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•  To use HPC systems well, you need to 
understand the basics and conceptual 
design 

–  Otherwise, too many things are mysterious 
•  Programming for HPC systems is hard 

–  To get your code to work properly 
–  To make it run efficiently (performance) 

•  You want to efficiently configure the 
way your job runs  
•  The technology is just cool! 

Why Do You Care About 
Architecture? 
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•  Terminology 
•  5 main parts of an HPC system 
•  CPUs 
•  Memory 
•  Nodes 
•  Interconnect 
•  Data Storage 

Topics 



1. CPUs 
2. Memory (volatile) 
3. Nodes 
4.  Inter-node network 
5. Non-volatile storage (disks, tape) 

5 Major Parts of an HPC System 

We’ll take the perspective of an application 
programmer or a scientist. 

What features of an HPC system are important 
for you to know about? 



We’ll talk about 
the components 
in just a bit. 
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Let’s Build an HPC System 



6 

A distributed-memory HPC 
system 
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A distributed-memory HPC 
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•  Modern computers are “stored 
program computers” 

–  Conceived by Turing in 1936 
–  Implemented in 1949 (EDVAC) 

•  Instructions are stored as data in 
memory 

–  Read and executed by control units 
•  Arithmetic and logic 

–  Performed by functional units separate 
from instruction control units 

Stored Program Computers 
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•  There’s a lot more on the CPU than 
shown previously, e.g. 

–  L3 cache (~10 MB) 
–  SQRT/Divide/Trig FP unit 
–  “TLB” to cache memory addresses 
–  Instruction decode 
–  … 

Additional Functional Units 
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•  Chip designers have added lots of 
complexity to increase performance 
•  Instruction Parallelism 

–  Pipelined functional units (e.g. FPU) 
–  Superscalar processors 

•  Data Parallelism 
–  SIMD 

•  Cache lines 
–  Data brought into cache in contiguous chunks 

•  Out of order & speculative execution 

On-Chip Performance 
Enhancements 
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•  Special registers hold 
multiple words of data 
•  A single instruction (e.g. 
floating point multiply) is 
applied to all the data at 
once 
•  “SSE[2-4]” : Streaming 
SIMD Extension 
instruction set for x86 
•  aka “Vectorization” 

SIMD 



Time to send a 
zero-length 
message. 

“Data Access 
Time” 
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Latency 
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Memory Bandwidth Bottleneck 
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•  All CPUs (processors) now have 
multiple compute “cores” on a single 
“chip” or “die” with possibly multiple 
chips per “socket” (the unit that plugs 
into the motherboard) 
•  Increased complexity 
•  The trend is for ever-more cores per 
die, mainly to hold down power needs 

Multicore Processors 
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HPC Nodes 
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•  A “node” is a (physical) collection of 
CPUs, memory, and interfaces to other 
nodes and devices. 

–  Single memory address space 
–  Memory access “on-node” is significantly 
faster than “off-node” memory access 

HPC Node 



NUMA Node – Non-Uniform Memory Access 
Single address space 
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Example NUMA Node 

Compute L1 L2 L3 

Compute L1 L2 L3 

Compute L1 L2 L3 

Compute L1 L2 L3 

Additional Data Path 

N
et

w
or

k 
In

te
rfa

ce
(s

) 



34 

•  Many of top-ranked HPC systems are GPU-accelerated  
•  “Graphics Processing Units” are composed of 100s of 
simple “cores” that provide data-level on-chip parallelism 
•  Private, limited memory 
•  Yet more low-level complexity to consider 

–  Another memory hierarchy 
–  Have to move data to GPU memory “by hand” 
–  400-800 cycle latency to GPU memory 

•  Computations are extremely fast once data is in GPU 
memory 
•  Programmability is currently poor 
•  Legacy codes may have to be rewritten to minimize 
data movement 
•  Not all algorithms map well to GPUs 
•  What is their future in HPC????? 

 GPUs 



Internode Networks 

35 



•  Most HPC systems are “distributed 
memory” 

–  Many nodes, each with its own local 
memory and distinct memory space 
–  Nodes communicate over a specialized 
high-speed, low-latency network 

Distributed Memory Systems 



•  Latency 
–  Latencies between different nodes may be 
different 
–  Typically ~ a few µsec 

•  Bandwidth 
–  Typically ~ a few GB/sec in/out of a node 

Interconnect Characteristics 
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•  Switched 
–  Network switches connect and route 
network traffic over the interconnect 

•  Mesh 
–  Each node sends and receives its own 
data, and also relays data from other nodes 
–  Messages hop from one node to another 
until they reach their destination (must deal 
with routing around down nodes) 

Main Networks Types 



Fat Tree Switched Network 

Network 
bandwidth 
increases 

e.g., Infiniband (IB) 



Mesh Networks 

Mesh network 
topologies can 
be complex 

Grids 
Cubes 
Hypercubes  
Tori 



Disk and Tape Storage 
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•  File storage is the slowest level in 
the data memory hierarchy 

–  Not uncommon for checkpoints / memory 
dumps to be taking a large fraction of total run 
time (>50%?) 
–  NERSC users say they want no more than 
10% of time to be IO 

Largest and Slowest Memory 
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•  Large, Permanent Storage 
–  Many PBs 
–  Often tape storage fronted by a disk cache 
–  Often accessed via ftp, grid tools, and/or 
custom clients (e.g. hsi for HPSS) 

Archival Storage 



•  Most HPC OSs are Linux-Based 
–  IBM AIX on POWER (also offers Linux) 

•  “Generic” Cluster Systems 
–  Full Linux OS on each node 

•  Specialized HPC Systems (e.g., Cray XT 
series, IBM Blue Gene) 

–  Full Linux OS on login, “services” nodes 
–  Lightweight kernel on compute nodes 

•  Helps performance 
•  May hinder functionality (DLLs, dynamic process 
creation, some system calls may not be supported.) 

HPC Operating Systems 



46 

•  Details of machine are important for performance 
–  Processor and memory system (not just parallelism) 
–  What to expect?  Use understanding of hardware limits 

•  There is parallelism hidden within processors 
–  Pipelining, SIMD, etc 

•  Locality is at least as important as computation 
–  Temporal: re-use of data recently used 
–  Spatial: using data nearby that recently used 

•  Machines have memory hierarchies 
–  100s of cycles to read from DRAM (main memory) 
–  Caches are fast (small) memory that optimize average case 

•  Can rearrange code/data to improve locality 

Summary: Why Do You Care 
About Architecture? 




