HVDC Users Conference 2011 Shanghai, China

October 24, 2011

Frequency

How fast does something vibrate – measured in cycles per second or Hertz. (One note from an instrument)

Frequency Response

How large a power imbalance does it take to observe a 0.1 Hz change in Frequency -measured in MW/0.1 Hz. (force needed to tilt an object by one degree)

Power Balance

Frequency Performance

Frequency Response Basics

(Using a 1400 MW generation loss event as an example)

GreenBiz - VERGE

Energy

Information

Vehicles

Key Frequency Study Factors

Displacement of Primary -Location of Resources -Interaction of Primary and Secondary -Variations of Wind Power Output

Summary Frequency Response Study

- Important to reliability as evidenced by actual events and near misses
- Change in inertia not a significant issue
- Amount and deployment of secondary changes with more wind resources
- Must have necessary primary frequency control (magnitude and speed) at all times

China Transmission for Renewable Energy

Thank you!