
Debugging and Optimization Tools 

Richard Gerber 
NERSC User Services 

David Skinner 
NERSC Outreach, Software & Programming Group 

UCB CS267 
February 15, 2011 



•  Introduction 
•  Debugging 
•  Performance / Optimization 

Outline 



3 

•  Scope of Today’s Talks 
–  Debugging and optimization tools 
–  Some basic strategies 

•  Take Aways 
–  Common problems and strategies 
–  How tools work in general 
–  A few specific tools you can try 

Introduction 



4 

•  Types of problems 
–  “Serial” 

•  Invalid memory references 
•  Array reference out of bounds 
•  Divide by zero 
•  Uninitialized variables 

–  Parallel 
•  Unmatched sends/receives 
•  Blocking receive before corresponding send 
•  Out of order collectives 

Debugging 



5 

•  printf(), print, write 
–  Versatile, sometimes useful 
–  Doesn’t scale well, have to recompile  

•  Compilers 
–  Turn on bounds checking, exception handling 
–  Check dereferencing of NULL pointers 

•  Serial gdb 
–  GNU debugger, serial, command-line interface  
–  See “man gdb” 

•  Parallel GUI debuggers 
–  DDT 
–  Totalview 

Tools 



Out of bounds 
reference in source 
code for program 
“flip” 

…!

allocate(put_seed(random_size))!
…!

bad_index = random_size+1!
put_seed(bad_index) = 67!

ftn  -c -g -Ktrap=fp –Mbounds flip.f90!
ftn  -c -g -Ktrap=fp -Mbounds printit.f90!
ftn  -o flip flip.o printit.o -g !

% qsub –I –qdebug –lmppwidth=48!
% cd $PBS_O_WORKDIR!
% !
% aprun –n 48 ./flip!
0: Subscript out of range for array 

put_seed (flip.f90: 50)!
    subscript=35, lower bound=1, upper 

bound=34, dimension=1!
0: Subscript out of range for array 

put_seed (flip.f90: 50)!
    subscript=35, lower bound=1, upper 

bound=34, dimension=1!

6 

Compiler runtime bounds 
checking   



7 

Ddt video 



Performance Questions 

•  How can we tell if a program is 
performing well? 

•  Or isn’t? 

•  If performance is not “good,” how 
can we pinpoint why?   

•  How can we identify the causes? 

•  What can we do about it? 

8 



Performance Metrics 

•  Primary metric: application time 
–  but gives little indication of efficiency 

•  Derived measures: 
–  rate (Ex.: messages per unit time,  

Flops per Second, clocks per instruction), 
cache utilization 

•  Indirect measures:  
–  speedup, parallel efficiency, scalability 

9 



10 

•  Serial 
–  Leverage ILP on the processor 
–  Feed the pipelines 
–  Exploit data locality 
–  Reuse data in cache 

•  Parallel 
–  Minimizing latency 
–  Maximizing work vs. communication 

Optimization 



11 

•  Sampling 
–  Regularly interrupt the program and record 
where it is 
–  Build up a statistical profile 

•  Tracing / Instrumenting 
–  Insert hooks into program to time events 

•  Use Hardware Event Counters 
–  Special registers count events on processor 
–  E.g. floating point instructions 
–  Many possible events 
–  Only a few (~4 counters) 

Identifying Targets for 
Optimization 



Performance Instrumentation 

•  Use a tool to “instrument” the code 
1.  Transform a binary executable before 

executing 
2.  Include “hooks” for important events 
3.  Run the instrumented executable to 

capture those events, write out raw data 
file 

4.  Use some tool(s) to interpret the data 

12 



Performance Tools @ NERSC 

•  IPM: Integrated Performance Monitor 
•  Vendor Tools: 

–  CrayPat 
•  Community Tools (Not all fully 

supported): 
–  TAU (U. Oregon via ACTS) 
–  OpenSpeedShop (DOE/Krell) 
–  HPCToolKit (Rice U) 
–  PAPI (Performance Application 

Programming Interface) 

13 



Types of Counters 

•  Cycles 
•  Instruction count 
•  Memory references, cache hits/

misses 
•  Floating-point instructions 
•  Resource utilization 

14 



PAPI Event Counters 

•  PAPI (Performance API) provides a standard 
interface for use of the performance counters 
in major microprocessors 

•  Predefined actual and derived counters 
supported on the system 
–  To see the list, run ‘papi_avail’ on compute node via 

aprun: 
  module load perftools!
!!aprun –n 1 papi_avail!

•  AMD native events also provided; use 
‘papi_native_avail’: 
! ! !aprun –n 1 papi_native_avail 

15 



Introduction to CrayPat 

•  Suite of tools to provide a wide range of 
performance-related information 

•  Can be used for both sampling and tracing 
user codes 
–  with or without hardware or network performance 

counters 
–  Built on PAPI 

•  Supports Fortran, C, C++, UPC, MPI, Coarray 
Fortran, OpenMP, Pthreads, SHMEM 

•  intro_craypat(1), intro_app2(1), intro_papi(1) 

16 



Using CrayPat 

1.  Access the tools 
–  module load perftools!

2.  Build your application; keep .o files 
–  make clean!
–  make!

3.  Instrument application 
–  pat_build ... a.out!
–  Result is a new file, a.out+pat!

4.  Run instrumented application to get top time consuming 
routines 

–  aprun ... a.out+pat!
–  Result is a new file XXXXX.xf (or a directory containing .xf files) 

5.  Run pat_report on that new file; view results 
–  pat_report  XXXXX.xf  > my_profile!
–  vi my_profile!
–  Result is also a new file: XXXXX.ap2 

17 

Adjust 
script for 

+pat 



Using Apprentice 

•  Optional visualization tool for Cray’s 
perftools data 

•  Use it in a X Windows environment 
•  Uses a data file as input (XXX.ap2) 

that is prepared by pat_report!
1.   module load perftools!
2.   ftn -c mpptest.f!
3.   ftn -o mpptest mpptest.o!
4.   pat_build -u -g mpi mpptest!
5.   aprun -n 16 mpptest+pat!
6.   pat_report mpptest+pat+PID.xf > 

my_report!
7.   app2 [--limit_per_pe tags] [XXX.ap2]!

18 



19 

Apprentice Basic View 

Can select new 
(additional) data 

file and do a 
screen dump Can select 

other views of 
the data 

Worthless Useful 

Can drag the 
“calipers” to focus 

the view on 
portions of the 

run 




