
NERSC Overview

Richard Gerber
NERSC User Services

EETD Seminar
June 22, 2011

•  NERSC’s mission is to provide computing and storage
resources for energy-related research and engineering
•  Broad support for fusion, materials, chemistry research

–  Hydrogen storage, artificial photosynthesis, solar energy storage,
wind farm design, efficient combustion, understanding LED droop

•  Energy efficiency research is an important part of this
picture

–  If there is a place for HPC in EETD, NERSC is capable and eager
to help

•  If you remain tied to single-threaded serial computing, you
are going to be quickly left behind

–  Flops are cheap, so use them
–  Cost per Gflop: $1.1 Trillion in 1960, $15 M in 1984, $30,000 in
1997, $600 in 2003, $0.42 in 2007, $0.13 in 2009

EETD and NERSC

3

Revolution in Processors

•  Chip density is continuing increase ~2x every 2 years
•  Clock speed is not
•  Number of processor cores may double instead
•  Power is under control, no longer growing

4

Moore’s Law reinterpreted
•  Number of cores per chip will double every two

years
•  Clock speed will not increase (possibly

decrease)
•  Need to deal with systems with millions of

concurrent threads
•  Need to deal with inter-chip parallelism as well

as intra-chip parallelism
•  Your take-away:

•  Future performance increases in computing
are going to come from exploiting
parallelism in applications

Why NERSC?

•  NERSC’s emphasis is on its users
– Helping scientists and engineers be successful

•  User-oriented systems and services
–  Sets NERSC apart from other centers

•  Help Desk / Consulting
–  Immediate access to consultants (7 Ph.Ds)

•  User group (NUG) has tremendous influence
– Monthly teleconferences & yearly meetings

•  Requirement-gathering workshops with scientists
•  Agile response to special requests from users

Expert Services

•  Expert services
–  Updated OS, software
–  NERSC does system administration, 24x7
–  Consulting and advice
–  Emphasis on helping users being successful
–  Reliable systems; auto backups for disaster recovery

•  Free access to vast amounts of computing, software,
storage

–  Play “what if” scenarios
–  Pre-compute a large library of configurations at high
resolution/level of detail (or whatever)
–  Add physics and/or more parameters
–  Get compute-intensive results quickly

Advantages (to you) of NERSC

•  NERSC computers are shared
–  Not generally interactive
–  “Long” turnaround time: hours to days to a week
–  Per user, per system limits on # of active jobs

•  You must fill out an application for new projects
–  Startup projects are easy to get

•  You have to learn how to use the systems
–  You are busy already

•  You will probably have to change your code
and/or your workflow to take best advantage of
NERSC resources

Disadvantages (to you)

What is NERSC?

10!

NERSC Facility Leads DOE in
Scientific Computing Productivity

NERSC computing for science
• 4000 users, 500 projects
• From 48 states; 65% from universities
• Hundreds of users each day
• 1500 publications per year
Systems designed for science
• 1.3 PF Petaflop Cray: Hopper

- 3rd fastest computer in US
- Fastest open Cray XE6
- Additional .5 PF in Franklin and smaller

clusters

!"#$%
&'%

()$%
*+'%

()"%
,*'%

-)"%
*+'%

.)/%
*&'%

0/%
**'%

2010 Allocations

11

• NERSC serves a large population
– About 4,000 users
–  400 projects
–  500 codes

• Unique resources
– Expert consulting and other services
– High end computing systems
– High end storage systems
– Interface to high speed networking

• Science-driven services
– Machines procured competitively using

application benchmarks from DOE/SC
– Allocations controlled by DOE/SC Program

Offices to couple with funding decisions

NERSC is the Production Facility
for DOE Office of Science

12

NERSC Workload

NERSC 2011 Allocations
By Science Area

13

DOE Office of Advanced Scientific
Computing Facilities

“Leadership Facilities” at
Oak Ridge & Argonne

•  100s users 10s projects
•  Allocations:

–  60% ANL/ORNL managed
INCITE process

–  30% ACSR Leadership
Computing Challenge*

–  10% LCF reserve

•  Science limited to largest scale;
no commitment to DOE/SC
offices

•  Machines procured through
partnerships

NERSC at LBNL
•  1000s users,100s projects
•  Allocations:

–  80% DOE program managers

–  10% ASCR Leadership
Computing Challenge

–  10% NERSC reserve

•  Science includes all of DOE
Office of Science

•  Machines procured
competitively

High Performance Computing
Systems

•  Most HPC systems are “distributed
memory”

–  Many nodes, each with its own local memory
and distinct memory space
–  Nodes communicate over a specialized high-
speed, low-latency network
–  SPMD (Single Program Multiple Data) is the
most common model

•  Multiple copies of a single program (tasks) execute
on different processors, but compute with different data
•  Explicit programming methods (MPI) are used to
move data among different tasks

Distributed Memory Systems

16

NERSC Systems
Large-Scale Computing Systems
Hopper (NERSC-6): Cray XE6
 6,384 compute nodes, 153,216 cores
 110 Tflop/s on applications; 1.27 Pflop/s peak

Franklin (NERSC-5): Cray XT4
9,532 compute nodes; 38,128 cores
~25 Tflop/s on applications; 356 Tflop/s peak

HPSS Archival Storage
 40 PB capacity
 4 Tape libraries
 150 TB disk cache

NERSC Global
 File system (NGF)
Uses IBM’s GPFS
 1.5 PB capacity
 5.5 GB/s of bandwidth

Clusters
 140 Tflops total
Carver
 IBM iDataplex cluster
PDSF (HEP/NP)
 ~1K core cluster
Magellan Cloud testbed
 IBM iDataplex cluster
GenePool (JGI)

~5K core cluster

Analytics

Euclid
512 GB shared mem
Dirac
 GPU testbed
 48 nodes

17

•  Hopper
–  Hopper is NERSC’s flagship computer for
running high-performance parallel scientific
codes.

•  Franklin
–  Franklin, an earlier-generation Cray computer,
augments the Hopper system.

•  Carver
–  Carver provides a generic full Linux
environment for codes that need operating
system features that are not available on the Cray
systems or don't demand massive parallelism.

Major Compute Systems

1.2 GB memory / core (2.5 GB /
core on "fat" nodes) for
applications

/scratch disk quota of 5 TB
2 PB of /scratch disk
Choice of full Linux operating

system or optimized Linux
OS (Cray Linux)

PGI, Cray, Pathscale, GNU
compilers

153,408 cores, 6,392 nodes
"Gemini” interconnect
2 12-core AMD 'MagnyCours'

2.1 GHz processors per
node

24 processor cores per node
32 GB of memory per node

(384 "fat" nodes with 64 GB)
216 TB of aggregate memory

18

Hopper - Cray XE6

Use Hopper for your biggest, most computationally challenging problems.

38,288 compute cores
9,572 compute nodes
One quad-core AMD 2.3 GHz

Opteron processors
(Budapest) per node

4 processor cores per node
8 GB of memory per node
78 TB of aggregate memory
1.8 GB memory / core for

applications
/scratch disk default quota of

750 GB

Light-weight Cray Linux
operating system

No runtime dynamic, shared-
object libs

PGI, Cray, Pathscale, GNU
compilers

19

Franklin - Cray XT4

Use Franklin for all your computing jobs, except those
that need a full Linux operating system.

3,200 compute cores
400 compute nodes
2 quad-core Intel Nehalem

2.67 GHz processors per
node

8 processor cores per node
24 GB of memory per node (48

GB on 80 "fat" nodes)
2.5 GB / core for applications

(5.5 GB / core on "fat"
nodes)

InfiniBand 4X QDR

NERSC global /scratch
directory quota of 20 TB

Full Linux operating system
PGI, GNU, Intel compilers

20

Carver - IBM iDataPlex

Use Carver for jobs that use up to 512 cores, need a fast
CPU, need a standard Linux configuration, or need up to
48 GB of memory on a node.

Dedicated to HPC Cloud
Computing research

4,480 compute cores

560 compute nodes

Two quad-core Intel Nehalem
2.67 GHz processors per
node

8 processor cores per node

24 GB of memory per node
(48 GB on 160 "fat" nodes)

2.5 GB / core for applications
(5.5 GB / core on "fat"
nodes)

NERSC global /scratch
directory quota of 20 TB

Full Linux operating system
PGI, GNU, Intel compilers

21

Magellan - IBM IDataPlex

Using NERSC

23

•  You must have an allocation of time to run jobs at NERSC
(be a member of a “repo”)

•  Project PIs apply through the ERCAP process

•  Computer time and storage allocations are awarded by
DOE Program Offices

•  Most allocations are awarded in the fall
–  Allocation year starts in January

–  2011: Additional awards made for May 1 start of Hopper
production service

–  Small startup allocations are awarded throughout the year

–  Additional time available through NISE and ALCC

Allocations

•  Most jobs are parallel, using 10s to 100,000+ cores.

•  Mostly run as batch scripts; limited interactive access

•  Many use custom codes; others use pre-installed
applications

•  Typically run a few hours, up to 48. Longer runs can be
accommodated if needed and logistically possible.

•  Many jobs “package” lower concurrency runs into one job
–  Even many “serial jobs”

–  Load balance may be an issue

Jobs at NERSC

System Architecture

•  A “node” is a (physical) collection of
CPUs, memory, and interfaces to other
nodes and devices.

–  Single memory address space
–  Memory access “on-node” is significantly
faster than “off-node” memory access
–  Often called an “SMP node” for “Shared
Memory Processing”

•  Not necessarily “symmetric” memory access as
in “Symmetric Multi-Processing”

HPC Node

27

•  Each supercomputer has 3 types of nodes that you will
use directly

–  Login nodes
–  Compute nodes
–  “MOM” nodes

•  Login nodes
–  Edit files, compile codes, run UNIX commands
–  Submit batch jobs
–  Run short, small utilities and applications

•  Compute nodes
–  Execute your application; dedicated to your job
–  No direct login access

•  “MOM” nodes
–  Execute your batch script commands
–  Carver: “head” compute node; Cray: shared “service” node

Login Nodes and Compute Nodes

Cray Systems

MOM
 Node

Compute
 Node

Compute
 Node

Compute
 Node

MOM
 Node

Compute
 Node

Compute
 Node etc….

No
local
disk

Login
 Node

Login
 Node

Login
 Node etc….

home

Login
 Node

Login
 Node

scratch

Login
 Node etc….

project HPSS

Full Linux OS – Shared Access CNL (no logins) – Dedicated

gscratch

Carver / Magellan / Dirac

MOM
& Compute

Compute
 Node

Compute
 Node

Compute
 Node

MOM
 & Compute

Compute
 Node

Compute
 Node etc….

No
local
disk

Login
 Node

Login
 Node

Login
 Node etc….

home

Login
 Node

Login
 Node

Login
 Node etc….

project HPSS

Full Linux OS – Shared Full Linux (no logins) – Dedicated

gscratch

Parallel Models

•  SPMD
–  Single Program, Multiple Data
–  Most common way to run codes at

NERSC
–  N copies of your program/application/

code execute at the same time
–  Each instance does calculations involving

a portion of a large data set
–  Temperature in a house grid example

30

SPMD Execution Model

•  Each code instance executes on one
compute “core”

•  Each instance holds its data in local
private memory

•  If other instances need data or the
results of calculations owned by
another instance, the two must “pass
the data (message)” to where it is
needed

•  Library of functions (MPI)

31

•  A single executable creates multiple
process threads of execution that all have
access to a shared pool of memory
•  Typically one thread per compute core
•  Number of threads limited to the
number of cores on a node
•  Computational work distributed to
threads by programmer or maybe compiler

Shared-Memory Threaded
Parallelism

•  Run multiple instances
–  Communicate via MPI function calls

•  Multiple threads per instance
•  Often 1 MPI task and cores_per_node threads
per task
•  Architecture may dictate best ratio of threads/
MPI task

•  Now two layers of parallelism

Hybrid Model

•  NVIDIA Tesla “gaming chip”
–  515 Flops
–  vs. ~ 50 Gflops on AMD hex-core on Hopper
–  448 lightweight cores w/ private memory
–  Currently implemented as a “coprocessor” on a PCI card

•  Program with CUDA
•  “Disaster” from a programming perspective

–  Third layer of parallelism: MPI+Threads+CUDA
–  You do the memory management between GPU and CPU
–  A new API to learn
–  Few and immature programming tools
–  Future of CUDA and “coprocessor” paradigm uncertain at best

•  Not all codes will benefit from GPU acceleration
•  There is hope for tighter integration of CPU and GPU and
better programming models

GPUs

Why Do You Care About
Parallelism?

35

36

Moore’s Law

2X transistors/Chip Every
1.5 years
Called “Moore’s Law”

Moore’s Law

Microprocessors have
become smaller, denser,
and more powerful.

Gordon Moore (co-founder of
Intel) predicted in 1965 that the
transistor density of
semiconductor chips would
double roughly every 18
months.

Slide source: Jack Dongarra

37

Power Density Limits Serial
Performance

4004
8008

8080
8085

8086

286
386

486
Pentium®

P6

1

10

100

1000

10000

1970 1980 1990 2000 2010
Year

Po
w

er
 D

en
si

ty
 (W

/c
m

2)

Hot Plate

Nuclear

Reactor

Rocket
Nozzle

Sun’s
Surface Source: Patrick Gelsinger,

Shenkar Bokar, Intel!

•  High performance serial processors waste power
-  Speculation, dynamic dependence checking, etc. burn power
-  Implicit parallelism discovery

•  More transistors, but not faster serial processors

•  Concurrent systems are
more power efficient
–  Dynamic power is

proportional to V2fC
–  Increasing frequency (f)

also increases supply
voltage (V) ! cubic
effect

–  Increasing cores
increases capacitance
(C) but only linearly

–  Save power by lowering
clock speed

38

Revolution in Processors

•  Chip density is continuing increase ~2x every 2 years
•  Clock speed is not
•  Number of processor cores may double instead
•  Power is under control, no longer growing

39

Moore’s Law reinterpreted
•  Number of cores per chip will double every two

years
•  Clock speed will not increase (possibly

decrease)
•  Need to deal with systems with millions of

concurrent threads
•  Need to deal with inter-chip parallelism as well

as intra-chip parallelism
•  Your take-away:

•  Future performance increases in computing
are going to come from exploiting
parallelism in applications

40

CPU Clock Frequency

41

Year

M
IP

S/
C

PU
 c

lo
ck

 s
pe

ed

100

101

102

103

1980 1985 1990 1995 2000 2005 2010

