cannot reject

the hypothesis that �� = 1. (The low �� = 0:64 when ln (jWt+1 �Wtj =wt) is the dependent
variable is because of the strong positive association between wt and �r.) In addition, in

all six speci�cations, the 95% con�dence intervals for �S contain the predicted values. In

unreported regressions we �nd that these results are unchanged when adding �rm �xed e¤ects

and identifying purely on within-�rm changes in volatility.

4.3 The Requirement for Multiplicative Preferences

Our choice of the multiplicative speci�cation (1) was motivated by its intuitive plausibility, in

particular that the bene�ts from shirking are increasing in the wage. Such a functional form

generated the prediction that bI is independent of w, which we have validated empirically. We

now demonstrate that multiplicative preferences are necessary (as well as merely su¢ cient) to

yield this implication.

30The linear-quadratic model is expressed in terms of terminal consumption, but its general meaning is in
terms of terminal wealth. The key variable is the NPV of the CEO�s future utilities in the second period, which
is also linear in wealth in the linear-quadratic model.
31Indeed, for small time intervals, Wt+1 �Wt =W

0
t (r) rt = B

IIIrt, so stdev(Wt+1 �Wt) = B
IIIstdev (rt) =

BIII�r.
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Many previous theories of CEO pay (Haubrich (1994), Schaefer (1998), Baker and Hall

(2004)) are based on the classical �additive�model of Holmstrom and Milgrom (1987), which

uses the form E [c]� g (e). We explore the implications of this speci�cation while maintaining

the same contract structure (equation (3)). We normalize the expected return to 0, and call bI

the fraction of w invested in stock, so that c = w
�
1 + bIr

�
. As before, bI = E [@c=@r] =E [c].

With the utility function E [c]� g (e), the optimal bI is given by bI = g(e)�g(0)
w

, which implies:32

bI / w�1 (36)

The additive form therefore predicts that bI decreases with the wage. This contrasts with

the multiplicative form (1), which predicts that bI is independent of the wage and is thus

consistent with the data.

Another popular utility function is E [c�=�]� g (e), with � 2 (0; 1]. This leads to bI / w��

for large w, and thus also predicts that bI declines with �rm size. The reason is that, for

su¢ ciently high consumption, e¤ort has a very small e¤ect on the agent�s utility and so fewer

incentives are required to ensure compatibility.

While the above considered two speci�c functional forms, we now demonstrate a general

result: that multiplicative preferences are necessary to generate a size-independent bI . To keep

the analysis streamlined, we consider only a highly simpli�ed setup. Consider a general utility

function is E[u (c; e)], with e 2 fe; 0g. Assume the �rm�s return is r = e and that incentive

compensation is implemented with shares, so the �rm selects expected pay c and slope bI so

that: c = c
�
1 + bIr

�
. The optimal contract minimizes c and bI while granting the CEO his

reservation utility of uand eliciting e = 0.33 The next Proposition states that multiplicative

preferences are required for the optimal bI = E [@c=@r] =E [c] to be independent of v (and thus

E[c]).

Proposition 9 (Necessity and su¢ ciency of multiplicative preferences to generate a size-independent
bI). Assume the CEO�s utility function is u (c; e), and the �rm�s return is r = e. Suppose the

optimal a¢ ne contract involves a wage-scaled pay-performance sensitivity bI = E [@c=@r] =E [c]

that is is independent of E [c]. Then, the utility function is multiplicative in consumption and

e¤ort, i.e. can be written:

u (c; e) = � (c � g (e)) (37)

for some functions � and g.

Conversely, if preferences are of the type (37), then the optimal contract has a slope bI that

is independent of E [c].

32The proof is as follows. The optimal bI is the smallest bI such that E [c� g (0) j e = 0] �
E [c� g (�1) j e = �1], and so satis�es E [c� g (0) j e = 0] = E [c� g (�1) j e = �1]. Since c = w

�
1 + bIr

�
=

w
�
1 + bI (e+ �)

�
, the conditions read: w � g (0) = w

�
1� bI

�
� g (�1), i.e. bI = g(�1)�g(0)

w .
33More fully, v = E [v (c; e) j e = 0] � E [v (c; e) j e = e].
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This result may be relevant for future calibratable models of corporate �nance. While the

level of incentives (a single number) can potentially be explained by a number of di¤erent

models, the requirement to quantitatively explain scalings across �rms of di¤erent sizes implies

a tight constraint on the speci�cations that can be assumed.

We note that the above Proposition was proven in a restrictive context, with no noise and

restricting the contract to consist of cash and shares, although we considered a general utility

function. We suspect that the results extend to more general settings, but such an investigation

is beyond the central objective of this paper.34

4.4 Explaining Baker-Hall

Finally, we illustrate how our model can explain Baker and Hall�s (2004) empirical results on

the negative relationship between BII and �rm size. They assume an additive model, which

requires L to be size-dependent in order to predict that BII scales with size. They therefore

use their results to calibrate the scaling of L with size. We show that their �ndings are also

consistent with our model, in which L is constant and size-dependence is instead generated by

the multiplicative functional form.

Using our notation, Baker and Hall estimate a functional form for L(e; S). They derive an

equation for CEO productivity as a function of �rm size: IBH =
q

2bIIa
1�bII �rS (their equation

(3)), where a is the coe¢ cient of absolute risk aversion.35 They assume constant relative risk

aversion, and so a is inversely proportional to the CEO�s wealth.

They then make one of three assumptions for the scaling of the CEO�s wealth, which leads

to three di¤erent speci�cations. In their speci�cation (1), they assume wealth is proportional

to the CEO�s wage, and so a / w�1. In our model, w / S� and so a / 1=w / S��. In

addition, bII / w=S / S��1 and 1� bII / S0, since bII � 1. Assuming stock price volatility is

independent of �rm size (as in the geometric random growth model),36 the standard deviation

of the dollar value of a �rm is �r / S1. We therefore predict IBH1 / S(��1��)=2+1 = S1=2. Our

predicted elasticity of 1
2
is consistent with Baker and Hall�s empirical �nding of 0.4.

In their speci�cation (3), they assume the CEO�s wealth is independent of size, and therefore

a / S0. In our model, this would lead to IBH3 / S(��1)=2+1 = S(1+�)=2 = S2=3, using � = 1=3,

and thus a predicted elasticity of 0.67. Baker and Hall �nd an elasticity of 0.62. We therefore

conclude that the Baker and Hall results can also be explained quantitatively by our framework.

34For instance, with noise, we suspect that to keep b constant across expected utilities, the function � must
actually be: � (c) = A ln c +B or Ac1��= (1� �) +B.
35Baker and Hall (2004) use � to denote absolute risk aversion; we are using a to avoid confusion with our

�, which denotes the elasticity of total pay with respect to �rm size. Also, we use � to note the �percentage�
volatility of the �rm.
36Regressing log volatility on log aggregate value, year dummies and industry dummies yields an insigni�cant

coe¢ cient of -0.0024 (standard error of 0.0119).
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5 Conclusion

This paper has presented a calibratable model of the competitive determination of the CEO

compensation contract. There are two main theoretical contributions. First, it is a market

equilibrium model endogenizing the level of total pay as well as its incentive component. As

such, it is a uni�ed framework for understanding the e¤ect of many factors on the two main

components of executive compensation. Second, it is particularly tractable and yields closed-

form solutions, even when the model is extended to incorporate general incentive contracts.

These features lead to clear empirical predictions and readily lend the model to empirical

analysis. The main implications are as follows:

(i) Dollar-dollar incentives (such as those calculated by Jensen and Murphy (1990)) opti-

mally decline with �rm size, with an elasticity of -2/3. Therefore, the negative scaling observed

empirically is fully consistent with optimal contracting and need not re�ect ine¢ ciency. Relat-

edly, dollar-log incentives should have a size elasticity of 1/3.

(ii) Scaled wealth-performance sensitivity (the dollar change in wealth for a percentage

change in �rm value, scaled by annual pay) is invariant to �rm size.

(iii) Increased �rm volatility is associated with increased wealth volatility, but does not

a¤ect the incentive component of total pay.

(iv) Higher �rm risk and cost of e¤ort lead to greater total pay in the cross-section, partic-

ularly for the least-talented CEOs. However, aggregate-level changes in these variables have no

e¤ect.

(v) Incentive compensation is typically e¤ective at deterring value-destructive actions that

have a large multiplicative e¤ect on �rm value. They are ine¤ective at preventing actions with

a �xed dollar e¤ect on �rm value, particularly in large companies.

(vi) Observed levels of wealth-performance sensitivity are su¢ cient to deter value-destructive

actions that yield private bene�ts no greater than 0.9 times the annual wage.

There are a large number of other potential determinants of compensation upon which the

model is silent. Owing to its tractability and empirical consistency, our model may provide

a useful benchmark on which future models can be built to explore their equilibrium implica-

tions and investigate whether they can explain other observed features of compensation. Ex-

amples include accounting performance measures (which may explain bonuses), entrenchment

and turnover (which may explain severance pay), stockholder-bondholder con�icts (which may

explain inside debt compensation), and renegotiation. In addition, there are a number of im-

plications of the current model which we have not yet tested. Are our scalings empirically

consistent in other countries, or are there large discrepancies that may be potential evidence of

ine¢ ciencies? Are CEO incentives increasing in wealth?37 How much of the time series variation

37Given data limitations in the U.S., the only wealth data available is on the CEO�s stock and options holdings
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in incentives, documented by Frydman and Saks (2007) and Jensen and Murphy (2004), can

be explained by our model?

One important caveat is that our model�s prediction that BI is size invariant stemmed

from our assumed functional forms, and other speci�cations would have di¤erent predictions.

We used the quantitative empirical consistency of our model as a partial justi�cation of our

assumptions, and in turn to support our advocacy of BI as an empirical measure. However,

using real-world data to evaluate a frictionless model implicitly assumes that real-world practices

are also reasonably close to frictionless. It could be that an alternative model, with di¤erent

speci�cations to ours and predicting the size invariance of a di¤erent measure, represents the

�true�frictionless benchmark, and that this alternative model is empirically rejected because

there are indeed ine¢ ciencies in reality. Perhaps under the hypothetical �true�speci�cation,

BI should optimally increase with �rm size, and we only observe that it is constant because

ine¢ ciencies are greater in large �rms. Further research is needed to evaluate this hypothesis.

In particular, the strongest support for the rent extraction view may come not from observing

that a particular practice is inconsistent with a frictionless model, but from deriving a model

that explicitly incorporates frictions and generates quantitative predictions on their e¤ects on

compensation that closely match the data. Our empirical results suggest that, if the �true�

speci�cation predicts that BI increases with �rm size, ine¢ ciencies would have to scale with

�rm size in such a way as to exactly counterbalance the optimal scaling and explain the size

invariance of BI that we �nd. For now, our neoclassical benchmark shows that ine¢ ciencies do

not need to be assumed when interpreting various features of the data.

A Detailed Proofs

Proof of Proposition 1 The manager should earn his market wage: E [c j e = 0] = w.

We calculate:

E [c j e = 0] = f + �P = w

E [c j e = e] = f + �P (1 + e) = f + �P + �P (e) = w + �Pe:

The manager chooses e = 0 if:

E [cg (0) j e = 0] � E [cg (e) j e = e] :

in his own �rm, and so there is a mechanical link between incentives and measured wealth. However, full wealth
data may be available in other countries (see Becker (2006) for an example).
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Since g (0) = 1 and g (e) = 1
1�� , this implies

w � w + �Pe

1� �e , �P � ��P = w�:

f � is chosen to ensure that expected pay is w: f � = w � ��P = w (1� �).

Proof of Proposition 2 We �rst de�ne some notation. A continuum of �rms and po-

tential managers are matched together. Firm n 2 [0; N ] has size S (n) and manager m 2 [0; N ]
has talent T (m). Low n denotes a larger �rm and low m a more talented manager: S 0 (n) < 0,

T 0 (m) < 0. n (m) can be thought of as the rank of the manager (�rm), or a number proportional

to it, such as its quantile of rank.

We consider the problem faced by one particular �rm. The �rm has a �baseline�value of

S. At t = 0, it hires a manager of talent T for one period. The manager�s talent increases the

�rm�s value according to

S 0 = S + CTS; (38)

where C parameterizes the productivity of talent. If large �rms are more di¢ cult to change

than small �rms, then  < 1. If  = 1, the model exhibits constant returns to scale (CRS) with

respect to �rm size.

We now determine equilibrium wages, which requires us to allocate one CEO to each �rm.

Let w (m) denote the equilibrium compensation of a CEO with index m. Firm n, taking the

market compensation of CEOs as given, selects manager m to maximize its value net of wages:

max
m

CS (n) T (m)� w (m) :

The competitive equilibrium involves positive assortative matching, i.e. m = n, and so

w0 (n) = CS (n) T 0 (n). Let wN denote the reservation wage of the least talented CEO (n = N).

Hence we obtain the classic assignment equation (Sattinger (1993), Tervio (2007)):

w (n) = �
Z N

n

CS (u) T 0 (u) du+ wN : (39)

Speci�c functional forms are required to proceed further. We assume a Pareto �rm size

distribution with exponent 1=�: S (n) = An��. Using results from extreme value theory, GL

use the following asymptotic value for the spacings of the talent distribution: T 0 (n) = �Bn��1.
These functional forms give the wage equation in closed form, taking the limit as n=N ! 0:

w (n) =

Z N

n

ABCu��+��1du+ w =
ABC

� � �

�
n�(���) �N�(���)�+ wN �

ABC

� � �
n�(���):

(40)
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To interpret equation (40), we consider a reference �rm, for instance �rm number 250 �the

median �rm in the universe of the top 500 �rms. Denote its index n�, and its size S(n�). We ob-

tain Proposition 2 from GL, which we repeat here. In equilibrium, manager n runs a �rm of size

S (n), and is paid according to the �dual scaling�equation w (n) = D (n�)S(n�)
�=�S (n)��=�,

where S(n�) is the size of the reference �rm and D (n�) = �Cn�T 0 (n�) = (� � �) is a constant

independent of �rm size.38

Proof of Proposition 5 Take the de�nition of bII and use � =  � �=�:

bII = �
w

S
= �

D (n�)S(n�)
�=�S��=�

S (n)
/ S��=��1

S(n�)��=�
=

S��1

S(n�)��
= S�(1��)S (n�)

�� :

The expressions for bI and bIII obtain similarly.

Proof of Theorem 1 For transparency, we �rst present a heuristic derivation, to demon-

strate the essence behind equation (25). We then present the rigorous proof.

A heuristic proof . The IC condition is:

e 2 arg max
e2[e;e]

c ((1 + �)L (e)) g (e) (41)

The derivative of the right-hand side of (41) at e = e should be non-negative i.e., using R =

(1 + �)L (e):

c0 (R) (1 + �)L0 (e) g (e) + c (R) g0 (e) � 0;

i.e., using (24), � = � (g0 (e) =g (e)) = (L0 (e) =L (e)):

c0 (R)� �c (R) =R � 0. (42)

Suppose that IC constraint (42) binds, which we will prove shortly. Then, c0 (R)��c (R) =R =
0, which integrates to c (R) = c0R

�. c0 is chosen to ensure that the participation constraint

binds.

The above gives the �spirit�of why the Theorem holds. We now turn to a full proof.

The full proof . The problem is a hidden information problem. Using the revelation

principle, after he learns �, the agent (the CEO) sends the principal (the �rm) a message b�
about the value of �. He then exerts e¤ort e, and the return R = (1 + �)L (e) is realized. The

38The derivation is as follows. Since S = An��, S(n�) = An��� , n�T 0 (n�) = �Bn�� , we can rewrite equation
(40) as follows:

(� � �)w (n) = ABCn�(���) = CBn�� �
�
An���

��=� � �An���(��=�)
= �Cn�T 0 (n�)S(n�)�=�S (n)��=� :
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�rm optimizes over the optimal compensation contract, which is a function c (b�;R). The IC
constraint is that the agent should report truthfully to the principal, and exerts maximal e¤ort:

8�;8b�;8e; u (c (b�; (1 + �)L (e)) g (e)) � u (c (�; (1 + �)L (e)) g (e))

i.e., as u is increasing,

(IC) 8�;8b�;8e; c (b�; (1 + �)L (e)) g (e) � c (�; (1 + �)L (e)) g (e) : (43)

u drops out, which is made possibly by the functional form (23).

The �rm�s problem is to minimize the expected cost E [c (�; (1 + �)L (e))], subject to the

IC constraint (43), and the reservation constraint E [u (c (�; (1 + �)L (e)))] = u (w).

We observe that for any optimal contract, we can create a new optimal contract, replacing

c (b�;R) by 0 if R 6= (1 + b�)L (e). The new contract still satis�es (43), and has the same cost.
Hence, we restrict ourselves to contracts such that

c (b�;R) = 0 if R 6= (1 + b�)L (e) : (44)

Economically, this means that the principal pays 0 to the agent if he can infers that, from the

agent�s truthfully reported b� and the realized return, that the agent has not exerted maximum
e¤ort.

Now de�ne c (R) = c (R=L (e)� 1; R). This is the consumption of an agent that exerts
maximum e¤ort and reports the true value of the noise �, yielding a full returnR = (1 + �)L (e).

Let us rewrite the IC condition (43) in terms of c. Owing to (44), given �, the relevant deviations

in (b�; e) are only those such that (1 + �)L (e) = (1 + b�)L (e) So (43) can be rewritten as:
(ICa): 8�;8e; c ((1 + �)L (e)) g (e) � c ((1 + �)L (e)) g (e) (45)

This is exactly (41) above. Hence, by the reasoning of the �heuristic proof�, we have the

necessary condition that c0 (R)� � c(R)
R
� 0.

We next prove that the IC constraint (42) binds. Let p (1 + �) denote the density function

associated with 1+�, and form the HamiltonianH associated withmin
R
c (R) p (R) dR subject

to
R
u (c (R)) p (R) dR � u (w) and c0 (R)� �c (R) =R � 0:

H (R) = (c (R) + � � u (c (R))) p (R) + h (R) (c0 (R)� �c (R) =R) :

We note that the problem is well de�ned, as it maximizes a linear function of c (�),
R
c (R) p (R) dR,

subject to c (�) belonging to a convex set, the set of functions c such that
R
u (c (R)) p (R) dR �

u (w) and c0 (R)� �c (R) =R � 0:
The �rst order condition for the optimality of the contract is the Euler-Lagrange equation:
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@H
@c(R)

� d
dR

@H
@c0(R) = 0, i.e.

(1 + � � u0 (c (R))) p (R)� h (R) �=R� h0 (R) = 0

When h (R) 6= 0 over an interval, then (42) binds, and c (R) = c0R
�. If over an interval,

h (R) = 0, then 1 + � � u0 (c (R)) = 0, and c (R) is constant. But then, over that interval,

c0 (R) = 0, and (42) implies c (R) = 0. This cannot be reconciled with c (R) = c0R
� over

the interval where h (R) 6= 0. So, h (R) is never 0 over an interval, and so the contract is

c (R) = c0R
� for some c0 > 0.

We �nally prove that c (R) = c0R
� implies the global IC constraint (45).

For a concave function F , we have F (e) � F (e) + F 0 (e) (e� e). Because lnL and ln g are

concave, lnL+ � ln g is concave, and,

� lnL (e) + g (e) � � lnL (e) + ln g (e) +
�
� (lnL (e))0 +

�
ln g (e)0

��
(e� e)

= � lnL (e) + ln g (e) by (24):

Hence, for any e, L (e)� g (e) � L (e)� g (e), and

8�;8e; c0 (1 + �)� L (e)� g (e) � c0 (1 + �)
� L (e)� g (e) ;

i.e. (45). The proof is now complete.

Lemma 1 When the �rm S is large enough, the CEO should optimally exert high e¤ort.

Proof : Call K (e) the dollar cost to make the CEO exert an e¤ort level e, subject to his

participation constraint E [u (c)] � u (w). Under quite general conditions, K (e) is continuously

di¤erentiable in [e; e].

For instance, with the contract as in Proposition 1, c = c0R
�(e), where � (e) = � (ln g (e))0 = (lnL (e))0.

The participation constraint is satis�ed with E
�
u
�
c0R

�(e)
��
= w, which admits a solution as

limc!+1 u (c) = +1. Then, K (e) = c0E
�
R�(e)

�
. By the implicit function theorem, K (e) is

continuously di¤erentiable.

The �rm�s surplus, net of compensation, is V (e) = SL (e) � K (e). The �rm solves

maxe V (e). Since V 0 (e) = SL0 (e) � K 0 (e), we have V 0 (e) > 0 for e 2 [e; e], if S > S� =

maxeK
0 (e) =L0 (e). Hence, for S > S�, the �rm wishes to implement the maximum level of

e¤ort.

We �nally have to check that, conditional on a realization of �, the �rm does wish to

implement maximal e¤ort. This is the case if, for all realizations of �, e maximizes the net

surplus: S (1 + �)L (e)�W0 ((1 + �)L (e))� g (e). This is true if S is large enough, and ln (1 + �)

has bounded support.
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Proof of Theorem 2 Assume that in market equilibrium, a CEO of talent T (m) receives

an e¤ective wage v (m). If �rm n wishes to hire manager m, it must pay him a net wage

v (m), and a dollar wage v (m) e�n. So its program is: maxmCS (n)
 T (m) � v (m) e�n, i.e.

maxmCne
��nS (n) T (m)�v (n). Firm n behaves like a �rm with �e¤ective size�(e��n)1= S (n)

and thus pays the associated wage v = D (n�) (e
��S(n�))

�=� �
Cne

��n=S
���=�

. After the

compensating di¤erential, the dollar wage is: w = ve�n, hence (27).

Proof of Proposition 9 De�ne � (c) = u (c; 0), g (0) = 1 and g (e) = 1=
�
1 + bIe

�
.

Call bI = E [@c=@r] =E [c] the slope. Since bI o¤ers the minimum slope, E [v (c; e) j e = 0] =
E [u (c; e) j e = e], i.e.

u
�
c
�
1 + bIe

�
; e
�
= u (c; 0) = � (c)

and so u (c; e) = �
�
c=
�
1 + bIe

��
= � (cg (e)). Therefore, u (c; e) = � (cg (e)) for all c and

e 2 fe; 0g.
The converse of the proof is immediate, with bI = (1� g (0) =g (e)).

B Multiperiod Model

This Appendix underpins Section 1.4, which extends the pay-performance sensitivity results

of Sections 1.1-1.3 to wealth-performance sensitivity in an intertemporal framework. We use

the setup of Kreps-Porteus (1978), Epstein-Zin (1990) and Weil (1989), so that we have risk

neutrality and smooth consumption over time.39 Let the value function Vt denote the discounted

utility of future consumption:

lnVt = (1� �) ln (ct) + � lnEt [Vt+1]� �et�t:

For instance, if consumption and e¤ort are deterministic, lnVt =
P1

s=0 �
s ((1� �) ln ct+s � �et+s).40

For simplicity, we assume � = 1= (1 + rf ), where rf is the equilibrium riskless rate. Let

Wt denote the CEO�s wealth (�nancial wealth Ft plus the NPV of future pay). The optimal

consumption policy is ct = rfWt= (1 + rf ). The model is most suited for a continuous time

setup, but for expositional reasons, we proceed in discrete time and take the continuous time

limit where applicable.

39As in the core model, risk neutrality signi�cantly enhances tractability (and thus calibratability). Without
smooth consumption, the model would be degenerate as the CEO consumes everything in a period in which he
shirks.
40This is still a multiplicative model, like (1). The non-log analog would be:

Vt =
h
(1� �) c1��t + � (Et [Vt+1])

1��
i1=(1��)

(1� �et�t)

as shirking for 1 period increases utility only by an amount proportional to ��t.
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The CEO has a fraction �t of his wealth in the �rm. The �rm�s return is rt+1 = rf+et+�t+1,

where r is the risk-free rate and et 2 fe; 0g. Wealth evolves according to:

Wt+1 = Wt

�
1 + rf + �tet + �t�t+1

�
� ct+1: (46)

It is well-known that with a logarithmic utility function, the indirect utility of wealth is

lnVt = lnWt + k, where k is a constant independent of wealth.

We now address the incentive compatibility condition. If the CEO shirks at time t, he

increases his utility lnVt by ��t. On the other hand, his wealth at t + 1 is lower by: �Wt =

�Wr (t)�t;where Wr = @W=@r. (In our example, Wr = W�.) Given that the utility is

lnVt = lnWt + k, shirking increases utility lnVt by:

� lnVt = ��t+ln (Wt +�Wt)�lnWt = ��t+ln

�
1� Wr (t)�t

Wt

�
= �t

�
�� Wr (t)

Wt

�
+o (�t) :

We take the continuous time limit, �t! 0. The agent does not shirk if and only if: ��Wr(t)
Wt

�
0, i.e.:

@W

@r
� �W (47)

As in Section 1, we select the contract that minimizes the risk in the CEO�s pay. It is given by

@W

@r
= �W:

Using De�nition 2, the wealth-performance sensitivities in Proposition 6 can be easily de-

rived.

While equation (47) makes predictions about the �stock� of incentives, we also wish to

examine the �ow of incentives, i.e. the optimal composition of the CEO�s incremental compen-

sation next period. Let W� denote the increment in wealth brought by the new compensation.

Assume no consumption for simplicity, and that currently @W
@r
� �W so that incentive com-

patibility is achieved. The CEO�s new wealth is W 0 = W + W�. To maintain incentive

compatibility, we require @W�

@r
� �W�., and so @W 0

@r
� �W 0. The least risky contract satisfying

this condition is given by:
@W�

@r
= �W�: (48)

The one-period model of Section 1 predicted exactly (48). Hence, if one accepts the above

selection criterion, then the predictions we obtain for the incentive mix in the �ow of compen-

sation are exactly the same as in the one-period model of Section 1, in particular Propositions

3, 4, and 5.
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C Detailed Calculation of BI

We merge Compustat with ExecuComp (1992-2005) and each year select the 500 largest �rms

by aggregate value (equity plus debt). To calculate aggregate value, we �rst multiply the end-

of-year share price (data199) with the number of shares outstanding (data25) to obtain market

equity. To this we add the value of the �rm�s debt, calculated as total assets (data) minus total

common equity (data60) and minus balance sheet deferred taxes (data74). We call this variable

aggval, and it is in millions of dollars.

The CEO�s incentives are calculated at the end of each �scal year, and stem from his stock

and option holdings. The number of shares held by the CEO is given by ExecuComp variable

shrown. Obviously, each share has a delta of 1; the delta of an option is given by the Black-

Scholes formula:

e�dTN

0@ ln � SX �+
�
r � d+ �2

2

�
T

�
p
T

1A :

d is the continuously compounded expected dividend yield, given by bs_yield. If this is

missing, we assume it is zero. We also winsorize it at the 95th percentile for each year.

� is the expected volatility of the stock return, given by bs_volat. If it is missing, we replace

it with the mean volatility for that year, given by http://mi.compustat.com/docs-mi/help/

blk_schol.htm. We also winsorize � at the 5th and 95th percentile for each year.

r is the continuously compounded risk-free rate, available from http://mi.compustat.com/

docs-mi/help/blk_schol.htm.

S is the stock price at the end of the �scal year, given by prccf.

X is the strike price of the option.

T is the maturity of the option.

The option holdings come in three categories: new grants, existing unexercisable grants, and

existing exercisable grants. The �rst four variables in the Black-Scholes formula are available

for all categories. For new grants, X and T are also available. X is given by expric, and T

can be calculated using the option�s maturity date, exdate. If exdate is unavailable, we assume

a maturity of 10 years. A CEO may receive multiple new grants in each year. We calculate

the delta of each option grant, multiply it by the number of options in the grant (numsecur)

and sum across grants to calculate �totaldeltanew�, the dollar change in the CEO�s newly

granted options for a $1 increase in the stock price. Similarly, we sum numsecur across grants

to calculate �numnewop�, the total number of newly granted options. While ExecuComp has a

variable (soptgrnt) for the number of newly granted options, it is sometimes di¤erent from the

number obtained by summing across grants. As will become clear later, using the �bottom-up�

number numnewop is more internally consistent since we are calculating the intrinsic value of
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new grants on a �bottom-up�basis.

X and T are not directly available for previously granted options, so we use the methodology

of Core and Guay (2002). Here we summarize the Core and Guay method while stating the

additional assumptions made when data issues were encountered. Since new grants are nearly

always unexercisable, Core and Guay recommend calculating the strike price of unexercisable

options as

prccf -
inmonun - ivnew

uexnumun - numnewop
:

inmonun is the intrinsic value of the unexercisable options held at the end of the year, some

of which stem from newly granted options.

ivnew is the intrinsic value of the newly granted options. This is not directly available from

ExecuComp, but obtained by calculating max(0,(prccf-expric)) * numsecur for each new grant

and summing across new grants.

uexnumun is the number of unexercisable options held at the end of the year.

Again because new grants are nearly always unexercisable, Core and Guay recommend

calculating the strike price of exercisable options as

prccf -
inmonex
uexnumex

:

inmonex is the intrinsic value of the exercisable options held at the end of the year.

uexnumex is the number of exercisable options held at the end of the year.

In some cases, numnewop > uexnumun, i.e. the number of newly granted options exceeds

the intrinsic value of unexercisable options at year end. We interpret these cases as part of the

new grant (numnewop - uexnumun) being exercisable. We therefore calculate the strike price

of exercisable options as

prccf �
inmonex

uexnumex - (numnewop - uexnumun)
:

In a subset of these cases, numnewop > uexnumun + uexnumex, i.e. the number of newly

granted options exceeds the number of total options at year end. In such cases, we assume

that the options held at year end entirely stem from new grants and there were no previously

granted options.

In some cases, ivnew> inmonun, i.e. the intrinsic value of the newly granted options exceeds

the number of unexercisable options. In a subset of these cases, uexnumun > numnewop, i.e.

there are some previously granted unexercisable options, and their deltas need to be taken into

account. We assume that such options are at the money. If ivnew > inmonun and numnewop

> uexnumun, we interpret this as part of the new grant being exercisable and having intrinsic
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value. In such cases, we calculate the strike price of exercisable options as

prccf �
inmonex - (ivnew - inmonun)

uexnumex - (numnewop - uexnumun)
:

If ivnew > inmonex + inmonun but uexnumex > numnewop - uexnumun, i.e. there are

some previously granted exercisable options, and their deltas need to be taken into account, we

assume that these options are at the money.

For the option maturities, Core and Guay recommend assuming a maturity for previously

granted, unexercisable options of one year less than the maturity of newly granted options, if

there were new grants in the �scal year. (Where there are multiple grants, we take the longest

maturity option). If there were no grants, Core and Guay recommend a maturity of 9 years.

The maturity of exercisable options is assumed to be 3 years less than for unexercisable options.

If this leads to a negative maturity, we assume a maturity of 1 day. As in Core, Guay and

Verrecchia (2003), we then multiply the maturities of all options by 70%, to capture the fact

that CEOs typically exercise options prior to maturity.

We use these estimated strike prices and maturities to calculate �deltaun�, the delta for

previously granted, unexercisable options, and �deltaex�, the delta for previously granted,

exercisable options.

Putting this all together, the dollar change (in millions) in the CEO�s wealth for a $1 change

in the stock price is given by

totaldelta = [ shrown + totaldeltanew + max(0,uexnumun-numnewop) � deltaun

+ max(0,(uexnumex-max(0,numnewop-uexnumun))) � deltaex]/1000.

We then calculate our measures of wealth-performance sensitivity:

BIII = totaldelta � prccf

BII =
BIII

aggval
� 1000

BI =
BIII

tdc1
� 1000:

Since tdc1 is very low (and sometimes zero) in a few observations, we replace such observa-

tions by the 2nd percentile for that year. The units for BII are the dollar increase in the CEO�s

wealth for a $1,000 dollar increase in shareholder value, as in Jensen and Murphy (1990).

Note that these �ex ante�measures slightly underestimate wealth-performance sensitivity,

since they omits changes in �ow compensation. However, this discrepancy is likely to be small:

Hall and Liebman (1998) and Core, Guay and Verrecchia (2003) �nd that the bulk of incentives

comes from changes in the value of a CEO�s existing portfolio. If the researcher has data on
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the CEO�s entire wealth, BI can be estimated using ex post changes in wealth as follows:

Wt+1 �Wt

wt
= A+ cBI � rt+1 + C � rM;t+1 + Controls, (49)

where Wt+1 � Wt is the change in wealth and rM;t+1 is the market return (returns on other

factors could also be added).41 This compares with our chosen measure of:

BI;ex ante =
1

wt

�
Value of stock + Number of options� @V

@P
� P

�
; (50)

where V is the value of one option, @V
@P
is the option �delta�, and P is the stock price.

Even if full wealth data (which includes �ow compensation) is available, the ex ante measure

has a number of advantages. First, both data on overall wealth and a long time series are

required to estimate equation (49) accurately. Second, even if such data is available, ex post

measures inevitably assume that wealth-performance sensitivity is constant over the time period

used to calculate the measure. Since the ex ante statistic more accurately captures the CEO�s

incentives at a particular point in time, it is especially useful as a regressor since its time period

can be made consistent with the dependent variable. For example, in a regression of M&A

announcement returns on wealth-performance sensitivity (e.g. Morck, Shleifer and Vishny

(1990)), the CEO�s incentives can be measured in the same year in which the transaction

was announced. In a similar vein, the ex ante measure is more suited to measuring trends in

executive compensation over time.

Finally, if the researcher only has data on compensation �ows, rather than wealth, this typ-

ically signi�cantly understates wealth-performance sensitivity. However, if the CEO is known

to have limited shares and options, the pay-performance estimate bI will be a reasonable ap-

proximation:

lnwt+1 � lnwt = a+ bbI � rt+1 + Controls, (51)

where wt is �ow compensation and rt is the �rm�s return. Variations on the above speci�cation

are possible. For example, an alternative dependent variable is 2 (wt+1 � wt) = (wt+1 + wt),

which is more robust when wt is close to 0.

41rM;t+1 is added since the CEO may hold investments other than his own �rm�s securities, that move with
the market but not the �rm�s return. For example, consider a CEO whose wealth is entirely invested in the
market, with no sensitivity to �rm�s idiosyncratic return. If equation (49) did not contain the C � rM;t+1 term,

it would incorrectly �nd cBI > 0, whereas the true cBI is zero. Since rt+1 proxies for rM;t+1, there is an omitted
variables bias which leads to BI being overestimated.
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Table 1: Comparing Di¤erent Measures of Pay-Performance Sensitivity.

bI bII bIII

Measures
� ln c

� lnS

�c

�S

�c

� lnS
Real variables $shares

total pay % shares $ shares

WPS analog
�$W

� lnS

1

w

�$W

�$S

�$W

� lnS
Used by Murphy (1985) Demsetz-Lehn (1985) Holmstrom (1992)

Rosen (1992) Jensen-Murphy (1990) Hall-Liebman (1998)
Yermack (1995)
Schaefer (1998)

This paper � �
w

S
�w

Scaling with S bI / S0 bII / S��1 bIII / S�

bI / S0 bII / S�2=3 bIII / S1=3

Scaling with S(n�) bI / S0S(n�)
0 bII / S�(1��)S (n�)

�� bIII / S�S (n�)
��

bI / S0S(n�)
0 bII / S�2=3S (n�)

2=3 bIII / S1=3S (n�)
2=3

Explanation: This Table shows the three di¤erent measures of pay-performance sensitivity
(WPS denotes wealth-performance sensitivity). c is the realized compensation, w is the expected
compensation, S is the market value of the �rm, W is the wealth, � is the cost of e¤ort. � is
the cross-sectional elasticity of expected pay to �rm size (w / S�) and empirically is around
� = 1=3. The predictions in this table are from Propositions 3, 4 and 5. The symbol �/�
denotes �is proportional to�. For instance, bII / S�2=3 means that we predict that bII declines
with size S, with an elasticity of -2/3, and bI / S0 means that bI is constant across �rm sizes.
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Table 2: Elasticities of Pay-Performance Sensitivity with Firm Size.

ln(BI) ln(BII) ln(BIII)
ln(Aggregate Value) 0.0648 -0.5778 0.4222

(0.0671) (0.0526) (0.0526)
Year Fixed E¤ects Yes Yes Yes
Industry Fixed E¤ects Yes Yes Yes
Firm Fixed E¤ects No No No
Observations 5,973 5,973 5,973
Adj. R-squared 0.1718 0.3453 0.3618

Explanation: We merge Compustat with ExecuComp (1992-2005) and select the 500 largest
�rms each year by aggregate value (debt plus equity). We use the Core and Guay (2002)
methodology to estimate the delta of the CEO�s option holdings. BI , BII andBIII are estimated
using equations (30)-(32). The industries are the Fama-French (1997) 48 sectors. Standard
errors, displayed in parentheses, are clustered at the �rm level. Based on the calibration of
Gabaix and Landier (2008), the model predicts an elasticity of � = 0 for BI , � = �2=3 for BII ,
and � = 1=3 for BIII :
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Table 3: The Positive Relation between Compensation Volatility and Firm Volatility.

Ex ante measure of volatility Ex post measure of volatility

ln(BI�r) ln(BII�r) ln(BIII�r) ln
�
jWt+1�Wtj

wt

�
ln
�
jWt+1�Wtj

St

�
ln jWt+1 �Wtj

ln(return vol) 1.0882 1.3327 1.3327 0.6435 0.9659 0.9714
(0.1322) (0.1199) (0.1199) (0.1816) (0.1550) (0.1584)

ln(�rm size) 0.0705 -0.5564 0.4436 0.0346 -0.5679 0.4045
(0.0686) (0.0539) (0.0539) (0.0691) (0.0552) (0.0560)

Year FE Yes Yes Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes Yes Yes
Firm FE No No No No No No
Observations 5,973 5,973 5,973 4,035 4,035 4,035
Adj. R-squared 0.2586 0.4478 0.4508 0.1421 0.2916 0.2790

Explanation: We merge Compustat with ExecuComp (1992-2005) and select the 500 largest
�rms each year by aggregate value (debt plus equity). We use the Core and Guay (2002)
methodology to estimate the delta of the CEO�s option holdings. BI , BII andBIII are estimated
using equations (30)-(32). The industries are the Fama-French (1997) 48 sectors. Standard
errors, displayed in parentheses, are clustered at the �rm level. The theory predicts a positive
coe¢ cient between wealth volatility and stock-return volatility, contrary to additive models
with unbounded e¤ort.
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