

Smart Grid:

Implications and Opportunities for Clean Energy and Greenhouse Gas Emissions Reductions

April 29, 2010

Stacy Angel
Climate Protection Partnerships Division
Office of Atmospheric Programs
U.S. Environmental Protection Agency

Why Look at Smart Grid?

- Potential enabler for greater use of clean energy
- Early studies suggest 2-12% greenhouse gas emissions reductions in electricity sector by 2030
- 2007 Energy Independence and Security Act recognizes a smart grid as characterized by:
 - Increased use of digital information & controls to improve reliability, security, efficiency of the grid;
 - Increased use of distributed generation & renewable energy, demand response, energy efficiency;
 - Use of smart technologies & appliances (like meters, distribution automation), storage, information to consumers
 - Development of interoperability standards for device to grid communication
 - Lowering of barriers to adopting smart grid

Smart Grid Technology Overview

ELECTRICITY GRID

CONNECTIONS

CUSTOMERS

- Transmission and distribution system sensors and monitoring
- Optimized voltage control
- Storage

- Advanced meter infrastructure
- Energy data management

- Home area networks, energy monitors
- Communicating programmable thermostats
- Grid-connected appliances, solar PV

- Advanced building diagnostics
- Grid-connected building controls

Plant optimization software

Communications Backbone

Grid-connected controls and equipment

 Grid-connected electric vehicles, charging systems

Smart Grid & GHG Emissions Reductions

- SG has potential to reduce GHGs by deploying communications and infrastructure technology which may:
 - Potential to enable additional end-use energy efficiency by providing information, affecting behavior
 - Help maintain reliability with high levels of renewable generation (>20-25%)
 - Reduce losses across electric transmission and distribution
- Smart grid does not directly reduce emissions
 - Highly dependent on how technology used
 - Complementary policies can help realize environmental benefits

Early Estimates of Smart Grid-Enabled Electric Sector Energy/CO2 Savings in 2030

ELECTRICITY GRID —— CONNECTIONS

- 2% from distribution system efficiency
- <0.1% from supporting more wind and solar generation
 - 5% if reinvest in demand response/ storage instead of power plants with renewables

- 1% from enhanced EM&V of EE programs
 - 0.5% if reinvest saved M&V costs into additional efficiency programs

- 3% from consumer response to information
 - 3% from diagnostics in homes and small/medium buildings

 <0.1% from using more efficient generation due to energy use changes

 3% from supporting electric vehicles

What is the *Net* CO2 Impact?

Potential CO₂ Increases from More Electricity Use

- Smart grid technologies (networking equipment, meters, computing, etc)
- Data center load
- Electric vehicles, plug-in hybrid electric vehicles

Potential CO₂ Reductions from Electric Grid Changes

- Reduction in informational barriers to EE in buildings
- Electric vehicle charging from low/no GHG generation
- Reduced T&D line losses
- Greater use of renewable energy (RE), combined heat and power (CHP), and clean demand response
 - Grid support without fossil fuel combustion*

^{*} Electric grid operators manage small fluctuations in power flow to maintain reliability. Such grid support services are often provided by coal-fired power plants. Use of clean demand response or storage is also being explored. 6

Savings Comparison: Smart Grid vs. Established Energy Efficiency Options

- 2-12% of electricity sector usage may be avoided with a smart grid by 2030.*
 - Technical potential estimate
 - Less than 1/3 of U.S. energy efficiency technical potential
- Economic efficiency potential estimates range from 11-24% of total electricity consumption by 2020.**
 - Savings from administered efficiency programs, codes, standards
 - Comparable economic potential for smart grid-enabled energy savings not found

^{*} EPRI's The Green Grid (2009) and PNL The Smart Grid: An Estimation of the Energy and CO2 Benefits (2010)

^{**} McKinsey: Unlocking Energy Efficiency in the U.S. Economy (July 2009) and EPRI: Assessment of Achievable Potential from Energy Efficiency and Demand Response (Jan. 2009)

Policy Considerations To Enable CO2 Reductions from Smart Grid Deployments

- Are energy and carbon savings goals established?
- Do customers have access to their energy usage?
- Are energy efficiency programs offered?
- Do electricity rates motivate customer savings?
- How much will it cost a clean distributed generator to interconnect with the grid?
- Will energy and emissions savings be measured?
- Who is informing pilot and program design?
- How will the smart grid deployment support other clean energy activities?
- Can greater granularity of energy information inform energy and air planning?

For more information, see: Regulator Assistance Project Issuesletter, "Smart Grid or Smart Policies: Which Comes First?" (July 2009) and Smart Grid Stakeholder Roundtable, "Perspectives for Utilities and Others Deploying Smart Grids" (Sept. 2009).

Additional Environmental Considerations

- Can electricity, water and natural gas technologies be integrated for additional resource efficiencies?
- Are there local air quality affects, such as increased emissions from onsite diesel generators?
- Can electronics waste be recycled? Will new equipment be upgradeable?
- Is there an affect on land use, such as from clean distributed generation?

Contact Information

Stacy Angel

Member, Federal Smart Grid Task Force

U.S. EPA's Climate Protection Partnership Division

202-343-9606 angel.stacy@epa.gov www.epa.gov/cleanenergy