
Cray HPCS Productivity
Features

Joint NERSC/OLCF/NICS

Cray XT5 Workshop

February 1-3, 2010

Margaret Cahir

Cray, Inc.

Agenda

 Background on the Productivity Efforts

 2 Productivity Tools/Features
• ATP (Abnormal Termination Processing)

• APA (Automatic Profiling Analysis)

 Assessing Productivity Improvements

Cray Inc. Proprietary – Not For Public Disclosure 2/02/2010 2

Productivity Background

 The problem: Large-scale scientific computers are

getting larger and faster, but also more complex and more

difficult to use
• Complexity is especially challenging to new users

 HPCS Phase III Program specifically calls for

improvements in developer productivity
• This is completely separate from hardware performance

improvements

• Embodied in a set of 5 workflows. Developer productivity comes
into play in 3 of them:

• Writing large (multi-module) codes

• Writing small codes

• Porting codes

Cray Inc. Proprietary – Not For Public Disclosure 2/02/2010 3

(1) Writing Large Multi-Module Codes (3) Running Codes

Writing Small Codes

(2)

Level 1 Functional Workflows

Formulate

questions

Develop

Approach

Develop

Code
V&V

Analyze

Results

Production

Runs

Decide;

Hypothesize

(4) Porting Code

(5) Administration

Problem

Resolution

Resource

Management

HW/SW

Upgrade
Security

Management

• Workflows comprise many steps; many overlapping

• Item in red represent areas with highest HPC specific interest

Identify

Differences

Change

Code
Optimize

Cray Inc. Proprietary – Not For Public Disclosure 2/02/2010 4

Productivity Feature Work

 Cray is implementing a variety of new software and

hardware features aimed at improving productivity
• System Administration

 identifying problems

 upgrading system software

• Writing new codes
 Chapel language

• “global-view” language, designed for parallel programming

• See chapel.cray.com for more information

• Compiling, Optimization and Debugging
 Many features…. Luiz’s talk will cover this

 Includes ATP and APA

2/02/2010 Cray Inc. Proprietary – Not For Public Disclosure 5

Feature Assessments and Workflows

 Assess individual features or

tools for their contribution to

improving developer

productivity
• Compare how much time/effort

when using the tool or feature
vs. what effort was involved in
the 2002 timeframe

 Will apply those improvements

towards the workflows

 Starting with evaluations of 2

features:
• ATP – a debug tool

• APA – a feature of the
performance analysis tool
(CrayPat)

2/02/2010 Cray Inc. Proprietary – Not For Public Disclosure 6

Simplified Example of a Porting Workflow

Workflow 4: Porting

Section Step Scenario

Baseline Cascade

Time per
pass

Passes Time per
pass

Passes

Identify
Differences

Modify compile
flag

Compile w/
porting

Hour 4 to 5 Hour 1 to 2
Modify include

flags

Modify library
paths

Change math
calls

Sci Lib basic
porting

Hour 1 to 2 Hour 1 to 2

Change comm.
calls

Change Code

Compile
Compile

w/debugging
Hours

3 to 5

Minutes

1 to 2Debug
Debug Tools:

Porting
Hours Hour

Test
Mintues to

Hours
Minutes to

Hours

Scale and
Optimize

Run serial
Perf Tools:
Optimize

sequential code
Hours 4 Hours 2

Run parallel Perf Tools:
Optimize

parallel code
Day 4 Hours 3

Optimize

Total (min # passes) ?? ??

Total (max # passes) ?? ??

ATP – Abnormal Termination Processing

 The Problem: When a parallel application dies, it is next to

impossible to examine all the core files and backtraces
• Core files

 A single core file is usually not enough to debug

 Sufficient storage for all core files is a problem

• Backtraces
 A single backtrace is usually not enough

 The backtrace produced might not be from the process that first failed

 Today’s systems produce one or none

 ATP produces a single merged stack trace or reduced set of

core files. The benefits:
• Easy to navigate the merged stack trace

• Manageable set of core files

• Reduced amount of data saved
 Especially true in the core file situation

2/02/2010 Cray Inc. Proprietary – Not For Public Disclosure 7

Simplified Workflow – Major Steps

Cray Inc. Proprietary – Not For Public Disclosure 2/02/2010 8

Execute
(production)

Write

Modify

Port

Optimize

Debug

Execute
(verification)

Compile

& Link

Iterate until you

have a clean build

Iterate until you

have a clean execution

Iterate until results

are correct

Iterate until perf

goals met

Simplified Workflow with ATP

Cray Inc. Proprietary – Not For Public Disclosure 2/02/2010 9

Execute
(production)

Write

Modify

Port

Optimize

Debug

Execute
(verification)

Compile

& Link

ATP operates during

program execution

ATP – Abnormal Termination Processing

Cray Inc. Proprietary – Not For Public Disclosure 2/02/2010 10

Write

Modify

Port

App runs
(verification)

Compile

& Link

App runs
(production)

Optimize

Debug

Normal

Termination

ATP

Stacktrace
(atpMergedBT

.dot)

STATview

Exit

Abnormal

Termination

ATP

STATview

Exit

Abnormal

Termination

Stacktrace
(atpMergedBT

.dot)

ATP – How It Works

 ATP signal handler runs within an application. Its job is to

catch fatal errors. It handles the following signals:
• SIGQUIT, SIGILL, SIGTRAP, SIGABRT, SIGFPE, SIGBUS,

SIGSEGV, SIGSYS, SIGXCPU, SIGXFSZ

• Setting the environment variables MPICH_ABORT_ON_ERROR
and SHMEM_ABORT_ON_ERROR will cause a signal to be thrown
and captured for MPI and SHMEM fatal errors

 ATP daemon running on the compute node captures

signals, starts termination processing
• Rest of the application processes are notified

• Generates a stacktrace

• Creates a file named *.dot

 The *.dot file is viewed with the STATview tool
• Pre-release of STATview is available on workshop systems

2/02/2010 Cray Inc. Proprietary – Not For Public Disclosure 11

STATview Example

2/02/2010 Cray Inc. Proprietary – Not For Public Disclosure 12

ATP – Future Features

 Automatic invocation of ATP
• Today users need to insert signal handler

• With next release of OS, just need to load atp module

 Core file subset
• Intelligence from stack backtrace help decides which core files to

produce

 Hold a dying application in stasis
• Gives the user an opportunity to attach a debugger to the application

 Send email notification to user that job has failed

 Improved scalability
• ATP stack backtraces have been produced on applications made up

of about 2000 processes

• Expect to be able to handle applications with 100,000s of processes
in the future

2/02/2010 Cray Inc. Proprietary – Not For Public Disclosure 13

ATP – Getting Started

 Get atp_example.tar from the Workshop website
$ wget http://www.nersc.gov/projects/workshops/CrayXT/tbd

$ tar –xvf atp_example.tar

 On a Cray XT with atp installed, type:
$ module load xt-atp

$ module load stat

$ man intro_atp

2/02/2010 Cray Inc. Proprietary – Not For Public Disclosure 14

http://www.nersc.gov/projects/workshops/CrayXT/

APA – Automatic Profile Analysis

 The Problem: performance tools have many options and it

can be a lot of work to set up options to profile a program

with minimum overhead

 APA is an option that automatically creates a template file

that can be used to set up a performance profile of the run

 The Benefits:
• You can quickly and efficiently generate a performance profile

 Automatically excludes those routines which took a small amount of time
to reduce runtime overhead

 Automatically specifies hardware counter groups

 Automatically lists which libraries to profile

• You do not need to wade through pages of documentation in order to
do this

• The template (.apa) file can subsequently be modified to refine the
performance data collection
 Also serves as usage documentation

2/02/2010 Cray Inc. Proprietary – Not For Public Disclosure 15

Simplified Workflow with APA

Cray Inc. Proprietary – Not For Public Disclosure 2/02/2010 16

Execute
(production)

Write

Modify

Port

Optimize

Debug

Execute
(verification)

Compile

& Link

APA used here

APA – How It Works

Cray Inc. Proprietary – Not For Public Disclosure 2/02/2010 17

pat_build

-O apa

aprun

(execute)

myprog

.xf file

pat_report

myprog+pat

Performance

report

.apa

pat_report

aprun
(execute)

pat_build

-O filename.apa

myprog+apa

.xf file

Performance

report
User can

modify this

template file

User analyzes

this report

APA – Subsequent Iterations

Cray Inc. Proprietary – Not For Public Disclosure 2/02/2010 18

pat_build

-O apa

aprun

(execute)

myprog

.xf file

pat_report

myprog+pat

Performance

report

.apa

pat_report

aprun
(execute)

pat_build

–O filename.apa

myprog+apa

.xf file

Performance

report

Modify

.apa

APA – How It Works

 User first instruments code with pat_build –O apa

• Straightforward and requires little overhead when running

 User executes the application
• The information needed to make a profile run is generated and

produced in a file with the extension .apa

 Reinstrument the code (using .apa file)

 Rerun the code (produces .xf file)

 Produce the profile report

2/02/2010 Cray Inc. Proprietary – Not For Public Disclosure 19

APA – Getting Started

 Get apa_example.tar from the Workshop website
$ wget http://www.nersc.gov/projects/workshops/CrayXT/tbd

$ tar –xvf apa_example.tar

 Alternatively:
• See Section 2.4 Using Automatic Program Analysis in the manual

Using Cray Performance Analysis Tools S-2376-50

• Available on the docs.cray.com website

 Another alternative:
$ module load xt-craypat

$ man intro_craypat

2/02/2010 Cray Inc. Proprietary – Not For Public Disclosure 20

http://www.nersc.gov/projects/workshops/CrayXT/
http://www.nersc.gov/projects/workshops/CrayXT/
http://www.nersc.gov/projects/workshops/CrayXT/

Feature Assessments
 Objective is to answer the following questions:

• Does this feature help boost the productivity of developers?

• How much does it help?

• How easy was it to learn how to use the feature?

 We asking users to try out these features and report back on

their experience

 We are providing:
• Quick, get-started guide for each feature which includes

 Feature description

 Feature benefit

 How to

• Simple example
 Includes a shell script which walks through the steps

Cray Inc. Proprietary – Not For Public Disclosure 2/02/2010 21

Feedback

 How and when
• Fill in provided feedback forms during workshop

• Talk to us during Hands-on time

• Contact us via email
 Margaret Cahir n13671@cray.com

 Don Mason dmm@cray.com

 Would like to gather initial impressions of new tools and

features
• How easy it was to learn

• How useful will it be

• Time spent is of interest

2/02/2010 Cray Inc. Proprietary – Not For Public Disclosure 22

mailto:n13671@cray.com

