
Debugging and Optimization Tools

Richard Gerber
NERSC User Services

David Skinner
NERSC Outreach, Software & Programming Group

UCB CS267
February 16, 2012

•  Introduction
•  Debugging
•  Performance / Optimization

Outline

Videos, presentations, and references:

http://www.nersc.gov/users/training/courses/CS267/

Also see the DOE Advanced Computational Tools:
http://acts.nersc.gov

3

•  Today’s Talks
–  Strategies for parallel performance (D.
Skinner)
–  Debugging and optimization tools (R. Gerber)

•  Take Aways
–  Common problems to look out for
–  How tools work in general
–  A few specific tools you can try
–  Where to get more information

Introduction

Debugging

4

•  A bug is when your code
–  crashes
–  hangs (doesn’t finish)
–  gets inconsistent answers
–  produces wrong answers
–  behaves in any way you didn’t want it to

What is a Bug?

•  The term “bug” was popularized by
Grace Hopper (motivated by the
removal of an actual moth from
computer in 1947)

History

7

•  “Serial”
–  Invalid memory references
–  Array reference out of bounds
–  Divide by zero
–  Use of uninitialized variables

•  Parallel
–  Unmatched sends/receives
–  Blocking receive before corresponding send
–  Out of order collectives
–  Race conditions

Common Causes of Bugs

•  Find It
–  You want to locate the part of your code
that isn’t doing what it’s designed to do

•  Fix It
–  Figure out how to solve it and implement a
solution

•  Run It
–  Check for proper behavior

What to Do if You Have a Bug?

printf, write
–  Versatile, sometimes

useful
–  Doesn’t scale well
–  Not interactive
–  Fishing expedition

Compiler / Runtime
–  Bounds checking,

exception handling
–  Dereferencing of NULL

pointers
–  Function and subroutine

interface checking

Serial gdb
–  GNU debugger, serial,

command-line interface
–  See “man gdb”

Parallel debuggers
Using X-Windows
–  DDT
–  Totalview

9

Tools

Out of bounds
reference in source
code for program
“flip”

…!

allocate(put_seed(random_size))!
…!

bad_index = random_size+1!
put_seed(bad_index) = 67!

ftn -c -g -Ktrap=fp –Mbounds flip.f90!
ftn -c -g -Ktrap=fp -Mbounds printit.f90!
ftn -o flip flip.o printit.o -g !

% qsub –I –qdebug –lmppwidth=48!
% cd $PBS_O_WORKDIR!
% !
% aprun –n 48 ./flip!
0: Subscript out of range for array

put_seed (flip.f90: 50)!
 subscript=35, lower bound=1, upper

bound=34, dimension=1!
0: Subscript out of range for array

put_seed (flip.f90: 50)!
 subscript=35, lower bound=1, upper

bound=34, dimension=1!

10

Compiler runtime bounds
checking

•  For a list of compiler options, see the
man pages for the individual compilers

–  man pgcc
–  man pgCC
–  man pgf90
–  man gcc
–  man gfortran
–  Etc.

Compiler Documentation

Parallel Programming Bug

if(task_no==0) {

 ret = MPI_Recv(&herBuffer, 50, MPI_DOUBLE,
totTasks-1, 0, MPI_COMM_WORLD, &status);
 ret = MPI_Send(&myBuffer, 50, MPI_DOUBLE,
totTasks-1, 0, MPI_COMM_WORLD);

} else if (task_no==(totTasks-1)) {

 ret = MPI_Recv(&herBuffer, 50, MPI_DOUBLE, 0, 0,
MPI_COMM_WORLD, &status);
 ret = MPI_Send(&myBuffer, 50, MPI_DOUBLE, 0, 0,
MPI_COMM_WORLD);

}

This code hangs because both Task 0 and Task N-1 are blocking on
MPI_Recv

13

Compile & Start DDT

hopper% make
cc -c -g hello.c
cc -o hello -g hello.o

Compile for debugging

Set up the parallel run environment
hopper% qsub –I –V –lmppwidth=24
hopper% cd $PBS_O_WORKDIR

hopper% ddt ./hello

Start the DDT debugger

DDT Screen Shot

At hang, tasks are in 3
different places.

Task 0 is at line 44

Press Go and then
Pause when code

appears hung.

DDT Screen Shot

At hang, tasks are in 3
different places.

Task 3 is at line 47

16

•  http://vimeo.com/19978486

•  Or http://vimeo.com/user5729706

•  This is out of date; I need to change
the NX server from “Euclid” to
“nx.nersc.gov and “hopp2” to “hopper”

DDT video

•  Try different compilers
–  Diagnostic messages and language spec
compliances differ

•  Look for memory corruption
–  Bad memory reference in one place (array out
of bounds) can make code crash elsewhere
–  It might appear that you’re crashing on a
perfectly valid line of code

•  Check the arguments to your MPI calls
•  Call the NERSC Consultants (800-66-
NERSC or 510 486-8600)

Other Debugging Tips

Performance / Optimization

18

Performance Questions

•  How can we tell if a program is
performing well?

•  Or isn’t?

•  If performance is not “good,” how
can we pinpoint why?

•  How can we identify the causes?

•  What can we do about it?

19

Performance Metrics

•  Primary metric: application time
–  but gives little indication of efficiency

•  Derived measures:
–  rates (Ex.: messages per unit time,

Flops per second, clocks per instruction),
cache utilization

•  Indirect measures:
–  speedup, parallel efficiency, scalability

20

21

•  Serial
–  Leverage ILP on the processor
–  Feed the pipelines
–  Exploit data locality
–  Reuse data in caches

•  Parallel
–  Minimize latency effects (aggregate messages)
–  Maximize work vs. communication

•  Both
–  Minimize data movement (recalculate vs. send)
–  Memory locality on NUMA processors - first touch

Optimization Strategies

22

•  Sampling
–  Regularly interrupt the program and record where
it is
–  Build up a statistical profile of time spent in various
routines
–  Concentrate first on longest running sections or
routines

•  Tracing
–  Insert hooks into program to record and time
program events (logging)
–  Reasonable for sequential programs
–  Unwieldy for large parallel programs (too much
data!)

Identifying Targets for
Optimization: Profiling

23

•  Hardware Event Counters
–  Special registers count events on
processor
–  E.g. number of floating point instructions
–  Many possible events
–  Only a few can be recorded at a time (~4
counters)
–  Can give you an idea of how efficiently you
are using the processor hardware

Identifying Targets for
Optimization

Typical Process

•  (Sometimes) Modify your code with
macros, API calls, timers

•  Compile your code
•  Transform your binary for profiling /

tracing with a tool
•  Run the transformed binary

–  A performance data file is produced
•  Interpret the results with a tool

24

Performance Tools @ NERSC

•  Vendor Tools:
–  CrayPat on Crays

•  Community Tools :
–  TAU (U. Oregon via ACTS)
–  PAPI (Performance API)
–  gprof

•  IPM: Integrated Performance
Monitoring
–  A low overhead, low effort NERSC tool

25

Introduction to CrayPat

•  Suite of tools that provides a wide range of
performance-related information

•  Can be used for both sampling and tracing
–  with or without hardware or network performance

counters
–  Built on PAPI

•  Supports Fortran, C, C++, UPC, MPI, Coarray
Fortran, OpenMP, Pthreads, SHMEM

•  Man pages
–  intro_craypat(1), intro_app2(1), intro_papi(1)

26

Using CrayPat

1.  Access the tools
–  module load perftools!

2.  Build your application; keep .o files
–  make clean!
–  make!

3.  Instrument application
–  pat_build ... a.out!
–  Result is a new file, a.out+pat!

4.  Run instrumented application to get top time consuming
routines

–  aprun ... a.out+pat!
–  Result is a new file XXXXX.xf (or a directory containing .xf files)

5.  Run pat_report on that new file; view results
–  pat_report XXXXX.xf > my_profile!
–  view my_profile!
–  Also produces a new file: XXXXX.ap2

27

Using Apprentice

•  Optional visualization tool for
Cray’s perftools data

•  Use it in a X Windows environment
•  Uses a data file as input (XXX.ap2)

that is prepared by pat_report!
app2 [--limit_per_pe tags] XXX.ap2!

29

30

Apprentice Basic View

Can select new
(additional) data file

and do a screen dump

Can select other
views of the data

Worthless Useful

Can drag the “calipers”
to focus the view on
portions of the run

PAPI

•  PAPI (Performance API) provides a standard
interface for use of the performance counters in
major microprocessors

•  Predefined actual and derived counters supported
on the system
–  To see the list, run ‘papi_avail’ on compute node via

aprun:
 qsub –I –lmppwidth=24
 module load perftools
 aprun –n 1 papi_avail

•  AMD native events also provided; use
‘papi_native_avail’:
! ! !aprun –n 1 papi_native_avail

31

TAU

•  Tuning and Analysis Utilities
•  Fortran, C, C++, Java performance tool
•  Procedure

–  Insert macros
–  Run the program
–  View results with pprof

•  More info than gprof
–  E.g. per process, per thread info; supports

pthreads
•  http://acts.nersc.gov/tau/index.html

32

•  You will have a homework assignment
using TAU

–  %module load tau
–  Define paths in Makefile
–  Modify header file to define TAU macros
–  Add macro calls to the code
–  Compile and submit to batch queue
–  Use pprof to produce readable output

•  Good reference
–  http://acts.nersc.gov/events/Workshop2011/Talks/TAU.pdf

TAU Assignment

•  NERSC has about 5,000 users
–  All levels of sophistication and experience
–  We’re committed to supporting both the cutting

edge & production HPC computing for the
masses

•  Users often ask for advice on which tools
to use and we give them suggestions

•  Our experience is that very few use
programming/debugging/development
tools

•  A few users use a few tools a lot, but
many try a tool only once

Experience with NERSC Users

•  Extremely effective?
•  More likely: Too confusing, difficult, didn’t work, don’t

know how to use, don’t know which to use, tied to a
platform, compiler, or language

•  It’s not that we don’t have tools that address specific
issues
–  TAU, PAPI, HPC Toolkit
–  Craypat, IBM HPC tools, OpenSpeedShop, Intel
–  Valgrind (memory debugging)
–  GPU/CUDA tools & compilers
–  Vampirtrace

•  But do most users have the resources to learn how to
use these tools, esp. when they don’t know if there will
be any benefit from any given one?

Why?

IPM

•  Integrated Performance Monitoring
•  MPI profiling, hardware counter

metrics, IO profiling (?)
•  IPM requires no code modification &

no instrumented binary
–  Only a “module load ipm” before running

your program on systems that support
dynamic libraries

–  Else link with the IPM library
•  IPM uses hooks already in the MPI

library to intercept your MPI calls and
wrap them with timers and counters

36

•  How it works (user perspective)
–  % module load IPM*
–  Run program as normal
–  Look at results on the web

•  It’s that easy!
–  And extremely low overhead, so IPM is

examining your production code

* (As long as your system supports dynamic load libs)

IPM

•  IPM “only” gives a high-level, entire-
program-centric view

•  Still, very valuable guidance
–  Shows whole-run info per MPI task, OpenMP

thread, (CUDA under development)
–  Many pieces of data in one place

•  Reveals what many users don’t know
about their code
–  High-water memory usage (per task)
–  Load balance
–  Call imbalance
–  MPI time
–  I/O time

What IPM measures

IPM

39

host : s05601/006035314C00_AIX mpi_tasks : 32 on 2 nodes!
start : 11/30/04/14:35:34 wallclock : 29.975184 sec!
stop : 11/30/04/14:36:00 %comm : 27.72!
gbytes : 6.65863e-01 total gflop/sec : 2.33478e+00 total!
[total] <avg> min max!
wallclock 953.272 29.7897 29.6092 29.9752!
user 837.25 26.1641 25.71 26.92!
system 60.6 1.89375 1.52 2.59!
mpi 264.267 8.25834 7.73025 8.70985!
%comm 27.7234 25.8873 29.3705!
gflop/sec 2.33478 0.0729619 0.072204 0.0745817!
gbytes 0.665863 0.0208082 0.0195503 0.0237541!
PM_FPU0_CMPL 2.28827e+10 7.15084e+08 7.07373e+08 7.30171e+08!
PM_FPU1_CMPL 1.70657e+10 5.33304e+08 5.28487e+08 5.42882e+08!
PM_FPU_FMA 3.00371e+10 9.3866e+08 9.27762e+08 9.62547e+08!
PM_INST_CMPL 2.78819e+11 8.71309e+09 8.20981e+09 9.21761e+09!
PM_LD_CMPL 1.25478e+11 3.92118e+09 3.74541e+09 4.11658e+09!
PM_ST_CMPL 7.45961e+10 2.33113e+09 2.21164e+09 2.46327e+09!
PM_TLB_MISS 2.45894e+08 7.68418e+06 6.98733e+06 2.05724e+07!
PM_CYC 3.0575e+11 9.55467e+09 9.36585e+09 9.62227e+09!
[time] [calls] <%mpi> <%wall>!
MPI_Send 188.386 639616 71.29 19.76!
MPI_Wait 69.5032 639616 26.30 7.29!
MPI_Irecv 6.34936 639616 2.40 0.67!
MPI_Barrier 0.0177442 32 0.01 0.00!
MPI_Reduce 0.00540609 32 0.00 0.00!
MPI_Comm_rank 0.00465156 32 0.00 0.00!
MPI_Comm_size 0.000145341 32 0.00 0.00!

IPM Examples

Click on
the
metric
you are
want.

IPM Examples

IPM Examples

IPM Examples

IPM Examples

•  What tools do you use?
•  What tools do you want?
•  What would you like centers to

support?
•  Can you get to exascale without

tools?

Questions to You

•  Users are asking for tools because
HPC systems and programming
models are changing

•  More and more components to worry
about
–  CPU (caches, FPUs, pipelining, …)
–  Data movement to main memory, GPU

memory, levels of cache
–  I/O
–  Network (message passing)
–  CPU Threads (OpenMP)
–  GPU performance

Users Want (Need?) Tools

•  Let the users help themselves
•  Work for everyone all (most of?) the

time
•  Easy to use
•  Useful
•  Easy to interpret the results
•  Affordable ($$ or manpower support

costs)
•  Simple, supplement existing complex

tools
–  Point the way for a “deeper dive” in problem

areas

What I Want in a Tool

