
Introduction to High Performance
Computers
Richard Gerber

NERSC User Services

2

•  To use HPC systems well, you need to
understand the basics and conceptual
design

–  Otherwise, too many things are mysterious
•  Programming for HPC systems is hard

–  To get your code to work properly
–  To make it run efficiently (performance)

•  You want to efficiently configure the
way your job runs
•  The technology is just cool!

Why Do You Care About
Architecture?

3

•  Terminology
•  5 main parts of an HPC system
•  CPUs
•  Memory
•  Nodes
•  Interconnect
•  Data Storage

Topics

1. CPUs
2. Memory (volatile)
3. Nodes
4.  Inter-node network
5. Non-volatile storage (disks, tape)

5 Major Parts of an HPC System

We’ll take the perspective of an application
programmer or a scientist.

What features of an HPC system are important
for you to know about?

We’ll talk about
the components
in just a bit.

5

Let’s Build an HPC System

6

A distributed-memory HPC
system

7

A distributed-memory HPC
system

8

A distributed-memory HPC
system

Main
Memory

Node

9

A distributed-memory HPC
system

Memory

Node

10

A distributed-memory HPC
system

Main
Memory

Node

Main
Memory

Node

11

A distributed-memory HPC
system

Main
Memory

Node

Main
Memory

Interconnect

Node

12

A distributed-memory HPC
system

Main
Memory

Node

Main
Memory

Interconnect
S
t
o
r
a
g
e

Node

13

A distributed-memory HPC
system

Main
Memory

Node

Main
Memory

Interconnect
S
t
o
r
a
g
e

CPUs

14

15

•  Modern computers are “stored
program computers”

–  Conceived by Turing in 1936
–  Implemented in 1949 (EDVAC)

•  Instructions are stored as data in
memory

–  Read and executed by control units
•  Arithmetic and logic

–  Performed by functional units separate
from instruction control units

Stored Program Computers

16

CPU (1 core)

FP
mult

FP
add

INT

Shift

Simplified View

FMA

17

CPU (1 core)

FP
mult

FP
add

INT

Shift

IN
T

R
eg

is
te

rs

FP

R
eg

is
te

rs

Simplified View

FMA

18

CPU (1 core)

FP
mult

FP
add

INT

Shift

IN
T

R
eg

is
te

rs

FP

R
eg

is
te

rs

Simplified View

FMA

19

CPU (1 core)

FP
mult

FP
add

INT

Shift

M
em

or
y

In
te

rfa
ce

IN
T

R
eg

is
te

rs

FP

R
eg

is
te

rs

Simplified View

FMA

20

CPU (1 core)

FP
mult

FP
add

INT

Shift

M
em

or
y

In
te

rfa
ce

L2
 C

ac
he

 IN
T

R
eg

is
te

rs

FP

R
eg

is
te

rs

Simplified View

FMA

512 KB

21

CPU (1 core)

FP
mult

FP
add

INT

Shift

M
em

or
y

In
te

rfa
ce

L2
 C

ac
he

L1
Data
Cache

L1
Instr.
Cache

IN
T

R
eg

is
te

rs

FP

R
eg

is
te

rs

Simplified View

FMA

512 KB
64 KB

64 KB
128

GBs

22

CPU (1 core)

FP
mult

FP
add

LD

ST
INT

Shift

M
em

or
y

In
te

rfa
ce

L2
 C

ac
he

L1
Data
Cache

L1
Instr.
Cache

IN
T

R
eg

is
te

rs

FP

R
eg

is
te

rs

Simplified View

FMA

23

•  There’s a lot more on the CPU than
shown previously, e.g.

–  L3 cache (~10 MB)
–  SQRT/Divide/Trig FP unit
–  “TLB” to cache memory addresses
–  Instruction decode
–  …

Additional Functional Units

24

•  Chip designers have added lots of
complexity to increase performance
•  Instruction Parallelism

–  Pipelined functional units (e.g. FPU)
–  Superscalar processors

•  Data Parallelism
–  SIMD

•  Cache lines
–  Data brought into cache in contiguous chunks

•  Out of order & speculative execution

On-Chip Performance
Enhancements

25

•  Special registers hold
multiple words of data
•  A single instruction (e.g.
floating point multiply) is
applied to all the data at
once
•  “SSE[2-4]” : Streaming
SIMD Extension
instruction set for x86
•  aka “Vectorization”

SIMD

Time to send a
zero-length
message.

“Data Access
Time”

26

Latency

27

Latencies

FP
mult

FP
add

LD

ST
INT

Shift

M
em

or
y

In
te

rfa
ce

L2
 C

ac
he

L1
Data
Cache

L1
Instr.
Cache

IN
T

R
eg

is
te

rs

FP

R
eg

is
te

rs

Simplified View

1 ns
10 ns

100
ns

FMA

28

Memory Bandwidth Bottleneck

FP
mult

FP
add

LD

ST
INT

Shift

M
em

or
y

In
te

rfa
ce

L2
 C

ac
he

L1
Data
Cache

L1
Instr.
Cache

IN
T

R
eg

is
te

rs

FP

R
eg

is
te

rs

Simplified View

1333 MHz
2 GB/sec

FMA

2 GHz
100 GB/sec

29

•  All CPUs (processors) now have
multiple compute “cores” on a single
“chip” or “die” with possibly multiple
chips per “socket” (the unit that plugs
into the motherboard)
•  Increased complexity
•  The trend is for ever-more cores per
die, mainly to hold down power needs

Multicore Processors

30

Hypothetical Socket (8 core)

Compute L1

Compute L1

Compute L1
L2

L3
Compute L1

L2 M
em

or
y

In
te

rfa
ce

Compute L1

Compute L1

Compute L1
L2

L3
Compute L1

L2 M
em

or
y

In
te

rfa
ce

HPC Nodes

31

•  A “node” is a (physical) collection of
CPUs, memory, and interfaces to other
nodes and devices.

–  Single memory address space
–  Memory access “on-node” is significantly
faster than “off-node” memory access

HPC Node

NUMA Node – Non-Uniform Memory Access
Single address space

33

Example NUMA Node

Compute L1 L2 L3

Compute L1 L2 L3

Compute L1 L2 L3

Compute L1 L2 L3

Additional Data Path

N
et

w
or

k
In

te
rfa

ce
(s

)

34

•  Many of top-ranked HPC systems are GPU-accelerated
•  “Graphics Processing Units” are composed of 100s of
simple “cores” that provide data-level on-chip parallelism
•  Private, limited memory
•  Yet more low-level complexity to consider

–  Another memory hierarchy
–  Have to move data to GPU memory “by hand”
–  400-800 cycle latency to GPU memory

•  Computations are extremely fast once data is in GPU
memory
•  Programmability is currently poor
•  Legacy codes may have to be rewritten to minimize
data movement
•  Not all algorithms map well to GPUs
•  What is their future in HPC?????

 GPUs

Internode Networks

35

•  Most HPC systems are “distributed
memory”

–  Many nodes, each with its own local
memory and distinct memory space
–  Nodes communicate over a specialized
high-speed, low-latency network

Distributed Memory Systems

•  Latency
–  Latencies between different nodes may be
different
–  Typically ~ a few µsec

•  Bandwidth
–  Typically ~ a few GB/sec in/out of a node

Interconnect Characteristics

38

•  Switched
–  Network switches connect and route
network traffic over the interconnect

•  Mesh
–  Each node sends and receives its own
data, and also relays data from other nodes
–  Messages hop from one node to another
until they reach their destination (must deal
with routing around down nodes)

Main Networks Types

Fat Tree Switched Network

Network
bandwidth
increases

e.g., Infiniband (IB)

Mesh Networks

Mesh network
topologies can
be complex

Grids
Cubes
Hypercubes
Tori

Disk and Tape Storage

41

•  File storage is the slowest level in
the data memory hierarchy

–  Not uncommon for checkpoints / memory
dumps to be taking a large fraction of total run
time (>50%?)
–  NERSC users say they want no more than
10% of time to be IO

Largest and Slowest Memory

43

Latencies

FP
mul
t

FP
add

LD

ST
INT

Shif
t

M
em

or
y

In
te

rfa
ce

L2
 C

ac
he

L1
Data
Cache

L1
Instr.
Cache

IN
T

R
eg

is
te

rs

FP

R
eg

is
te

rs

1 ns 10
ns

FM
A

100
ns

1,000,000
 ns

1,000
ns

Disk Storage

Node Interconnect

CPU

•  Large, Permanent Storage
–  Many PBs
–  Often tape storage fronted by a disk cache
–  Often accessed via ftp, grid tools, and/or
custom clients (e.g. hsi for HPSS)

Archival Storage

•  Most HPC OSs are Linux-Based
–  IBM AIX on POWER (also offers Linux)

•  “Generic” Cluster Systems
–  Full Linux OS on each node

•  Specialized HPC Systems (e.g., Cray XT
series, IBM Blue Gene)

–  Full Linux OS on login, “services” nodes
–  Lightweight kernel on compute nodes

•  Helps performance
•  May hinder functionality (DLLs, dynamic process
creation, some system calls may not be supported.)

HPC Operating Systems

46

•  Details of machine are important for performance
–  Processor and memory system (not just parallelism)
–  What to expect? Use understanding of hardware limits

•  There is parallelism hidden within processors
–  Pipelining, SIMD, etc

•  Locality is at least as important as computation
–  Temporal: re-use of data recently used
–  Spatial: using data nearby that recently used

•  Machines have memory hierarchies
–  100s of cycles to read from DRAM (main memory)
–  Caches are fast (small) memory that optimize average case

•  Can rearrange code/data to improve locality

Summary: Why Do You Care
About Architecture?

