
Making Effective Use of Compilers
at NERSC

Michael Stewart
NERSC User Services Group

August 15, 2012

Introduction

● Description of the Hopper compiling environment.
● Strengths and weaknesses of each compiler.
● Advice on choosing the most appropriate compiler for

your work.
● Comparative results on benchmarks and other codes.
● How to use the compilers effectively.
● Carver compiling environment.
● Plans for the new Cray Cascade system (NERSC 7)

compiling environment.
● Your feedback.

Why So Many Compilers on Hopper?

● NERSC5 (Cray Franklin XT) was delivered in 2006
with the only commercially available compiler, PGI.

● GNU compilers were on Franklin, but at that time
GNU Fortran optimization was poor.

● Next came Pathscale because of superior
optimization for Franklin's AMD Opteron processors.

● Cray ported their well optimized compiler to the
Opteron so it was added next.

● Intel was popular on Carver, and it produced highly
optimized codes on Hopper.

● PGI is still the default, but this is not a NERSC
recommendation. Cray's current out of the box
compiler is the Cray compiler, but we kept PGI as the
default to avoid disruption.

How to Change Compilers on Hopper

● Use the Cray wrappers ftn, cc, and CC to invoke the
compiler to get the proper libraries and not the
compiler specific invocation, e.g. gcc, pgf90, ifort.

● By default PGI will be used with the wrappers.
● To use other compilers simply swap in the appropriate

PrgEnv module:
○ module swap PrgEnv-pgi PrgEnv-cray
○ module swap PrgEnv-pgi PrgEnv-intel
○ module swap PrgEnv-pgi PrgEnv-gnu

● Nothing else needs to be done to use the new
compiler to build codes.

PGI

● Strengths
○ Available on a wide variety of platforms making

codes very portable.
○ Because of its wide usage, it is likely to compile

almost any valid code cleanly.
○ Very well supported. Bugs are fixed relatively

quickly and there are frequent bugfix releases.
● Weaknesses

○ Does not optimize as well as compilers more
narrowly targeted to AMD architectures.

● Optimization recommendation:
○ -fast
○ Default optimization level: -O1

Cray

● Strengths
○ Fortran is well optimized for the Hopper

architecture.
○ Uses Cray math libraries for optimization.
○ Well supported.
○ Very good at standards compliance and adoption.

● Weaknesses
○ Compilations can take much longer than with other

compilers and create much larger executables.
○ Not very comfortable with C++ codes.
○ Very picky about standard compliance.

● Optimization recommendations:
○ Compile with no explicit optimization

arguments. The default level of optimization is
very high.

Intel

● Strengths
○ Optimizes C and Fortran codes very well.
○ Supports C++ very well.

● Weaknesses
○ Occasional problems in porting codes to this

compiler.
○ -fast optimization level can be problematic.

■ Can take a very long time or fail.
■ Occasionally has produced incorrect results.

● Optimization recommendations:
○ Compile with no explicit optimization

arguments. The default level of optimization is
very high.

GNU/GCC

● Strengths
○ Available on a wide variety of platforms for free.
○ Exposure to a wide variety of codes, so any given

code is likely to compile cleanly.
○ Very good at C++ optimization.
○ Optimizes Fortran codes as well as PGI on the

average.
● Weaknesses

○ Not a commercial product, so no guarantee of bug
fixes.

○ Does not optimize as well as architecture targeted
compilers like Intel and Cray.

● Optimization recommendation:
○ -O3 -ffast-math

Pathscale

● This compiler is no longer supported by Cray.
● Contact consultants for assistance in converting to a

different compiler (consult@nersc.gov).
● Strengths

○ Good optimization, generally not as good as Intel
or Cray.

● Weaknesses
○ Support level and future of the product are

questionable.
○ Cray is withdrawing library support for this

compiler.
● Optimization recommendation:

○ -O3
○ Default optimization is -O2.

Which Compiler to Use?

● Porting a code to Hopper.
○ Use the existing compiler if it is on Hopper, since

relatively minor changes should be necessary to
the Makefile or configure script.

● Developing a code on Hopper.
○ For C++ use Intel or GNU.
○ Targeted for Cray systems? The Cray Fortran

and Intel compilers are likely to produce the fastest
code.

○ Will it be ported to other systems? GNU will
produce relatively fast code and can be ported
more easily to other architectures.

NERSC 6/7 Benchmarks

Benchmark Science

Area
Algorithm Concurrenc

y (Scaling)
Language

GTC Fusion PIC, Finite
Difference

2048
(weak)

f90

IMPACT-T Accelerator
Physics

PIC, FFT 1024
(strong)

f90

MILC Lattice
Gauge
Physics

Conjugate
Gradient,
FFT,
Sparse
Matrix

1024
(weak)

c, assembly

PARATEC Material
Science

DFT, FFT,
BLAS

1024
(strong)

f90

Benchmark Full Name Description
BT Block Tridiagonal Solve a synthetic system of nonlinear PDEs using a

block tridiagonal algorithm

CG Conjugate Gradient Estimate the smallest eigenvalue of a large sparse
symmetric positive-definite matrix using the inverse
iteration with the conjugate gradient method as a
subroutine for solving systems of linear equation

EP Embarassingly Parallel Generate independent Gaussian random variates
using the Marsaglia polar method

FT Fast Fourier Transform Solve a three-dimensional PDE using FFT

LU Lower-Upper
Symmetric Gauss-
Seidel

Solve a synthetic system of nonlinear PDEs using a
symmetric successive over-relaxation algorithm

MG MultiGrid Approximate the solution to a three-dimensional
discrete Poisson equation using the V-cycle multigrid
method

SP Scalar Pentadiagonal Solve a synthetic system of nonlinear PDEs using a
scalar pentadiagonal algorithm

3.3 NAS Parallel Benchmarks

Hopper Benchmark Performance
Normalized to PGI Performance

Compiling USG Supported Applications

● VASP - performs ab initio quantum-mechanical
molecular dynamics (MD) using pseudopotentials and
a plane wave basis set. (f90)

● QE (QuantumEspresso) - an integrated suite of
computer codes for electronic structure calculations
and materials modeling at the nanoscale. (f90)

● NAMD - a molecular dynamics (MD) program
designed for parallel computation. (C/C++)

● LAMMPS - a large scale classical molecular
dynamics code. (C++)

● BerkeleyGW - calculates the quasiparticle
properties and the optical responses of a large variety
of materials. (f90)

● NWChem- a computational chemistry package. (f90)

Building and Running NERSC Applications

Percent Performance Decrease/Improvement over PGI

Provided by Zhengji Zhao, Megan Bowling and Jack Deslippe from CUG 2012

Program Intel GNU Cray Best Compiler

VASP 12% to 5% 6% to 4% 0% to 11% Cray

QE 2% 1% 7% Intel

NAMD 14% 18% Failed GNU

LAMMPS 5% to 17% 5% to 9% 6% to 4% Intel

BerkeleyGW 0% 13% 8% PGI/Intel

NWChem 12% to 34% 9% to 28% Failed Intel

C++ Benchmarks from http://stlab.adobe.
com/performance/

Set of benchmarks to test how well a compiler optimizes C++
operations and language features. Not a test of floating point
performance.

stepanov_abstraction Sorting and summing values wrapped in curly braces.

stepanov_vector Replacing pointers with vector iterators and using reverse iterators.

functionobjects Instantiation of simple functors and the relative performance of function
pointers, functors and inline operators.

simple_types_constant_folding Folding constant math expressions on simple data types.

simple_types_loop_invariant Moving loop invariant calculations out of the loop.

loop_unroll Unrolling loops to hide instruction latency.

C++ Benchmark Performance

Benchmark PGI Cray Intel GNU

stepanov_abstraction 300.88 169.78 39.37 50.11

stepanov_vector Did not compile. 233.44 67.99 84.97

functionobjects 36.93 38.44 31.15 31.11

simple_types_constant_folding 1413.96 7856.88 1571.74 509.68

simple_types_loop_invariant 1041.58 2366.86 863.62 889.20

loop_unroll 5014.56 1323.57 363.53 866.86

Times are in seconds, lower is better.

Compiling for OpenMP on Hopper

● Cray compiler: -Oomp (on by default)
● PGI: -mp=nonuma
● Intel: -openmp
● GNU: -fopenmp
● Pathscale: -mp

Running with OpenMP on Hopper

● Run time all compilers:
○ - set OMP_NUM_THREADS to number of threads
○aprun -d numthreads ...

● Pathscale run time - set PSC_OMP_AFFINITY to
FALSE.

● Intel run time - use "-cc none" or "-cc numa_node"
arguments to aprun.

OpenMP/Hybrid Run Time Optimization

● Each 24 core Hopper compute node consists of 4 6
core "numa nodes".

● Best hybrid code performance when you allocate 1
MPI process with 6 threads to each of these numa
nodes and use their local memory.

● Single node parameters:
○ export OMP_NUM_THREADS=6
○ aprun -d 6 -N 4 -S 1 -ss

● For more details see https://www.nersc.
gov/users/computational-
systems/hopper/performance-and-optimization/using-
openmp-effectively-on-hopper/

OpenACC Support on Hopper

● OpenACC - A standard is designed to simplify parallel
programming of heterogeneous CPU/GPU systems.

● Accomplished with #pragma's and compiler directives
in the source code like OpenMP.

● Currently supported by the Cray compiler.
● Coming in verson 12.6 of the pgi compiler.

PGAS Support on Hopper

● PGAS (Partitioned Global Address Space) - allows
the programmer to view a single shared partitioned
address space where each variable is associated with
a single processor, but can be directly read and
written by any processor.

○ UPC - Unified Parallel C.
○ CAF - Coarray Fortran.

● Available with Cray, Berkeley UPC, and Intel
Compilers.

● See https://www.nersc.gov/users/training/online-
tutorials/introduction-to-pgas-languages/#toc-anchor-2

Carver Compiler Environment

● Default compiler is PGI for Franklin/Hopper
consistency, not as a NERSC recommendation.

● Intel compiler is available as a module, and generally
produces much faster code than PGI.

● GNU compiler has comparable performance to PGI.
● Optimization recommendations are the same as on

Hopper:
○ Intel: default, no optimization arguments.
○ PGI: -fast
○ GNU: -O3 -ffast-math

NERSC7 Compiler Environment

● NERSC7 will be a Cray Cascade Intel Xeon based
system.

● http://www.nersc.gov/news-publications/news/nersc-
center-news/2012/nersc-signs-supercomputing-
agreement-with-cray/

● Default compiler will be Intel.
● The Cray and GNU compilers will be available as

modules.
● There are no plans to have PGI or Pathscale on the

system.
● NERSC will do extensive performance analysis on

benchmarks before the system becomes available to
users.

Questions and Comments

