Internet Banking: An Exploration in Technology Diffusion and Impact

Rick Sullivan, Zhu Wang
Payments System Research
Federal Reserve Bank of Kansas City
www.kansascityfed.org/home/subwebs.cfm?subweb=9

The views expressed in this article are those of the authors, and do not necessarily reflect those of the Federal Reserve Bank of Kansas City or the Federal Reserve System.

Questions on Technology Diffusion

- ❖ Why does it take time for new technology to diffuse?
- **\Delta** Who are the early adopters?
- **\(\phi\)** What factors determine the diffusion rates?
- **\Delta** What feedbacks does the diffusion have on the environment?

Diffusion of Internet Banking and Growth of Average Bank Size

Diffusion of Web Sites by Bank Assets (Million)

Regional Adoption for Internet Banking (2003)

The Hypothesis:

Bank Size Distribution <==> Internet Banking Diffusion

Key Elements:

- (1) Considering explicitly the heterogeneity of banks' productivity and deriving empirically plausible bank size distribution;
- (2) Characterizing the endogenous diffusion of Internet banking and its reverse impact on the average bank size;
- (3) Bring the theory to data to explain the diffusion of Internet banking across 50 US states.

Bank Size Distribution (State-Charted Banks, 1990)

Illustration of the Industry Dynamics

Empirical Study: Simultaneous Equations

Adoption:
$$F = \frac{1}{1 + (\eta y_0^* / E(y_0))^{1/g}}$$

Mean Size :
$$E(y) = E(y_0)\{1 + [\gamma^{1/(\beta-1)} - 1][1 - B(1 + g, 1 - g; 1 - F)]\}$$

Linearization:
$$g \ln(\frac{1-F}{F}) = a_0 + a_1 \ln E(y) + a_2 \ln(y^{\frac{1}{\beta-1}} - 1) + a_3 (\ln P - \ln k)$$

$$\ln E(y) = b_0 + b_1 \left[g \ln(\frac{1-F}{F})\right] + b_2 \ln(\gamma^{1/(\beta-1)} - 1) + b_3 \ln P + \ln E(\alpha^{1/(1-\beta)})$$

Empirical Specification

$$g_{j,t} \ln(\frac{1 - F_{j,t}}{F_{j,t}}) = a_0 + a_1 \ln(E(y)_{j,t}) + \sum_i a_i \ln(X_{i,j,t}) + \sum_j a_3 (\ln I_{l,j,t}) + \varepsilon_{j,t}$$
 (Adoption)

$$\ln(E(y)_{j,t}) = b_0 + b_1[g_{j,t} \ln(\frac{1 - F_{j,t}}{F_{j,t}})] + \sum_i b_i \ln(X_{i,j,t}) + \sum_l b_l \ln(S_{l,j,t}) + \mu_{j,t}$$
 (Size)

- gln(1/F-1) -- Gini-adjusted state-level IB adoption odds ratio;
- E(y) -- a measure of state-level average bank size;
- X -- shared in both equations, e.g. variables affecting P and γ ;
- I -- only in Adoption equation, e.g. variables affecting k only;
- S --only in size equation, e.g. variables affecting α only.

Data for Dependent Variables

(with averages for 50 states)

Variable	2003	2004
TRANSAVE	0.573	0.671
TRANODDS	0.898	0.592
WEBAVE	0.757	0.813
WEBODDS	0.391	0.282
GINIASST	0.618	0.620
ASSTAVE		
(millions)	\$837.9	\$799.5

Explanatory variables used in both equations

(with averages for 50 states)

Variable	2003	2004
AGEAVE	56.6	56.7
METROAVE	0.759	0.763
LNSPAVE	0.365	0.355
PCY (000s)	\$14.8	\$15.2
POPDEN	187	188
INETADPT	58.0	64.0

Explanatory variables used as instruments

(with averages for 50 states)

Adoption equation				
Variable	2003	2004		
IMITATE	6.700	7.700		
WAGERATIO	3.024	3.058		
Asset size equation				
Variable	2003	2004		
INTRAREG	0.240	0.240		
ASST90 (\$ millions)	\$292.0	\$292.0		
BHCAVE	0.772	0.780		
DEPINST	0.278	0.328		

Adoption of transactional Websites and average bank assets Simultaneous equation model

Dependent variable:	lnTRANODDS-GINIAVE	lnASSTAVE	
lnASSTAVE	-0.1445*		
lnTRANODDS-GINIAVE		-0.3662	
lnIMITATE	-0.4852**		
lnWAGERATIO	0.1127		
INTRAREG		0.0235	
lnASST90		0.6761***	
InBHCAVE		0.9286	
InDEPINST		-0.1628	
InMETROAVE	-0.1904	0.1074	
InLNSPAVE	-0.3419*	-0.7074*	
lnAGEAVE	0.4183***	0.6718**	
lnPCY	0.3348	1.9618**	
InPOPDEN	0.1314*	0.3156**	
lnINETADPT	-1.6319***	-3.3892**	
R-square	0.72	0.78	

Equations include year and dummies for regions

Mean Values of Variables Across Regions (2003)

Variable:	Effects on IB	Far West	Plains	New England
OBS.		6	7	6
TRANSAVE		0.768	0.399	0.695
WEBAVE		0.882	0.539	0.967
GINIASST		0.561	0.567	0.536
ASSTAVE	+	\$1,336.7	\$106.7	\$1,562.9
LNSPAVE	-	0.208	0.287	0.430
PCY	+	\$15,523	\$14,694	\$16,734
IMITATE	+	5.83	6.71	6.33
INETADPT	+	63.48	58.77	62.87
BHCAVE	+	0.780	0.867	0.599
ASST90	+	\$579.2	\$42.6	\$324.9
DEPINST	-	0.319	0.164	0.294
POPDEN	-	95.7	39.2	470.4
AGEAVE	-	34.91	80.18	57.46

Estimation strategy and robustness checks

- Assets and deposits to measure size
- OLS on separate structural equations
- Structural estimation
 - Instrumental variables
 - Random effects model using GLS
- Robust standard errors for OLS and IV