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•  NERSC’s mission is to provide computing and storage 
resources for energy-related research and engineering 
•  Broad support for fusion, materials, chemistry research 

–  Hydrogen storage, artificial photosynthesis, solar energy storage, 
wind farm design, efficient combustion, understanding LED droop 

•  Energy efficiency research is an important part of this 
picture 

–  If there is a place for HPC in EETD, NERSC is capable and eager 
to help 

•  If you remain tied to single-threaded serial computing, you 
are going to be quickly left behind 

–  Flops are cheap, so use them 
–  Cost per Gflop: $1.1 Trillion in 1960, $15 M in 1984, $30,000 in 
1997, $600 in 2003, $0.42 in 2007, $0.13 in 2009 

EETD and NERSC 
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Revolution in Processors 

•  Chip density is continuing increase ~2x every 2 years 
•  Clock speed is not 
•  Number of processor cores may double instead 
•  Power is under control, no longer growing 
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Moore’s Law reinterpreted 
•  Number of cores per chip will double every two 

years 
•  Clock speed will not increase (possibly 

decrease) 
•  Need to deal with systems with millions of 

concurrent threads 
•  Need to deal with inter-chip parallelism as well 

as intra-chip parallelism 
•  Your take-away: 

•  Future performance increases in computing 
are going to come from exploiting 
parallelism in applications 



Why NERSC? 



•  NERSC’s emphasis is on its users 
– Helping scientists and engineers be successful 

•  User-oriented systems and services 
–  Sets NERSC apart from other centers 

•  Help Desk / Consulting 
–  Immediate access to consultants (7 Ph.Ds)  

•  User group (NUG) has tremendous influence 
– Monthly teleconferences & yearly meetings 

•  Requirement-gathering workshops with scientists  
•  Agile response to special requests from users 

Expert Services 



•  Expert services 
–  Updated OS, software 
–  NERSC does system administration, 24x7 
–  Consulting and advice 
–  Emphasis on helping users being successful 
–  Reliable systems; auto backups for disaster recovery 

•  Free access to vast amounts of computing, software, 
storage 

–  Play “what if” scenarios 
–  Pre-compute a large library of configurations at high 
resolution/level of detail (or whatever) 
–  Add physics and/or more parameters 
–  Get compute-intensive results quickly 

Advantages (to you) of NERSC 



•  NERSC computers are shared 
–  Not generally interactive 
–  “Long” turnaround time: hours to days to a week 
–  Per user, per system limits on # of active jobs 

•  You must fill out an application for new projects 
–  Startup projects are easy to get 

•  You have to learn how to use the systems 
–  You are busy already 

•  You will probably have to change your code 
and/or your workflow to take best advantage of 
NERSC resources 

Disadvantages (to you) 



What is NERSC? 
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NERSC Facility Leads DOE in 
Scientific Computing Productivity  

NERSC computing for science 
• 4000 users, 500 projects 
• From 48 states; 65% from universities  
• Hundreds of users each day 
• 1500 publications per year 
Systems designed for science 
• 1.3 PF Petaflop Cray: Hopper 

- 3rd fastest computer in US  
- Fastest open Cray XE6 
- Additional .5 PF in Franklin and smaller 

clusters  
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• NERSC serves a large population 
– About 4,000 users 
–  400 projects 
–  500 codes 

• Unique resources 
– Expert consulting and other services 
– High end computing systems 
– High end storage systems 
– Interface to high speed networking 

• Science-driven services 
– Machines procured competitively using 

application benchmarks from DOE/SC 
– Allocations controlled by DOE/SC Program 

Offices to couple with funding decisions 

NERSC is the Production Facility 
for DOE Office of Science 
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NERSC Workload 

NERSC 2011 Allocations  
By Science Area 
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DOE Office of Advanced Scientific 
Computing Facilities 

“Leadership Facilities” at 
Oak Ridge & Argonne 

•  100s users 10s projects 
•  Allocations: 

–  60% ANL/ORNL managed 
INCITE process 

–  30% ACSR Leadership 
Computing Challenge* 

–  10% LCF reserve 

•  Science limited to largest scale; 
no commitment to DOE/SC 
offices 

•  Machines procured through 
partnerships 

NERSC at LBNL 
•  1000s users,100s projects 
•  Allocations: 

–  80% DOE program managers 

–  10% ASCR Leadership 
Computing Challenge 

–  10% NERSC reserve 

•  Science includes all of DOE 
Office of Science 

•  Machines procured 
competitively 



High Performance Computing 
Systems 



•  Most HPC systems are “distributed 
memory” 

–  Many nodes, each with its own local memory 
and distinct memory space 
–  Nodes communicate over a specialized high-
speed, low-latency network 
–  SPMD (Single Program Multiple Data) is the 
most common model 

•  Multiple copies of a single program (tasks) execute 
on different processors, but compute with different data 
•  Explicit programming methods (MPI) are used to 
move data among different tasks  

Distributed Memory Systems 
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NERSC Systems 
Large-Scale Computing Systems 
Hopper (NERSC-6): Cray XE6  
   6,384 compute nodes, 153,216 cores 
   110 Tflop/s on applications; 1.27 Pflop/s peak  

Franklin (NERSC-5): Cray XT4 
9,532 compute nodes; 38,128 cores 
~25 Tflop/s on applications; 356 Tflop/s peak  

HPSS Archival Storage 
   40 PB capacity 
   4 Tape libraries 
   150 TB disk cache 

NERSC Global  
  File system (NGF) 
Uses IBM’s GPFS 
   1.5 PB capacity 
   5.5 GB/s of bandwidth 

Clusters 
  140 Tflops total  
Carver 
   IBM iDataplex cluster 
PDSF (HEP/NP) 
   ~1K core cluster 
Magellan Cloud testbed 
  IBM iDataplex cluster 
GenePool (JGI) 

~5K core cluster 

Analytics 

Euclid  
512 GB shared mem 
Dirac 
 GPU testbed  
 48 nodes 
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•  Hopper 
–  Hopper is NERSC’s flagship computer for 
running high-performance parallel scientific 
codes. 

•  Franklin 
–  Franklin, an earlier-generation Cray computer, 
augments the Hopper system. 

•  Carver 
–  Carver provides a generic full Linux 
environment for codes that need operating 
system features that are not available on the Cray 
systems or don't demand massive parallelism. 

Major Compute Systems 



1.2 GB memory / core (2.5 GB / 
core on "fat" nodes) for 
applications 

/scratch disk quota of 5 TB 
2 PB of /scratch disk 
Choice of full Linux operating 

system or optimized Linux 
OS (Cray Linux) 

PGI, Cray, Pathscale, GNU 
compilers  

153,408 cores, 6,392 nodes 
"Gemini” interconnect 
2 12-core AMD 'MagnyCours' 

2.1 GHz processors per 
node 

24 processor cores per node 
32 GB of memory per node 

(384 "fat" nodes with 64 GB) 
216 TB of aggregate memory 
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Hopper - Cray XE6 

Use Hopper for your biggest, most computationally challenging problems.   



38,288 compute cores 
9,572 compute nodes 
One quad-core AMD 2.3 GHz 

Opteron processors 
(Budapest) per node 

4 processor cores per node 
8 GB of memory per node 
78 TB of aggregate memory 
1.8 GB memory / core for 

applications 
/scratch disk default quota of 

750 GB 

Light-weight Cray Linux 
operating system 

No runtime dynamic, shared-
object libs 

PGI, Cray, Pathscale, GNU 
compilers 
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Franklin - Cray XT4 

Use Franklin for all your computing jobs, except those 
that need a full Linux operating system.  



3,200 compute cores 
400 compute nodes 
2 quad-core Intel Nehalem 

2.67 GHz processors per 
node 

8 processor cores per node 
24 GB of memory per node (48 

GB on 80 "fat" nodes) 
2.5 GB / core for applications 

(5.5 GB / core on "fat" 
nodes) 

InfiniBand 4X QDR 

NERSC global /scratch 
directory quota of 20 TB 

Full Linux operating system 
PGI, GNU, Intel compilers 
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Carver - IBM iDataPlex  

Use Carver for jobs that use up to 512 cores, need a fast 
CPU, need a standard Linux configuration, or need up to 
48 GB of memory on a node. 



Dedicated to HPC Cloud 
Computing research 

4,480 compute cores 

560 compute nodes 

Two quad-core Intel Nehalem 
2.67 GHz processors per 
node 

8 processor cores per node 

24 GB of memory per node 
(48 GB on 160 "fat" nodes) 

2.5 GB / core for applications 
(5.5 GB / core on "fat" 
nodes) 

NERSC global /scratch 
directory quota of 20 TB 

Full Linux operating system 
PGI, GNU, Intel compilers  
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Magellan - IBM IDataPlex  



Using NERSC 
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•  You must have an allocation of time to run jobs at NERSC 
(be a member of a “repo”) 

•  Project PIs apply through the ERCAP process 

•  Computer time and storage allocations are awarded by 
DOE Program Offices 

•  Most allocations are awarded in the fall 
–  Allocation year starts in January 

–  2011: Additional awards made for May 1 start of Hopper 
production service 

–  Small startup allocations are awarded throughout the year 

–  Additional time available through NISE and ALCC 

Allocations 



•  Most jobs are parallel, using 10s to 100,000+ cores. 

•  Mostly run as batch scripts; limited interactive access  

•  Many use custom codes; others use pre-installed 
applications 

•  Typically run a few hours, up to 48. Longer runs can be 
accommodated if needed and logistically possible. 

•  Many jobs “package” lower concurrency runs into one job 
–  Even many “serial jobs” 

–  Load balance may be an issue 

Jobs at NERSC 



System Architecture 



•  A “node” is a (physical) collection of 
CPUs, memory, and interfaces to other 
nodes and devices. 

–  Single memory address space 
–  Memory access “on-node” is significantly 
faster than “off-node” memory access 
–  Often called an “SMP node” for “Shared 
Memory Processing”   

•  Not necessarily “symmetric” memory access as 
in “Symmetric Multi-Processing” 

HPC Node 
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•  Each supercomputer has 3 types of nodes that you will 
use directly 

–  Login nodes 
–  Compute nodes 
–  “MOM” nodes 

•  Login nodes  
–  Edit files, compile codes, run UNIX commands 
–  Submit batch jobs 
–  Run short, small utilities and applications 

•  Compute nodes 
–  Execute your application; dedicated to your job 
–  No direct login access 

•  “MOM” nodes 
–  Execute your batch script commands 
–  Carver: “head” compute node; Cray: shared “service” node 

Login Nodes and Compute Nodes 



Cray Systems 
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Carver / Magellan / Dirac 
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Parallel Models 

•  SPMD 
–  Single Program, Multiple Data 
–  Most common way to run codes at 

NERSC 
–  N copies of your program/application/

code execute at the same time 
–  Each instance does calculations involving 

a portion of a large data set 
–  Temperature in a house grid example 

30 



SPMD Execution Model 

•  Each code instance executes on one 
compute “core” 

•  Each instance holds its data in local 
private memory 

•  If other instances need data or the 
results of calculations owned by 
another instance, the two must “pass 
the data (message)” to where it is 
needed 

•  Library of functions (MPI)  

31 



•  A single executable creates multiple 
process threads of execution that all have 
access to a shared pool of memory 
•  Typically one thread per compute core 
•  Number of threads limited to the 
number of cores on a node 
•  Computational work distributed to 
threads by programmer or maybe compiler 

Shared-Memory Threaded 
Parallelism 



•  Run multiple instances 
–  Communicate via MPI function calls 

•  Multiple threads per instance 
•  Often 1 MPI task and cores_per_node threads 
per task 
•  Architecture may dictate best ratio of threads/
MPI task 

•  Now two layers of parallelism 

Hybrid Model 



•  NVIDIA Tesla “gaming chip” 
–  515 Flops 
–  vs. ~ 50 Gflops on AMD hex-core on Hopper 
–  448 lightweight cores w/ private memory 
–  Currently implemented as a “coprocessor” on a PCI card 

•  Program with CUDA 
•  “Disaster” from a programming perspective 

–  Third layer of parallelism: MPI+Threads+CUDA 
–  You do the memory management between GPU and CPU 
–  A new API to learn 
–  Few and immature programming tools 
–  Future of CUDA and “coprocessor” paradigm uncertain at best 

•  Not all codes will benefit from GPU acceleration 
•  There is hope for tighter integration of CPU and GPU and 
better programming models 

GPUs 



Why Do You Care About 
Parallelism? 

35 
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Moore’s Law 

2X transistors/Chip Every 
1.5 years 
Called “Moore’s Law” 

Moore’s Law 

Microprocessors have 
become smaller, denser, 
and more powerful. 

Gordon Moore (co-founder of 
Intel) predicted in 1965 that the 
transistor density of 
semiconductor chips would 
double roughly every 18 
months.  

Slide source: Jack Dongarra 
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Power Density Limits Serial 
Performance 
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•  High performance serial processors waste power 
-  Speculation, dynamic dependence checking, etc. burn power 
-  Implicit parallelism discovery 

•  More transistors, but not faster serial processors 

•  Concurrent systems are 
more power efficient  
–  Dynamic power is 

proportional to V2fC 
–  Increasing frequency (f) 

also increases supply 
voltage (V) !  cubic 
effect 

–  Increasing cores 
increases capacitance 
(C) but only linearly 

–  Save power by lowering 
clock speed 
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Revolution in Processors 

•  Chip density is continuing increase ~2x every 2 years 
•  Clock speed is not 
•  Number of processor cores may double instead 
•  Power is under control, no longer growing 
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Moore’s Law reinterpreted 
•  Number of cores per chip will double every two 

years 
•  Clock speed will not increase (possibly 

decrease) 
•  Need to deal with systems with millions of 

concurrent threads 
•  Need to deal with inter-chip parallelism as well 

as intra-chip parallelism 
•  Your take-away: 

•  Future performance increases in computing 
are going to come from exploiting 
parallelism in applications 
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CPU Clock Frequency 
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