
Introduction to Computing at NERSC
Richard Gerber

NERSC User Services

NERSC User Group Training
October 18, 2010

NERSC Oakland Scientific Facility

Outline

•  What is NERSC?
– Overview
– Computing Resources
– Storage Resources

•  Using NERSC
– How to Get Help
– Accounts & Allocations
– Connecting to NERSC
– Computing Environment
– Compiling Code
– Running Jobs

2

OVERVIEW
What is NERSC?

3

4

NERSC Mission

NERSC's mission is to accelerate the
pace of scientific discovery by providing
high-performance computing,
information, data, and communications
services to the DOE Office of Science
community.

4

5

NERSC is the Production Facility
for DOE Office of Science

• NERSC serves a diverse
workload

3,000 users, 400 projects,
500 codes

• Allocations controlled
primarily by DOE

–  80% Annual Production awards:
•  From 10K hour to 5M hour
•  Proposal-based; DOE chooses

–  10% DOE ASCR Leadership
Computing Challenge

–  10% NERSC reserve (“NISE”)

5

NERSC User Demographics

6

7

Science View of Workload

NERSC 2008 Allocations
By Science Area

COMPUTING RESOURCES
What is NERSC?

8

9

NERSC Systems for Science

9

Large-Scale Computing System
Franklin (NERSC-5): Cray XT4

•  9,532 compute nodes; 38,128 cores
•  ~25 Tflop/s on applications; 356 Tflop/s peak

Hopper (NERSC-6): Cray XT
•  Phase 1: Cray XT5, 668 nodes, 5344 cores
•  Phase 2: > 1 Pflop/s peak (late 2010 delivery)

HPSS Archival Storage
•  40 PB capacity
•  4 Tape libraries
•  150 TB disk cache

NERSC Global
 Filesystem (NGF)
Uses IBM’s GPFS
1.5 PB; 5.5 GB/s

Clusters
 105 Tflops
 combined
Carver

•  IBM iDataplex cluster
PDSF (HEP/NP)

•  Linux cluster (~1K cores)
Cloud testbed

•  IBM iDataplex cluster

Analytics

•  Euclid (512 GB
shared
memory)

•  GPU testbed
(48 nodes)

Hopper (Phase II) - Cray XE6

•  153,408 cores, 6,392 nodes
•  "Gemini” interconnect
•  2 12-core AMD 'MagnyCours'

2.1 GHz processors per node
•  24 processor cores per node
•  32 GB of memory per node

(384 "fat" nodes with 64 GB)
•  216 TB of aggregate memory

•  1.2 GB memory / core (2.5
GB / core on "fat" nodes) for
applications

•  /scratch disk quota of 2 TB
•  2 PB of /scratch disk
•  Choice of full Linux operating

system or optimized Linux OS
(Cray Linux)

•  PGI, Cray, Pathscale, GNU
compilers

10

Use Hopper II for your biggest, most computationally challenging problems.

Hopper (Phase I) – Cray XT5

•  5,312 compute cores
•  Cray Seastar interconnect
•  664 compute nodes
•  Two quad-core AMD 2.4 GHz

Opteron processors (Istanbul)
per node

•  8 processor cores per node
•  16 GB of memory per node
•  10.6 TB of aggregate memory
•  1.8 GB memory / core for

applications

•  2 PB of /scratch disk
•  Linux operating system (Cray

Linux)
•  PGI, Cray, Pathscale, GNU

compilers
•  /scratch disk quota of 2 TB

11

Use Hopper for jobs of moderate parallel concurrency (512-1,024
cores) and for codes developed to run on Cray systems.

Franklin - Cray XT4

•  38,288 compute cores
•  9,572 compute nodes
•  One quad-core AMD 2.3

GHz Opteron processors
(Budapest) per node

•  4 processor cores per node
•  8 GB of memory per node
•  78 TB of aggregate memory
•  1.8 GB memory / core for

applications
•  /scratch disk default quota

of 750 GB

•  Light-weight Cray Linux
operating system

•  No runtime dynamic,
shared-object libs

•  PGI, Cray, Pathscale, GNU
compilers

12

Use Franklin for all your computing jobs, except those that need a full
Linux operating system.

Carver - IBM iDataPlex

•  3,200 compute cores
•  400 compute nodes
•  Two quad-core Intel

Nehalem 2.67 GHz
processors per node

•  8 processor cores per node
•  24 GB of memory per node

(48 GB on 80 "fat" nodes)
•  2.5 GB / core for

applications (5.5 GB / core
on "fat" nodes)

•  InfiniBand 4X QDR

•  NERSC global /scratch
directory quota of 20 TB

•  Full Linux operating system
•  PGI, GNU, Intel compilers

13

Use Carver for jobs using up to 512 cores, need a fast CPU, need a
standard Linux configuration, or need up to 48 GB of memory on a
node.

Magellan - IBM IDataPlex

•  Dedicated to HPC Cloud
Computing research

•  4,480 compute cores
•  560 compute nodes
•  Two quad-core Intel

Nehalem 2.67 GHz
processors per node

•  8 processor cores per node

•  24 GB of memory per node
(48 GB on 160 "fat" nodes)

•  2.5 GB / core for
applications (5.5 GB / corre
on "fat" nodes)

•  NERSC global /scratch
directory quota of 20 TB

•  Full Linux operating system
•  PGI, GNU, Intel compilers

14

PDSF

 PDSF is a special-purpose Linux cluster
used exclusively by High Energy Physics
and Nuclear Physics projects.

 You do not have access to PDSF unless
you are part of one of those projects.

 See NERSC consultants for more
information about PDSF.

15

STORAGE RESOURCES
What is NERSC?

16

Data Storage Types

•  “Spinning Disk”
–  Interactive access
–  I/O from compute jobs
– “Home”, “Project”, “Scratch”

•  Archival Storage
– Permanent, Long-Term Storage
– Tapes, fronted by disk cache
– “HPSS” (High Performance Storage

System)

17

Home Directory

•  When you log in you are in your "Home" directory.
•  The full UNIX pathname is stored in the

environment variable $HOME.
•  $HOME is a global file system

–  You see all the same directories and files when you
log in to any NERSC computer.

•  Your quota in $HOME is 40 GB and 500,000
inodes (files and directories).
–  Use “myquota” command to check your usage and

quota
•  Permanent storage, but no automatic user

backups

18

Scratch Directories

•  Each system has a large, high-performance ”scratch”
directory.

•  Each user has a personal directory referenced by $SCRATCH
(and maybe $SCRATCH2).

•  All I/O from your compute jobs should be directed to
$SCRATCH

•  Data in $SCRATCH is purged (12 weeks from last access)
•  Always save data you want to keep to HPSS (see below)
•  $SCRATCH is local on Franklin and Hopper, but Carver and

future systems will use a global file system.
•  Data in $SCRATCH is not backed up and could be lost if a file

system fails.

19

Project Directories

•  All NERSC systems mount the NERSC
global "Project" file system.

•  "Project directories” are created upon request
for projects (a group of researchers) to store
and share data.

•  The default quota in /project is 1 TB.
•  While data can be written and read from a

parallel job on all system, performance will
not be as good as on $SCRATCH.

•  Data in /project is not purged, but there are
no automatic user backups either.

20

Archival Storage (HPSS)

•  For permanent, archival storage
•  You transfer files to and from

HPSS using one of ftp, pftp, or the
HPSS hsi client.

•  You do not log in to HPSS using
your NERSC password directly.
You must generate a token in
NIM.

•  This token is placed in a file
named $HOME/.netrc or use a
long encrypted string as your
password.

•  An example token:
 machine archive.nersc.gov  

login fredflintstone  
password
02SYMz5aA3USZyYWdlabJlcgDC3LvjZZTCmT9p
L81Ln+zbgwyMEQ=="

•  Hostname: archive.nersc.gov
•  Almost 15 Petabyes of data stored
•  Data increasing by 1.7X per year
•  120 M files stored
•  100 TB disk cache
•  8 STK robots
•  44,000 tape slots
•  44 PB maximum capacity today
•  Average data xfer rate: 100 MB/sec

21

HPSS Data

22

USING NERSC

23

24

How to Get Help

http://www.nersc.gov

Technical questions, account support,
passwords, computer operations

1-800-666-3772 (or 1-510-486-8600)

Computer Operations = menu option 1 (24/7)

Account Support = menu option 2, accounts@nersc.gov

HPC Consulting = menu option 3, or consult@nersc.gov

Online Help Desk = http://help.nersc.gov/

ACCOUNTS & ALLOCATIONS
Using NERSC

25

Accounts

•  There are two types of "accounts" at NERSC. It is
important to differentiate between the two kinds.
1.  Your personal, private account

•  Associated with your "login" or "user name”
•  Identifies you to our systems and is used when logging into

NERSC systems and web services.

2.  An allocation account, or "repository” (aka “repo”)
•  Like a bank account you use to "pay" for computer time.
•  An individual user may belong to one or many repositories.

•  To apply for either type of account, see the
NERSC web site at http://www.nersc.gov/.

26

Allocations

•  You must have an allocation of time to run
jobs at NERSC (be a member of a “repo”)

•  Project PIs apply through the ERCAP
process

•  Computer time and storage allocations are
awarded by DOE

•  Most allocations are awarded in the fall
•  Allocation year starts in January
•  Small startup allocations are awarded

throughout the year
•  There is additional time available through

NISE and ALCC
27

Accounting Web Interface (NIM)

•  Log into the NERSC NIM web site at https://
nim.nersc.gov/ to manage your NERSC
accounts.

•  In NIM you can check your daily allocation
balances, change your password, run reports,
update your contact information, change your
login shell, etc.

28

CONNECTING TO NERSC
Using NERSC

29

Logins and Passwords
•  Your "user name" or "login name" is your unique identifier.

–  You will receive your user name from the NERSC Account
Support office when your account is created.

•  Each real person has a single password associated with their
login account.
–  As a new user, you must get your initial password by talking to

the NERSC Account Support office at 1-866-NERSC, menu
option 2.

–  You can change or reset your password at https://
nim.nersc.gov/ or by calling the Account Support Office during
business hours or Computer Operations 24x7.

•  If you repeatedly fail to type your correct password when
accessing a NERSC system, your account on that system will
be locked.
–  You can call 1-866-NERSC 24x7 or send email to

support@nersc.gov during business hours to get your account
unlocked.

30

Logging In

•  You connect to NERSC using "ssh" from UNIX-like
systems or by using an SSH-compatible application

•  Login in with your NERSC user name and NERSC
password (aka "NIM password" or "NERSC LDAP
password").

•  It is convenient to use the options -Y (forward X11
authentication) and -A (forward SSH credentials) so
you can transparently display X Windows applications
and authenticate when using SSH-based applications
on the destination host.

•  % ssh -A -Y -l user franklin.nersc.gov
•  Your can use grid-based tools (e.g. gridftp) also;

please ask the NERSC consultants for details.

31

COMPUTING ENVIRONMENT
Using NERSC

32

Computing Environment

•  When you log in to any NERSC computer (not HPSS), you are in
your global $HOME directory.

•  You initially land in the same place no matter which machine you
connect to: franklin, hopper, carver - they are all the same.

•  This means that if you have files or binary executables that are
specific to a certain system, you need to manage keeping them
separate.

•  Many people make subdirectories for each system in their home
directory. Here is a listing of my home directory.

 nid00163% ls
bassi/ datatran/ hopper/ silence/ turing/  
bin/ davinci/ jacquard/ software@ web@  
carver/ franklin/ project@ tesla/ www@  
common/ grace/ rohan/ training@ zwicky/ "

33

Shell Initialization Files

•  NERSC installs dot-files in your home
directory (e.g. .login, .profile)
– Do not modify these or your jobs and

compiles will not work correctly.
•  Each dot-file sources an additional file with

the same name, but an .ext extension.
– Put your local modifications in these .ext files

(e.g. .login.ext, .profile.ext)

34

Modules

•  Easy access to software is controlled by the
modules utility.

•  With modules, you manipulate your computing
environment to use applications and programming
libraries.

•  In many cases, you can ignore modules because
NERSC has already loaded a rich set of module
for you when you first log in.

•  If you want to change that environment you "load,"
"unload," and "swap" modules.

•  A small set of module commands can do most of
what you'll want to do.

35

module list

•  Shows you your currently loaded modules.
•  When you first log in, you have a number of modules

loaded for you. Here is an example from Franklin.
 nid00163% module list  

Currently Loaded Modulefiles:  
 1) modules/3.1.6.5 12) cray/csa/3.0.0-1_2.0202.19602.75.1  
 2) moab/5.3.6 13) cray/account/1.0.0-2.0202.19482.49.3  
 3) torque/2.4.7 14) cray/projdb/1.0.0-1.0202.19483.52.1  
 4) xt-asyncpe/4.0 15) Base-opts/2.2.48B  
 5) xtpe-barcelona 16) pgi/10.5.0  
 6) xtpe-target-cnl 17) xt-libsci/10.4.3  
 7) xt-service/2.2.48B 18) pmi/1.0-1.0000.7901.22.1.ss  
 8) xt-os/2.2.48B 19) xt-mpt/5.0.0  
 9) xt-boot/2.2.48B 20) xt-pe/2.2.48B  
 10) xt-lustre-ss/2.2.48B_1.6.5 21) PrgEnv-pgi/2.2.48B  
 11) cray/job/1.5.5-0.1_2.0202.19481.53.6 22) cray/MySQL/5.0.64-1.0202.2899.21.1 "

•  The most important module is called "PrgEnv-pgi", which
let you know that the environment is set up to use the
Portland Group compiler suite.

36

module avail

•  The "module avail" command will list all the available
modules. It's a very long list, so I won't list it here

•  You can use the module's name stem to do a useful search

•  nid00163% module avail PrgEnv

PrgEnv-cray/1.0.1(default) PrgEnv-pathscale/2.2.48B
(default)  
PrgEnv-gnu/2.2.48B(default) PrgEnv-pgi/2.2.48B(default)"

•  Here you see that four programming environments are
available using the Cray, GNU, Pathscale, and PGI compilers.

•  The word "default" is confusing here; it does not refer to the
default computing environment, but rather the default version
of each specific computing environment. It just happens that
in this case, there is only one version available of each.

37

module swap

 Let's say you want to use the Cray compiler
instead of PGI.

 %module swap PrgEnv-pgi PrgEnv-cray"

 Now you are using the Cray compiler suite.
That's all you have to do.

 You don't have to change your makefiles, or
anything else in your build script unless they
contain PGI or Cray-specific options or
features.

38

module load

•  There is plenty of software that is not loaded by default.
•  You can consult the NERSC web pages to see a list, or you

can use the "module avail" command to see what modules
are available

•  For example, if you want to use the NAMD molecular
dynamics application. Try "module avail namd".

•  nid00163% module avail namd  
namd/2.6(default) namd/2.7b1_plumed namd/cvs  
namd/2.7b1 namd/2.7b2"

•  The default version is 2.6, but say you'd rather use some
features available only in version 2.7b2. In that case, just load
that module.

•  nid00163% module load namd/2.7b2

•  The “namd2” binary is now in your UNIX search path.

39

COMPILING CODE
Using NERSC

40

Invoking the Compilers

•  Let's assume that you’re compiling
code that will run as a parallel
application using MPI and the code is
written in Fortran, C, or C++.

•  Then compiling is easy because you
will use standard compiler wrapper
scripts that bring in all the include file
and library paths and set linker options
that you'll need.

41

Parallel Compilers

42

Platform Fortran C C++
Cray ftn cc CC
Others mpif90 mpicc mpiCC

!Filename hello.f90
program hello

 implicit none
 include "mpif.h"

 integer:: myRank
 integer:: ierror

 call mpi_init(ierror)

 call mpi_comm_rank(MPI_COMM_WORLD,myRank)

 print *, "MPI Rank ",myRank," checking in!"

 call mpi_finalize(ierror)

% ftn –o hello.x hello.f90

That’s it! No need
for -I/path/to/mpi/
include or –L/
path/to/mpi/lib

It’s all taken care
of for you.

Using Programming Libraries
(Cray)

All you have to do is load the appropriate module and compile.

Let's compile an example code that uses the HDF5 I/O library.
First let's try it in the default environment.

 nid00195% cc -o hd_copy.x hd_copy.c  
INFO: linux target is being used  
Can't find include file hdf5.h (hd_copy.c: 39)"

The compiler doesn't know where to find the include file.
Now let's load the hdf5 module and try again.

 nid00195% module load hdf5  
nid00195% cc -o hd_copy.x hd_copy.c  

We're all done and ready to run the program! No need to manually
add the path to HDF5; it's all taken care of by the scripts.

43

Using Programming Libraries
(non-Cray)

 % mpicc -o hd_copy.x hd_copy.c"
 Can't find file hdf5.h (hd_copy.c: 39)  
 PGC/x86-64 10.8-0: compilation aborted  
% module load hdf5  
% mpicc -o hd_copy.x hd_copy.c  
Can't find file hdf5.h (hd_copy.c: 39)  
 PGC/x86-64 10.8-0: compilation aborted"

 Even with the module loaded, the compiler doesn't
know where to find the HDF5 files.

44

Using Programming Libraries
(non-Cray)

We have to use
% mpicc -o hd_copy.x hd_copy.c $HDF5 "
Take a look at the module to see env variables"
% module show hdf5

/usr/common/usg/Modules/modulefiles/hdf5/1.8.3:  

conflict hdf5-parallel  
module load szip  
module load zlib  
setenv HDF5_DIR /usr/common/usg/hdf5/1.8.3/serial  
setenv HDF5 -L/usr/common/usg/hdf5/1.8.3/serial/lib -
lhdf5_cpp -lhdf5_fortran -lhdf5_hl -lhdf5 -L/usr/common/usg/
zlib/default/lib -lz -L/usr/common/usg/szip/default/lib -lsz -
I/usr/common/usg/hdf5/1.8.3/serial/include -I/usr/common/usg/
hdf5/1.8.3/serial/lib -I/usr/common/usg/zlib/default/include -
I/usr/common/usg/szip/default/include  
setenv HDF5_INCLUDE -I/usr/common/usg/hdf5/1.8.3/
serial/include  
prepend-path PATH /usr/common/usg/hdf5/1.8.3/serial/bin  
prepend-path LD_LIBRARY_PATH /usr/common/usg/hdf5/1.8.3/
serial/lib  

45

RUNNING JOBS
Using NERSC

46

Login Nodes and Compute Nodes

•  Each supercomputer has two types of nodes
that you will use directly
–  Login nodes
– Compute nodes

•  Login nodes
– Edit files and compile codes
–  Issue interactive UNIX commands
– Submit batch jobs
– Don’t support compute jobs (30 min CPU limit)

•  Compute nodes
– Run your parallel jobs
– Do not allow you direct login access

47

Launching Parallel Jobs

•  A “job launcher” distributes your code to all
the nodes in your parallel job, starts them,
and manages their execution.

•  On Cray the job launcher is called “aprun”
and on other systems it is “mpirun”.

•  Only the job launcher can start your job on
compute nodes

•  You can’t run the job launcher from login
nodes

48

Submitting Jobs

•  To run a job on the compute nodes you
must write a “batch script,” which contains
– Batch directives to allow the system to

schedule your job
– An aprun or mpirun command that launches

your parallel executable
•  Submit the job to the queuing system with

the qsub command
– %qsub my_batch_script"

49

Sample Hopper Batch Script

50

#PBS -q debug"
#PBS -l mppwidth=128"
#PBS -l walltime=00:10:00"
#PBS -N my_job"
#PBS -e my_job.$PBS_JOBID.err"
#PBS -o my_job.$PBS_JOBID.out"
#PBS -V"

cd $PBS_O_WORKDIR"
aprun -n 128 ./my_executable"

The PBS directives required for each system are
different, so consult the NERSC web site for details.

Monitoring Your Job

•  Once your job is submitted, it will start
when resources are available

•  Monitor it with
– qstat –a
– qstat –u username
– qs
– NERSC web site “Queue Look”

51

Interactive Parallel Jobs

•  You can run small parallel jobs
interactively for up to 30 minutes
% qsub –I –V –lmppwidth=32"
[wait for job to start]"
% cd $PBS_O_WORKDIR"
% aprun –n 32 ./mycode.x"

52

