

Annual Merit Review Meeting

Monjid Hamdan

Giner Electrochemical Systems, LLC

May 11, 2011

Project ID# PD030

This presentation does not contain any proprietary or confidential information

Overview

Timeline

Project Start: May 2008
 Project End: April 2011
 Percent Complete: 74

Budget

- Total Project Budget: \$2.49M
 - DOE Share: \$1.99M
 - Cost Share: \$0.51M
 - □ FY10 Funding

■ DOE: \$550K

■ FY11 Funding

■ **DOE**: \$550K

Barriers

Hydrogen Generation by Water Electrolysis

- G. Capital Cost
- H. System Efficiency

DOE Targets: Distributed Water Electrolysis

Characteristics/unit	S	2006	2012	2017-2020	GES Status (2011)
Hydrogen Cost	(\$/kg-H ₂)	4.80	3.70	2.00 - 4.00	4.66
Electrolyzer Cap. Cost	(\$/kg-H ₂)	1.20	0.70	0.30	0.60
Electrolyzer Efficiency	%LHV (%HHV)	62 (73)	69 (82)	74 (87)	75.1 (88.8)

Partners

- Parker Hannifin Corporation (Industry)— System Development
- Virginia Tech University (Academic)

 Membrane Development

Collaborations

- 3M Fuel Cell Components Program NSTF Catalyst & Membrane
- Entegris Carbon Cell Separators
- Tokuyama Low-Cost Membrane
- Prof. R. Zalosh (WPI) Hydrogen Safety Codes

Relevance/Project Objectives

Overall Project Objectives

- Develop and demonstrate advanced low-cost, moderate-pressure PEM water electrolyzer system to meet DOE targets for distributed electrolysis.
 - Develop high efficiency, low cost membrane
 - □ Develop long-life cell-separator
 - □ Develop lower-cost prototype electrolyzer stack & system

Relevance

 Successfully developing a low-cost hydrogen generator will enable early adoption of fuel cell vehicles

FY 2010-11 Objectives

- Fabricate scaled-up stack components (DSM, cell-separators)
- Assembly electrolyzer stack/system
- Install electrolyzer stack into system & evaluate
- Deliver and Demonstrate prototype electrolyzer system at NREL

Low-Cost Electrolyzer Stack

GES

Milestones

	Go/No Go Decision Points	Progress Notes	%Complete
Membrane	 Demonstrate DSM membrane performance comparable to or better than that of Nafion[®]1135 at 80°C Demonstrate electrolyzer lifetime with DSM membrane (80°C ≥ 1000 hrs) Scale-up DSM membrane to 290cm² & Evaluate in short stack for 1000 hours 	 Performance DSM > Nafion®1135 = Nafion®112, Completed 1000 hrs @ 80°C. Testing indicates low membrane degradation rate, high life expectancy Operated 5-cell for 1000-hours, Single-cell; > 2800+ hours. Use of chemically-etched DSM supports for further cost reduction. 	100% (Mar-09) 100% (Mar-09) 100% (Dec-10)
Mem	■Indentify new low-cost membranes for PEM- based electrolyzers , new low-cost catalysts	■Tokuyama hydrocarbon membranes under evaluation, 3M catalyst evaluated	10%
Cell Separator	 Demonstrate performance comparable to dual-layer Ti separator Scale-up Carbon/Ti cell-separator to 290-cm² Evaluate in short stack for 1000 hours. 	■Operated 290-cm² cell-separators in 5-cell for 1000-hours. H₂-embrittlement testing confirms longevity of Carbon/Titanium cell-separators	100% (Dec-10)
Sep	■Indentify & evaluate new low-cost Carbon materials for cell-separators	■Initiated ivestigation of low-cost carbon for future cost reductions	20%
ım nt	■Complete preliminary design review	■Completed: P&ID, PFD, control diagrams, safety review, FMEA, system layout and packaging drawings	100% (Dec-09)
Stack/System Development	 Complete Stack & System assembly Evaluate efficiency of Stack & System Complete critical design review of system Evaluate thin frame design for further cost reduction of electrolyzer Stack. 	 Electrolyzer stack fabricated. System near completion. Thin frames fabricated and tested in 160-cm² hardware. 	25%

Membrane Development Approach

DSM Membrane-GES

- □ PFSA ionomer incorporated in an engineering plastic support
 - High-strength
 - High-efficiency
 - No x-y dimensional changes upon wet/dry or freeze-thaw cycling
 - Superior to PTFE based supports

Bi-Phenyl Sulfone Membrane-VT

- Hydrocarbon Membranes
 - Inexpensive starting materials
 - Trade-off between conductivity and mechanical properties

Alternative Membranes

- □ PFSA (850EW) Membrane-3M
- ☐ Hydrocarbon Membrane- Tokuyama

DSM Supports

Bi-Phenyl Sulfone, H form (BPSH)

High Durability Cell-Separator Approach

Requirements

- Gas-impermeable (separates H₂ and O₂ compartments)
- High electrical conductivity and high surface conductivity
- ☐ Resistant to hydrogen embrittlement
- ☐ Stable in oxidizing environment
- Low-Cost

Hydrogen embrittlement in titanium cell-separators

Legacy Design

 Multi-Layer piece consisting of Zr on hydrogen side and Nb on oxygen side

Single or Dual-Layer Ti separators

- ☐ Ti subject to hydrogen embrittlement
- □ Lifetime limited to <5000 hours, depending on pressure and operating conditions</p>

Approach

- Develop a new low-cost dual-layer structure
 - Evaluate methods of bonding dissimilar metal films
 - Evaluate non-metal substrate with conductive coating

Titanium Cell-Separator with Carbon coating

Designing Low Cost Electrolyzer Stack and System

Objectives

- Reduce BOP capital cost
- Reduce BOP power consumption
- Increase stack active area
- Improve safety and reliability
- Design for high-volume manufacturing

Approach

- Team with large volume commercial manufacturer (domnick hunter group of Parker-Hannifin)
- Redesign stack & system to eliminate or replace costly components
- Laboratory evaluation of lower-cost components and subsystems
 - Design & test high efficiency H₂ dryer
- Develop higher efficiency power electronics

System Design Specifications			
Production Rate	0.5 kg H ₂ /hr		
Operating Pressure	300-400 psid ; H ₂ 300-400 psig; O ₂ atm		
Operating Temperature	50-90°C		
Membrane	DSM with PFSA ionomer		
Stack Size	290 cm²/cell, 27 Cells		
Stack Current Density	1500-2000+ mA/cm ²		

Membrane Progress: DSM

- **Performance Milestone** (Mar-2009/Mar-2010)
 - Performance of Laser-Drilled (L-) DSM > Chemically-Etched (C-) DSM > Nafion® 1135
- C-DSM (1100EW) selected for electrolyzer build
 - □ Lower cost, ease of fabrication

Performance: Scaled-up DSM & Stack Hardware

Test Conditions:

80°C 320-330 psig Cathode (H₂) 20 psig Anode (H₂O/O₂)

MEA/Hardware:

DSM thickness (3 mil) C(poco)/Ti seperator used in scaled-up 290-cm² HW

<u>HW</u>	#Cells	<u>MEA</u>
—□— 160-cm	1² 1	C-DSM
<u>-</u> ∆- 290-cm	1² 1	C-DSM
→ 290-cm	1² 5	C-DSM
— 160-cm	1 ² 1	Nafion 1135

- Milestone (Dec-2010): 5-cell Scaled-up Short-Stack
 - □ Performance comparable to 160-cm² HW w/DSM > Nafion 1135®
 - Electrolyzer Stack utilizes scaled-up 290-cm² cell components (DSM, carbon/titanium, cell-separators)

Membrane Progress: Life Testing

Performance

- Completed 1000 Hour Life Test Milestones
 - □ 1-cell (160-cm²) & 5-cell (290-cm²)
 - □ 5-cell includes scaled-up components
 - □ 1.73-1.75V (~88% HHV)
- DSM MEA from 5-cell short stack re-assembled into a single-cell stack, total operating time = 2800+ hours

Membrane Degradation (Estimated Lifetime)

- F ion Release Rate: 3.7 μg/hr (<10 ppb)
- DSM -1100EW (Stabilized Ionomer): ~55,000 hours

Membrane/Catalyst Evaluations

3M Catalyst Performance

- 3M NSTF <u>cathode</u> catalyst performance equivalent to GES (Jan 2010)
- Successful testing of 3M NSTF Ptlr anode catalyst, performance equivalent to GES (Feb 2011)
- Pt loadings of 3M anode & cathode catalyst are one-order magnitude lower than currently in use (~0.10 to 0.15mg Pt/cm²)!
- 3M catalyst: Life testing required

Membrane Performance

- □ BPSH-35 \cong 3M \cong DSM \cong Nafion[®] 112 > Nafion[®] 1135
- 3M 850EW is stabilized ionomer
- □ Initiated Tokuyama membrane evaluation
 - Low-Cost hydrocarbon membrane
 - Life testing > 5000 hours in DMFC (Tokuyama)

Cell-Separator Progress

Carbon/Titanium

- Carbon/Titanium Cell-Separators Scaled-up to 290-cm² (Milestone Oct-2010)
 - Evaluated in 5-cell short stack for 1000hours
 - Single cell-separator testing ongoing (2700+ hours)
 - Cell-Separators fabricated with low porosity carbon
 - POCO Pyrolitic Graphite (Surface Sealed)
 - Low hydrogen uptake (embrittlement)
 - Life-time estimate > 60,000 hours
- Analysis
 - C/Ti: No carbon delaminating or loss in thickness
 - □ Zr/Ti & ZrN/Ti (PVD coatings)
 - Delamination, contaminated DI water
- New low-cost carbon materials identified

Cell -Separator	Time (Hours)	H ₂ uptake (ppm)
C/Ti (290-cm ²)	1000	105
C/Ti (160-cm²)	500	64
Zr/Ti(160-cm²)	500	140
ZrN/Ti (160-cm²)	500	31
Dual Layer Ti (160-cm²)	500	1105
Ti (baseline)	0	~60
Ti Failure/Embrittlement: ~8000 ppm		

Property	Units	DOE Target FC Bipolar Plates 2015	GES C/Ti Cell- Separator 2011
Cost	\$/kW	3	> 10
Weight	kg/kW	<0.4	0.08
Electrical Conductivity	S/cm	> 100	>300 (680 Poco)
Flexural Strength	MPa	>25	86.1 (Poco)
Contact Resistance to GDL (MEA interface)	mΩ. cm²	< 20 @ 150 N/cm ²	17 @ 350 N/cm²

Stack Progress: Cost Reduction

Stack Progress: Advancements & Cost Reductions

The repeating cell unit comprises 90% of electrolyzer stack cost

(2007-2010)

- Increased active area (290cm²)
- Reduced catalyst loadings
- Reduced Part Count 41 to 16
- Pressure Pad: Sub-assembly eliminated
- Molded Thermoplastic Cell Frame
- Cell-Separators: Replaced Nb/Ti with Carbon/Ti

(2010-2011)

- Frame Thickness reduced (by 30%)
 - Reduces Cathode & Anode Support Mat'l
- Reduced Part Count from 16 to 10 Parts/Cell-50% labor reduction
- Nb and Zr mat'l in Anode & Cathode supports eliminated- up to 98% material cost reduction
- DSM MEAs fabricated w/chem-etch supports- 90% cost reduction
- Carbon Steel End Plate (previously S.S.) - 66% material cost reduction

(Future)

- Frame thickness reduced by 90%
- Carbon Steel Fluid End Plate
- Poco in carbon/Ti cell-separators replaced w/low-cost carbon (Entegris).
- Further catalyst reductions (3M)
- Increase Cell-Size
- Low-Cost Ionomers (Tokuyama)

Stack Progress: Repeating Cell Cost

Anode Support Material & MEAs (membrane & catalyst) dominate cost of the electrolyzer stack

System Progress

- Assembly: >80% Complete
- System design complete: P&ID, PFD
- Safety:
 - Manuals covering Hydrogen Safety& Response Plan
 - Reviewed National & International Codes & Standards (Prof. Zalosh – H₂ safety expert)
 - GES contributed comments to ISO/DIS 22734-2 draft
- Failure Modes and Effects Analysis (FMEA) -Analysis indicates highest degree of safety with use of Dome over stack
 - Eliminates highest severity cases related to hydrogen ignition & electrocution
 - Satisfies Codes Pertinent to Hydrogen Refueling Systems
 - Dome design modified for lower cost
 - Pressurized dome: reinforces stack during high pressure operation (future study)

System Specs

Dimensions: 7.20' tall x 6.6' long x 7.84' wide.

Water Consumption: 5.75 liters/hr Stack Power Requirement: 24 kW

Cooling Requirement: 3.3 kW

Production Rate

 $0.5 \text{ kg H}_2/\text{hr} (-3\% \text{ dryer})$

2.0 kg-H₂/hr (w/larger Stack & Power Supply)

Operating Pressure

H₂ 350 psig; O₂ atm

Operating Temperature

80°C

Membrane

DSM-PFSA,

Stack Size

290 cm²/cell, 27 Cells

Stack Current Density

~1750 mA/cm²

System Progress: Assembly Controller & **Power Supply** ■Power Supply Efficiency: 94% ■30kW, 600A, 50V ■Stack Requirement: 23.8kW H₂ –Dryer (H₂ Compartment) **Electrolyzer Stack & Dome** Dryer Efficiency: 96-97% (O₂ Compartment) Dual desiccant bed Stack Efficiency: 88% H₂ cooling prior to dryer ■Output: 0.5 kg-H₂/hr

Systems

Stack Voltage: 47 V (27 Cells @1.75 V/cell,1741mA/cm²)

Use of Dome satisfies Codes Pertinent to Hydrogen Refueling

■Dome can accommodate >90-cell stack

17

Projected H₂ Cost

Specific Item Cost Calculation Hydrogen Production Cost Contribution			
H2A Model Version (Yr)	Rev. 2.1.1 (FY2010)		Rev. 2.1.1 (FY2011)
		_	
Capital Costs	<\$0.79		\$0.60
Fixed O&M	<\$0.49		<\$0.39
Feedstock Costs \$1.54 min. @ 39.4 kWh _e /kg-H ₂	\$1.86 (DSM)		\$1.86 (DSM)
Byproduct Credits	\$0.00		\$0.00
Other Variable Costs (including utilities)	\$0.01		\$0.01
Total Hydrogen Production Cost (\$/kg) (Delivery not included)	3.15		2.86
Delivery (H2A default)	1.80		1.80
Total Hydrogen Production Cost (\$/kg)	4.95		4.66

H2A Model Analysis Forecourt Model

- Design capacity: 1500 kg H₂/day
- Assume large scale production- costs for 500th unit
- Assume multiple stacks/unit
 - Low-cost materials and component manufacturing
- 333 psig operation. H₂ compressed to 6250 psig
- Operating Capacity Factor: 70%
- Industrial electricity at \$0.039/kWhr

Future Plans for FY2010-11

- Parker
 - Fabricate deliverable system
 - Operate/Evaluate system
 - Complete critical design review
- □ GES
 - Deliver Stack to Parker
 - Assist in system start-up at Parker facilities
 - Receive and install operating system at GES
 - Verify stack/system performance
 - Prepare for shipment to NREL
 - Continue investigation on low-cost components
 - □ Frame Thickness/Material cost reduction
 - Low-cost carbon for cell-separators
 - Membrane/catalysts
 - □ Further reduction in components/cell

Summary

- Demonstrated membrane reproducibility and durability
 - Demonstrated DSM membrane performance better than that of Nafion 1135 at 80°C
 - Demonstrate DSM membrane lifetime at 80°C for 1000 hours
 - ☐ Single-cell (160cm²), 5-Cell (290cm²)
 - □ Single-cell (290cm²) life test ongoing 2800+ hours
- Cell Separator Development:
 - Demonstrated performance comparable to dual-layer Ti separator in 160-cm² & 290-cm² electrolyzer
 - Demonstrated significantly reduced hydrogen embrittlement with carbon/Ti separators
 - Expected cell-separator lifetime in the range > 60,000 hours
- □ Scaled-Up Stack Design
 - Completed preliminary stack design review
 - Stack Assembly Complete
 - Significant progress made in stack cost-reduction (cell-components, membrane, & catalyst)
- System Development:
 - Completed preliminary system design review
 - □ P&ID, PFD, Layout, FMEA, Safety Reviews
 - System near completion