
Cray XT Porting, Scaling, and
Optimization Best Practices

Jeff Larkin
<larkin@cray.com>

COMPILING

December 09 Slide 2

Try every compiler available to you, there‟s no “best”
PGI, Cray, Pathscale, Intel, GCC are all available, but not necessarily
on all machines

Each compiler favors certain optimizations, which may
benefit applications differently

Test your answers carefully
Order of operation may not be the same between compilers or even
compiler versions
You may have to decide whether speed or precision is more
important to you

Choosing a Compiler

December 09 Slide 3

PGI
-fast –Mipa=fast
man pgf90; man pgcc; man pgCC

Cray
<none, turned on by default>
man crayftn; man craycc ; man crayCC

Pathscale
-Ofast
man eko (“Every Known Optimization”)

GNU
-O2 / -O3
man gfortran; man gcc; man g++

Intel
-fast
man ifort; man icc; man iCC

Choosing Compiler Flags

December 09 Slide 4

PROFILING AND DEBUGGING

December 09 Slide 5

Codes don‟t run the same at thousands of cores as
hundreds, 10s of thousands as thousands, or 100s of
thousands as 10s

Determine how many nodes you wish to run on and test at
that size, don‟t test for throughput

Profile and Debug “at Scale”

December 09 Slide 6

0

500

1000

1500

2000

T
im

e
 (

s
)

Scaling (Time)

v1 (time)

v2 (time)

Profile and Debug with Real Science

Choose a real problem, not a toy

What do you want to achieve with the machine?

How will you really run your code?

Will you really run without I/O?

December 09 Slide 7

Compiler Feedback
Most compilers can tell you a lot about what they do to your code

Did your important loop vectorize?
Was a routine inlined?
Was this loop unrolled?

It‟s just as important to know what the compiler didn‟t do
Some C/C++ loops won‟t vectorize without some massaging
Some loop counts aren‟t known at runtime, so optimization is
limited

Flags to know:
PGI: -Minfo=all –Mneginfo=all
Cray: -rm (Fortran) (or also –O[neg]msgs), -hlist=m (C) (or also –h
[neg]msgs)
Pathscale: -LNO:simd_verbose=ON
Intel: -vec-report1

What Data Should We Collect?

December 09 Slide 8

Compiler Feedback Examples: PGI

! Matrix Multiply

do k = 1, N

do j = 1, N

do i = 1, N

c(i,j) = c(i,j) + &

a(i,k) * b(k,j)

end do

end do

end do

24, Loop interchange

produces reordered loop

nest: 25,24,26

26, Generated an alternate

loop for the loop

Generated vector

sse code for the loop

Generated 2

prefetch instructions

for the loop

December 09 Slide 9

23. ! Matrix Multiply

24. ib------------< do k = 1, N

25. ib ibr4-------< do j = 1, N

26. ib ibr4 Vbr4--< do i = 1, N

27. ib ibr4 Vbr4 c(i,j) = c(i,j) + a(i,k) * b(k,j)

28. ib ibr4 Vbr4--> end do

29. ib ibr4-------> end do

30. ib------------> end do

i – interchanged

b – blocked

r – unrolled

V - Vectorized

Compiler Feedback Examples: Cray

December 09 Slide 10

-LNO:simd_verbose appears to be broken

Compiler Feedback Examples: Pathscale

December 09 Slide 11

mm.F90(14): (col. 3) remark: PERMUTED LOOP WAS VECTORIZED.

mm.F90(25): (col. 7) remark: LOOP WAS VECTORIZED.

Compiler Feedback Examples: Intel

December 09 Slide 12

Hardware Performance Counters
Using tools like CrayPAT it‟s possible to know what the processor is
doing
We can get counts for

FLOPS
Cache Hits/Misses
TLB Hits/Misses
Stalls
…

We can derive
FLOP Rate
Cache Hit/Miss Ratio
Computational Intensity
…

What Data Should We Collect?

December 09 Slide 13

Use Craypat‟s APA
First gather sampling for line
number profile

Light-weight
Guides what should and should
not be instrumented

Second gather instrumentation (-g
mpi,io,blas,lapack,math …)

Hardware counters
MPI message passing
information
I/O information
Math Libraries
…

Gathering Performance Data

load module

make

pat_build -O apa a.out

Execute

pat_report *.xf

Examine *.apa

pat_build –O *.apa

Execute

You can edit this file, if desired, and use it

--

HWPC group to collect by default.

-Drtenv=PAT_RT_HWPC=1 # Summary with TLB metrics.

--

Libraries to trace.

-g mpi,math

--

-w # Enable tracing of user-defined functions.

Note: -u should NOT be specified as an additional option.

9.08% 188347 bytes

-T ratt_i_

6.71% 177904 bytes

-T rhsf_

5.61% 205682 bytes

-T ratx_i_

5.59% 22005 bytes

-T transport_m_computespeciesdiffflux_

Sample APA File (Significantly Trimmed)

biolib Cray Bioinformatics library routines

blacs Basic Linear Algebra
communication subprograms

blas Basic Linear Algebra subprograms

caf Co-Array Fortran (Cray X2 systems
only)

fftw Fast Fourier Transform library (64-
bit only)

hdf5 manages extremely large and
complex data collections

heap dynamic heap

io includes stdio and sysio groups

lapack Linear Algebra Package

lustre Lustre File System

math ANSI math

mpi MPI

netcdf network common data form
(manages array-oriented scientific data)

omp OpenMP API (not supported on
Catamount)

omp-rtl OpenMP runtime library (not
supported on Catamount)

portals Lightweight message passing API

pthreads POSIX threads (not supported on
Catamount)

scalapack Scalable LAPACK

shmem SHMEM

stdio all library functions that accept or
return the FILE* construct

sysio I/O system calls

system system calls

upc Unified Parallel C (Cray X2 systems
only)

CrayPAT Groups

Regions, useful to break up long routines
int PAT_region_begin (int id, const char *label)
int PAT_region_end (int id)

Disable/Enable Profiling, useful for excluding initialization
int PAT_record (int state)

Flush buffer, useful when program isn‟t exiting cleanly
int PAT_flush_buffer (void)

Useful API Calls, for the control-freaks

USER / rhsf_

--

Time% 74.6%

Time 556.742885 secs

Imb.Time 14.817686 secs

Imb.Time% 2.6%

Calls 2.3 /sec 1200.0 calls

PAPI_L1_DCM 14.406M/sec 7569486532 misses

PAPI_TLB_DM 0.225M/sec 117992047 misses

PAPI_L1_DCA 921.729M/sec 484310815400 refs

PAPI_FP_OPS 871.740M/sec 458044890200 ops

User time (approx) 525.438 secs 1103418882813 cycles 94.4%Time

Average Time per Call 0.463952 sec

CrayPat Overhead : Time 0.0%

HW FP Ops / User time 871.740M/sec 458044890200 ops 10.4%peak(DP)

HW FP Ops / WCT 822.722M/sec

Computational intensity 0.42 ops/cycle 0.95 ops/ref

MFLOPS (aggregate) 1785323.32M/sec

TLB utilization 4104.61 refs/miss 8.017 avg uses

D1 cache hit,miss ratios 98.4% hits 1.6% misses

D1 cache utilization (M) 63.98 refs/miss 7.998 avg uses

Sample CrayPAT HWPC Data

December 09 Slide 18

CrayPAT HWPC Groups

0 Summary with instruction

metrics

1 Summary with TLB metrics

2 L1 and L2 metrics

3 Bandwidth information

4 Hypertransport information

5 Floating point mix

6 Cycles stalled, resources idle

7 Cycles stalled, resources full

8 Instructions and branches

9 Instruction cache

10 Cache hierarchy

11 Floating point operations mix

(2)

12 Floating point operations mix

(vectorization)

13 Floating point operations mix

(SP)

14 Floating point operations mix

(DP)

15 L3 (socket-level)

16 L3 (core-level reads)

17 L3 (core-level misses)

18 L3 (core-level fills caused by

L2 evictions)

19 Prefetches

December 09 Slide 19

How many times are MPI routines called and with how much
data?

Do I have a load imbalance?

Are my processors waiting for data?

Could I perform better by adjusting MPI environment
variables?

MPI Statistics

December 09 Slide 20

MPI Msg Bytes | MPI Msg | MsgSz | 16B<= | 256B<= | 4KB<= |Experiment=1

| Count | <16B | MsgSz | MsgSz | MsgSz |Function

| | Count | <256B | <4KB | <64KB | Caller

| | | Count | Count | Count | PE[mmm]

3062457144.0 | 144952.0 | 15022.0 | 39.0 | 64522.0 | 65369.0 |Total

|---

| 3059984152.0 | 129926.0 | -- | 36.0 | 64522.0 | 65368.0 |mpi_isend_

||--

|| 1727628971.0 | 63645.1 | -- | 4.0 | 31817.1 | 31824.0 |MPP_DO_UPDATE_R8_3DV.in.MPP_DOMAINS_MOD

3| | | | | | | MPP_UPDATE_DOMAIN2D_R8_3DV.in.MPP_DOMAINS_MOD

||||--

4||| 1680716892.0 | 61909.4 | -- | -- | 30949.4 | 30960.0 |DYN_CORE.in.DYN_CORE_MOD

5||| | | | | | | FV_DYNAMICS.in.FV_DYNAMICS_MOD

6||| | | | | | | ATMOSPHERE.in.ATMOSPHERE_MOD

7||| | | | | | | MAIN__

8||| | | | | | | main

|||||||||---

9|||||||| 1680756480.0 | 61920.0 | -- | -- | 30960.0 | 30960.0 |pe.13666

9|||||||| 1680756480.0 | 61920.0 | -- | -- | 30960.0 | 30960.0 |pe.8949

9|||||||| 1651777920.0 | 54180.0 | -- | -- | 23220.0 | 30960.0 |pe.12549

|||||||||===

Sample CrayPAT MPI Statistics

December 09 Slide 21

How much time is spent in I/O?

How much data am I writing or reading?

How many processes are performing I/O?

I/O Statistics

December 09 Slide 22

OPTIMIZING YOUR CODE

December 09 Slide 23

1. Fix any load imbalance

2. Fix your hotspots
1. Communication

• Pre-post receives

• Overlap computation and communication

• Reduce collectives

• Adjust MPI environment variables

• Use rank reordering

2. Computation

• Examine the hardware counters and compiler feedback

• Adjust the compiler flags, directives, or code structure to improve
performance

3. I/O

• Stripe files/directories appropriately

• Use methods that scale

• MPI-IO or Subsetting

At each step, check your answers and performance.

Between each step, gather your data again.

Step by Step

December 09 Slide 24

COMMUNICATION

December 09 Slide 25

July 2009 Slide 26

New Features in MPT 3.1 Dec 2008

Support for up to 256K MPI ranks
Previous limit was 64k

Support for up to 256K SHMEM PEs
Previous limit was 32k

Requires re-compile with new SHMEM header file

Auto-scaling default values for MPICH environment variables
Default values change based on total number of ranks in job
Allows higher scaling of MPT jobs with fewer tweaks to environment variables

User can override by setting the environment variable

More details later on…

Dynamic allocation of MPI internal message headers
Apps no longer abort if it runs out of headers

MPI dynamically allocates more message headers in quantities of
MPICH_MSGS_PER_PROC

July 2009 Slide 27

New Features in MPT 3.1 (cont.)

Optimized MPI_Allgather algorithm
Discovered MPI_Allgather algorithm scaled very poorly at high process counts

MPI_Allgather used internally during MPI_Init, MPI_Comm_split, etc.

MPI_collopt_Init for a 90,000 rank MPI job took ~ 158 seconds

Implemented a new MPI_Allgather which scales well for small data sizes

MPI_collopt_Init for a 90,000 rank MPI job now takes ~ 5 seconds

New algorithm is default for 2048 bytes or less (MPICH_ALLGATHER_VSHORT_MSG)

Wildcard matching for filenames in MPICH_MPIIO_HINTS
Allows users to specify hints for multiple files opened with MPI_File_open
using wildcard (*, ?, [a-b]) characters

MPI Barrier before collectives
Optionally inserts an MPI_Barrier call before a collective

May be helpful for load-imbalanced codes, or when calling collectives in a loop

export MPICH_COLL_SYNC=1 (enables barrier for all collectives)

export MPICH_COLL_SYNC=MPI_Reduce,MPI_Bcast

July 2009 Slide 28

New Features in MPT 3.1 (cont.)

MPI-IO collective buffering alignment
The I/O work is divided up among the aggregators based on physical I/O
boundaries and the size of the I/O request.

Enable algorithms by setting the MPICH_MPIIO_CB_ALIGN env variable.

Additional enhancements in MPT 3.2

Enhanced MPI shared library support
Dynamic shared library versions released for all compilers (except CCE)

MPI Thread Safety
MPT 3.1 has support for the following thread-safety levels:

MPI_THREAD_SINGLE

MPI_THREAD_FUNNELED

MPI_THREAD_SERIALIZED

For full thread safety support (MPI_THREAD_MULTIPLE)

Need to link in a separate libmpich_threadm.a library (-lmpich_threadm)

Implemented via a global lock

A functional solution (not a high-performance solution)

July 2009 Slide 29

New Features in MPT 3.2 April 2009

Optimized SMP-aware MPI_Bcast algorithm
New algorithm is enabled by default for all message sizes

Optimized SMP-aware MPI_Reduce algorithm
New algorithm is enabled by default for messages sizes below 128k bytes

Improvements to MPICH_COLL_OPT_OFF env variable
All the Cray-optimized collectives are enabled by default

Finer-grain switch to enable/disable the optimized collectives
Provide a comma-separated list of the collective names to disable

export MPICH_COLL_OPT_OFF=MPI_Allreduce,MPI_Bcast

If optimized collective is disabled, you get the standard MPICH2 algorithms

MPI-IO Collective Buffering Available
New algorithm to divide I/O workload into Lustre stripe-sized pieces and assign
those pieces to particular aggregators
export MPICH_MPIIO_CB_ALIGN=2

July 2009 Slide 30

New Features in MPT 3.3 June 2009

MPI-IO Collective Buffering On by Default
The MPICH_MPIIO_CB_ALIGN=2 algorithm is made the default

White paper available at http://docs.cray.com/kbase/

Performance results shown in later slides

Intel Compiler Support
MPT libraries now supplied for the Intel compiler

Some issues with this initial release

MPICH_CPUMASK_DISPLAY environment variable
Displays MPI process CPU affinity mask

July 2009 Slide 31

New Features in MPT 3.3 (cont.)

MPICH_CPUMASK_DISPLAY env variable
Displays MPI process CPU affinity mask
export MPICH_CPUMASK_DISPLAY=1

aprun –n 8 –N 8 –cc cpu ./mpi_exe

[PE_0]: cpumask set to 1 cpu on nid00036, cpumask = 00000001

[PE_1]: cpumask set to 1 cpu on nid00036, cpumask = 00000010

[PE_2]: cpumask set to 1 cpu on nid00036, cpumask = 00000100

[PE_3]: cpumask set to 1 cpu on nid00036, cpumask = 00001000

[PE_4]: cpumask set to 1 cpu on nid00036, cpumask = 00010000

[PE_5]: cpumask set to 1 cpu on nid00036, cpumask = 00100000

[PE_6]: cpumask set to 1 cpu on nid00036, cpumask = 01000000

[PE_7]: cpumask set to 1 cpu on nid00036, cpumask = 10000000

aprun –n 8 –N 8 –cc numa_node ./mpi_exe

[PE_0]: cpumask set to 4 cpus on nid00036, cpumask = 00001111

[PE_1]: cpumask set to 4 cpus on nid00036, cpumask = 00001111

[PE_2]: cpumask set to 4 cpus on nid00036, cpumask = 00001111

[PE_3]: cpumask set to 4 cpus on nid00036, cpumask = 00001111

[PE_4]: cpumask set to 4 cpus on nid00036, cpumask = 11110000

[PE_5]: cpumask set to 4 cpus on nid00036, cpumask = 11110000

[PE_6]: cpumask set to 4 cpus on nid00036, cpumask = 11110000

[PE_7]: cpumask set to 4 cpus on nid00036, cpumask = 11110000

July 2009 Slide 32

Coming Soon: MPT 4.0 (Q4 2009)

Merge to ANL MPICH2 1.1
Support for the MPI 2.1 Standard (except dynamic processes)

Binary-compatible with Intel MPI

Additional MPI-IO Optimizations

Improvements in Allgatherv at > 2K processors
10X – 2000x improvement

Improvements in Scatterv at > 2KB message size
20-80% improvement

MPICH2 Gemini Device Support (Internal use only)

SHMEM Gemini Device Framework

July 2009 Slide 33

Auto-Scaling MPI Environment Variables

Key MPI variables that change their default values
dependent on job size

Higher scaling of MPT jobs with fewer tweaks to env variables
“Default” values are based on total number of ranks in job
See MPI man page for specific formulas used

We don‟t always get it right

Adjusted defaults aren't perfect for all applications
Assumes a somewhat communication-balanced application
Users can always override the new defaults
Understanding and fine-tuning these variables may help performance

MPICH_MAX_SHORT_MSG_SIZE MPICH_PTL_UNEX_EVENTS

MPICH_UNEX_BUFFER_SIZE MPICH_PTL_OTHER_EVENTS

July 2009 Slide 34

Cray MPI XT Portals Communications

Short Message Eager Protocol

The sending rank “pushes” the message to the receiving rank
Used for messages MPICH_MAX_SHORT_MSG_SIZE bytes or less
Sender assumes that receiver can handle the message

Matching receive is posted - or -
Has available event queue entries (MPICH_PTL_UNEX_EVENTS)
and buffer space (MPICH_UNEX_BUFFER_SIZE) to store the
message

Long Message Rendezvous Protocol

Messages are “pulled” by the receiving rank
Used for messages greater than MPICH_MAX_SHORT_MSG_SIZE
bytes
Sender sends small header packet with information for the receiver to
pull over the data
Data is sent only after matching receive is posted by receiving rank

July 2009 Slide 35

MPT Eager Protocol
Data “pushed” to the receiver
(MPICH_MAX_SHORT_MSG_SIZE bytes or less)

MPI_RECV is posted prior to MPI_SEND call

MPI

Unexpected

Buffers

Unexpected

Msg Queue

Sender

RANK 0

Receiver

RANK 1

Eager

Short Msg ME

Incoming Msg

Rendezvous

Long Msg ME
App ME

Unexpected

Event Queue

Match Entries Posted by MPI

to handle Unexpected Msgs

STEP 3

Portals DMA PUT

STEP 2

MPI_SEND call

STEP 1

MPI_RECV call

Post ME to Portals

(MPICH_PTL_UNEX_EVENTS)

Other Event Queue

(MPICH_PTL_OTHER_EVENTS)

(MPICH_UNEX_BUFFER_SIZE)

S

E

A

S

T

A

R

July 2009 Slide 36

MPT Eager Protocol
Data “pushed” to the receiver
(MPICH_MAX_SHORT_MSG_SIZE bytes or less)

MPI_RECV is not posted prior to MPI_SEND call

MPI

Unexpected

Buffers

Unexpected

Msg Queue

Sender

RANK 0

Receiver

RANK 1

Eager

Short Msg ME

Incoming Msg

Rendezvous

Long Msg ME

Unexpected

Event Queue

Match Entries Posted by MPI

to handle Unexpected Msgs

STEP 2

Portals DMA PUT
STEP 4

Memcpy of data

STEP 1

MPI_SEND call

STEP 3

MPI_RECV call

No Portals ME

S

E

A

S

T

A

R

(MPICH_UNEX_BUFFER_SIZE)

(MPICH_PTL_UNEX_EVENTS)

July 2009 Slide 37

Data is not sent until MPI_RECV is issued

MPI

Unexpected

Buffers

Unexpected

Msg Queue

Sender

RANK 0

Receiver

RANK 1

Eager

Short Msg ME

Incoming Msg

Rendezvous

Long Msg ME

Unexpected

Event Queue

App ME

STEP 2

Portals DMA PUT

of Header

STEP 4

Receiver issues

GET request to

match Sender ME

STEP 5

Portals DMA of Data

Match Entries Posted by MPI

to handle Unexpected Msgs

STEP 1

MPI_SEND call

Portals ME created

STEP 3

MPI_RECV call

Triggers GET request

MPT Rendezvous Protocol
Data “pulled” by the receiver
(> MPICH_MAX_SHORT_MSG_SIZE bytes)

S

E

A

S

T

A

R

July 2009 Slide 38

Auto-Scaling MPI Environment Variables

Default values for various MPI jobs sizes

MPI Environment Variable Name 1,000 PEs 10,000 PEs 50,000 PEs 100,000 PEs

MPICH_MAX_SHORT_MSG_SIZE

(This size determines whether
the message uses the Eager or
Rendezvous protocol)

128,000

bytes

20,480 4096 2048

MPICH_UNEX_BUFFER_SIZE

(The buffer allocated to hold the
unexpected Eager data)

60 MB 60 MB 150 MB 260 MB

MPICH_PTL_UNEX_EVENTS

(Portals generates two events for
each unexpected message
received)

20,480

events
22,000 110,000 220,000

MPICH_PTL_OTHER_EVENTS

(Portals send-side and expected
events)

2048

events
2500 12,500 25,000

Slide 38

July 2009 Slide 39

Cray MPI Collectives

Our Collectives Strategy
Improve performance over standard ANL MPICH2 algorithms

Tune for our interconnect(s)
Work for any intra-communicator (not just MPI_COMM_WORLD)
Enabled by default
Can be selectively disabled via MPICH_COLL_OPT_OFF

export MPICH_COLL_OPT_OFF=mpi_bcast,mpi_allreduce

Many have user-adjustable cross-over points (see man page)

Cray Optimized Collectives
MPI_Allgather (for small messages)

MPI_Alltoall (changes to the order of exchanges)

MPI_Alltoallv / MPI_Alltoallw (windowing algorithm)

Cray Optimized SMP-aware Collectives
MPI_Allreduce
MPI_Barrier
MPI_Bcast (new in MPT 3.1.1)
MPI_Reduce (new in MPT 3.1.2)

SMP-aware Collectives – Allreduce Example

July 2009 Slide 40

Identify Node-Captain rank.
Perform a local on-node
reduction to node-captain.
NO network traffic.

STEP 1

Perform a local on-node
bcast. NO network traffic.

STEP 3

Perform an Allreduce with node-
captains only. This reduces the
process count by a factor of 8 on
XT5.

STEP 2

July 2009 Slide 41

Performance Comparison of MPI_Allreduce

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

Message Size

Percent Improvement of SMP-aware MPI_Allreduce
(compared to MPICH2 algorithm)
1024 PEs on an Istanbul System

Allreduce

Default vs MPICH_COLL_OPT_OFF=MPI_Allreduce

Percent Improvement of SMP-aware MPI_Allreduce

(compared to MPICH2 algorithm)

1024 PEs on an Istanbul System

July 2009 Slide 42

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

Message Size

Percent Improvement of SMP-aware MPI_Bcast
(compared to MPICH2 algorithm)
1024 PEs on an Istanbul System

Bcast

Performance Comparison of MPI_Bcast
Default vs MPICH_COLL_OPT_OFF=MPI_Bcast

Percent Improvement of SMP-aware MPI_Bcast

(compared to MPICH2 algorithm)

1024 PEs on an Istanbul System

July 2009 Slide 43

Performance Comparison of MPI_Reduce
Default vs MPICH_COLL_OPT_OFF=MPI_Reduce

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

Message Size

Percent Improvement of SMP-aware MPI_Reduce
(compared to MPICH2 algorithm)
1024 PEs on an Istanbul System

Reduce

Percent Improvement of SMP-aware MPI_Reduce

(compared to MPICH2 algorithm)

1024 PEs on an Istanbul System

July 2009 Slide 44

Performance Comparison of MPI_Allgather
Default vs MPICH_COLL_OPT_OFF=MPI_Allgather

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

1 2 4 8 16 32 64 128 256 512 1024 2048

Message Size

Percent Improvement of Optimized MPI_Allgather
(compared to MPICH2 algorithm)
1024 PEs on an Istanbul System

Allgather

Percent Improvement of Optimized MPI_Allgather

(compared to MPICH2 algorithm)

1024 PEs on an Istanbul System

July 2009 Slide 45

MPI-IO Improvements

MPI-IO collective buffering

MPICH_MPIIO_CB_ALIGN=0

Divides the I/O workload equally among all aggregators

Inefficient if multiple aggregators reference the same physical I/O block

Default setting in MPT 3.2 and prior versions

MPICH_MPIIO_CB_ALIGN=1

Divides the I/O workload up among the aggregators based on physical I/O
boundaries and the size of the I/O request

Allows only one aggregator access to any stripe on a single I/O call

Available in MPT 3.1

MPICH_MPIIO_CB_ALIGN=2

Divides the I/O workload into Lustre stripe-sized groups and assigns them
to aggregators

Persistent across multiple I/O calls, so each aggregator always accesses
the same set of stripes and no other aggregator accesses those stripes

Minimizes Lustre file system lock contention

Default setting in MPT 3.3

IOR benchmark 1,000,000 bytes

MPI-IO API , non-power-of-2 blocks and transfers, in this case blocks and

transfers both of 1M bytes and a strided access pattern. Tested on an XT5 with 32

PEs, 8 cores/node, 16 stripes, 16 aggregators, 3220 segments, 96 GB file

0

200

400

600

800

1000

1200

1400

1600

1800

M
B

/S
ec

July 2009

HYCOM MPI-2 I/O

On 5107 PEs, and by application design, a subset of the PEs(88), do the writes.

With collective buffering, this is further reduced to 22 aggregators (cb_nodes)

writing to 22 stripes. Tested on an XT5 with 5107 PEs, 8 cores/node

M
B

/S
ec

0

500

1000

1500

2000

2500

3000

3500

4000

July 2009

COMMUNICATION

Detecting a load imbalance

July 2009 Slide 48

Craypat load-imbalance data
Table 1: Profile by Function Group and Function

Time % | Time | Imb. Time | Imb. | Calls |Experiment=1

| | | Time % | |Group

| | | | | Function

| | | | | PE='HIDE'

100.0% | 1061.141647 | -- | -- | 3454195.8 |Total

|--

| 70.7% | 750.564025 | -- | -- | 280169.0 |MPI_SYNC

||---

|| 45.3% | 480.828018 | 163.575446 | 25.4% | 14653.0 |mpi_barrier_(sync)

|| 18.4% | 195.548030 | 33.071062 | 14.5% | 257546.0 |mpi_allreduce_(sync)

|| 7.0% | 74.187977 | 5.261545 | 6.6% | 7970.0 |mpi_bcast_(sync)

||===

| 15.2% | 161.166842 | -- | -- | 3174022.8 |MPI

||---

|| 10.1% | 106.808182 | 8.237162 | 7.2% | 257546.0 |mpi_allreduce_

|| 3.2% | 33.841961 | 342.085777 | 91.0% | 755495.8 |mpi_waitall_

||===

| 14.1% | 149.410781 | -- | -- | 4.0 |USER

||---

|| 14.0% | 148.048597 | 446.124165 | 75.1% | 1.0 |main

|==

What is causing the load imbalance
Computation

Is decomposition appropriate?
Would RANK_REORDER help?

Communication
Is decomposition appropriate?
Would RANK_REORDER help?
Are receives pre-posted?

OpenMP may help
Able to spread workload with less overhead

Large amount of work to go from all-MPI to Hybrid
• Must accept challenge to OpenMP-ize large amount of code

Fixing a Load Imbalance

December 09 Slide 50

COMMUNICATION

Pre-Post your Recvs

July 2009 Slide 51

12/8/2009 52

12/8/2009 53

12/8/2009 54

12/8/2009 55

12/8/2009 56

12/8/2009 57

12/8/2009 58

12/8/2009 59

12/8/2009 60

12/8/2009 61

COMMUNICATION

Tweak the Library

July 2009 Slide 62

MPICH Performance Variable
MPICH_MAX_SHORT_MSG_SIZE

Controls message sending protocol (Default:128000 byte)
Message sizes <= MSG_SIZE: Use EAGER
Message sizes > MSG_SIZE: Use RENDEZVOUS
Increasing this variable may require that
MPICH_UNEX_BUFFER_SIZE be increased

Increase MPICH_MAX_SHORT_MSG_SIZE if App sends
large msgs(>128K) and receives are pre-posted

Can reduce messaging overhead via EAGER protocol
Can reduce network contention

Decrease MPICH_MAX_SHORT_MSG_SIZE if:
App sends msgs in 32k-128k range and receives not pre-posted

Cray Inc. Proprietary 63

MPICH Performance Variable: MPICH_PTL_MATCH_OFF

If set => Disables Portals matching
Matching happens on the Opteron
Requires extra copy for EAGER protocol

Reduces MPI_Recv Overhead
Helpful for latency-sensitive application

Large # of small messages
Small message collectives (<1024 bytes)

When can this be slower?
Pre-posted Receives can slow it down
When extra copy time longer than post-to-Portals time
For medium to larger messages (16k-128k range)

64

If you understand your decomposition well enough, you may
be able to map it to the network

Craypat 5.0 adds the grid_order and mgrid_order tools to
help

For more information, run grid_order or mgrid_order with no
options

Custom Rank Ordering

December 09 Slide 65

Usage: grid_order -c n1,n2,... -g N1,N2,... [-o d1,d2,...] [-m max]

This program can be used for placement of the ranks of an

MPI program that uses communication between nearest neighbors

in a grid, or lattice.

For example, consider an application in which each MPI rank

computes values for a lattice point in an N by M grid,

communicates with its nearest neighbors in the grid,

and is run on quad-core processors. Then with the options:

-c 2,2 -g N,M

this program will produce a list of ranks suitable for use in

the MPICH_RANK_ORDER file, such that a block of four nearest

neighbors is placed on each processor.

If the same application is run on nodes containing two quad-

core processors, then either of the following can be used:

-c 2,4 -g M,N

-c 4,2 -g M,N

grid_order Example

December 09 Slide 66

COMPUTATION

December 09 Slide 67

Stride one memory accesses

No IF tests

No subroutine calls
Inline
Module Functions
Statement Functions

What is size of loop

Loop nest
Stride one on inside
Longest on the inside

Unroll small loops

Increase computational intensity
CU = (vector flops/number of memory accesses)

Vectorization

(53) void mat_mul_daxpy(double *a, double *b, double *c, int rowa, int cola, int colb)

(54) {

(55) int i, j, k; /* loop counters */

(56) int rowc, colc, rowb; /* sizes not passed as arguments */

(57) double con; /* constant value */

(58)

(59) rowb = cola;

(60) rowc = rowa;

(61) colc = colb;

(62)

(63) for(i=0;i<rowc;i++) {

(64) for(k=0;k<cola;k++) {

(65) con = *(a + i*cola +k);

(66) for(j=0;j<colc;j++) {

(67) *(c + i*colc + j) += con * *(b + k*colb + j);

(68) }

(69) }

(70) }

(71) }

mat_mul_daxpy:

66, Loop not vectorized: data dependency

Loop not vectorized: data dependency

Loop unrolled 4 times

C pointers

Slide 69

(53) void mat_mul_daxpy(double* restrict a, double* restrict b, double*

restrict c, int rowa, int cola, int colb)

(54) {

(55) int i, j, k; /* loop counters */

(56) int rowc, colc, rowb; /* sizes not passed as arguments */

(57) double con; /* constant value */

(58)

(59) rowb = cola;

(60) rowc = rowa;

(61) colc = colb;

(62)

(63) for(i=0;i<rowc;i++) {

(64) for(k=0;k<cola;k++) {

(65) con = *(a + i*cola +k);

(66) for(j=0;j<colc;j++) {

(67) *(c + i*colc + j) += con * *(b + k*colb + j);

(68) }

(69) }

(70) }

(71) }

C pointers, rewrite

Slide 70

66, Generated alternate loop with no peeling - executed if loop count <= 24

Generated vector sse code for inner loop

Generated 2 prefetch instructions for this loop

Generated vector sse code for inner loop

Generated 2 prefetch instructions for this loop

Generated alternate loop with no peeling and more aligned moves -

executed if loop count <= 24 and alignment test is passed

Generated vector sse code for inner loop

Generated 2 prefetch instructions for this loop

Generated alternate loop with more aligned moves - executed if loop

count >= 25 and alignment test is passed

Generated vector sse code for inner loop

Generated 2 prefetch instructions for this loop

• This can also be achieved with the PGI safe pragma and –Msafeptr
compiler option or Pathscale –OPT:alias option

C pointers, rewrite

Slide 71

Nested Loops

72

(47) DO 45020 I = 1, N

(48) F(I) = A(I) + .5

(49) DO 45020 J = 1, 10

(50) D(I,J) = B(J) * F(I)

(51) DO 45020 K = 1, 5

(52) C(K,I,J) = D(I,J) * E(K)

(53) 45020 CONTINUE

PGI

49, Generated vector sse code for inner loop

Generated 1 prefetch instructions for this loop

Loop unrolled 2 times (completely unrolled)

Pathscale

(lp45020.f:48) LOOP WAS VECTORIZED.

(lp45020.f:48) Non-contiguous array "C(_BLNK__.0.0)"

reference exists. Loop was not vectorized.

Rewrite

73

(71) DO 45021 I = 1,N

(72) F(I) = A(I) + .5

(73) 45021 CONTINUE

(74)

(75) DO 45022 J = 1, 10

(76) DO 45022 I = 1, N

(77) D(I,J) = B(J) * F(I)

(78) 45022 CONTINUE

(79)

(80) DO 45023 K = 1, 5

(81) DO 45023 J = 1, 10

(82) DO 45023 I = 1, N

(83) C(K,I,J) = D(I,J) * E(K)

(84) 45023 CONTINUE

74

PGI

73, Generated an alternate loop for the inner loop

Generated vector sse code for inner loop

Generated 1 prefetch instructions for this loop

Generated vector sse code for inner loop

Generated 1 prefetch instructions for this loop

78, Generated 2 alternate loops for the inner loop

Generated vector sse code for inner loop

Generated 1 prefetch instructions for this loop

Generated vector sse code for inner loop

Generated 1 prefetch instructions for this loop

Generated vector sse code for inner loop

Generated 1 prefetch instructions for this loop

82, Interchange produces reordered loop nest: 83, 84, 82

Loop unrolled 5 times (completely unrolled)

84, Generated vector sse code for inner loop

Generated 1 prefetch instructions for this loop

Pathscale

(lp45020.f:73) LOOP WAS VECTORIZED.

(lp45020.f:78) LOOP WAS VECTORIZED.

(lp45020.f:78) LOOP WAS VECTORIZED.

(lp45020.f:84) Non-contiguous array "C(_BLNK__.0.0)" reference exists.

Loop was not vectorized.

(lp45020.f:84) Non-contiguous array "C(_BLNK__.0.0)" reference exists.

Loop was not vectorized.

75

12/8/2009 76

Big Loop
(52) C THE ORIGINAL

(53)

(54) DO 47020 J = 1, JMAX

(55) DO 47020 K = 1, KMAX

(56) DO 47020 I = 1, IMAX

(57) JP = J + 1

(58) JR = J - 1

(59) KP = K + 1

(60) KR = K - 1

(61) IP = I + 1

(62) IR = I - 1

(63) IF (J .EQ. 1) GO TO 50

(64) IF(J .EQ. JMAX) GO TO 51

(65) XJ = (A(I,JP,K) - A(I,JR,K)) * DA2

(66) YJ = (B(I,JP,K) - B(I,JR,K)) * DA2

(67) ZJ = (C(I,JP,K) - C(I,JR,K)) * DA2

(68) GO TO 70

(69) 50 J1 = J + 1

(70) J2 = J + 2

(71) XJ = (-3. * A(I,J,K) + 4. * A(I,J1,K) - A(I,J2,K)) * DA2

(72) YJ = (-3. * B(I,J,K) + 4. * B(I,J1,K) - B(I,J2,K)) * DA2

(73) ZJ = (-3. * C(I,J,K) + 4. * C(I,J1,K) - C(I,J2,K)) * DA2

(74) GO TO 70

(75) 51 J1 = J - 1

(76) J2 = J - 2

(77) XJ = (3. * A(I,J,K) - 4. * A(I,J1,K) + A(I,J2,K)) * DA2

(78) YJ = (3. * B(I,J,K) - 4. * B(I,J1,K) + B(I,J2,K)) * DA2

(79) ZJ = (3. * C(I,J,K) - 4. * C(I,J1,K) + C(I,J2,K)) * DA2

(80) 70 CONTINUE

(81) IF (K .EQ. 1) GO TO 52

(82) IF (K .EQ. KMAX) GO TO 53

(83) XK = (A(I,J,KP) - A(I,J,KR)) * DB2

(84) YK = (B(I,J,KP) - B(I,J,KR)) * DB2

(85) ZK = (C(I,J,KP) - C(I,J,KR)) * DB2

(86) GO TO 71

12/8/2009 77

Big Loop
(87) 52 K1 = K + 1

(88) K2 = K + 2

(89) XK = (-3. * A(I,J,K) + 4. * A(I,J,K1) - A(I,J,K2)) * DB2

(90) YK = (-3. * B(I,J,K) + 4. * B(I,J,K1) - B(I,J,K2)) * DB2

(91) ZK = (-3. * C(I,J,K) + 4. * C(I,J,K1) - C(I,J,K2)) * DB2

(92) GO TO 71

(93) 53 K1 = K - 1

(94) K2 = K - 2

(95) XK = (3. * A(I,J,K) - 4. * A(I,J,K1) + A(I,J,K2)) * DB2

(96) YK = (3. * B(I,J,K) - 4. * B(I,J,K1) + B(I,J,K2)) * DB2

(97) ZK = (3. * C(I,J,K) - 4. * C(I,J,K1) + C(I,J,K2)) * DB2

(98) 71 CONTINUE

(99) IF (I .EQ. 1) GO TO 54

(100) IF (I .EQ. IMAX) GO TO 55

(101) XI = (A(IP,J,K) - A(IR,J,K)) * DC2

(102) YI = (B(IP,J,K) - B(IR,J,K)) * DC2

(103) ZI = (C(IP,J,K) - C(IR,J,K)) * DC2

(104) GO TO 60

(105) 54 I1 = I + 1

(106) I2 = I + 2

(107) XI = (-3. * A(I,J,K) + 4. * A(I1,J,K) - A(I2,J,K)) * DC2

(108) YI = (-3. * B(I,J,K) + 4. * B(I1,J,K) - B(I2,J,K)) * DC2

(109) ZI = (-3. * C(I,J,K) + 4. * C(I1,J,K) - C(I2,J,K)) * DC2

(110) GO TO 60

(111) 55 I1 = I - 1

(112) I2 = I - 2

(113) XI = (3. * A(I,J,K) - 4. * A(I1,J,K) + A(I2,J,K)) * DC2

(114) YI = (3. * B(I,J,K) - 4. * B(I1,J,K) + B(I2,J,K)) * DC2

(115) ZI = (3. * C(I,J,K) - 4. * C(I1,J,K) + C(I2,J,K)) * DC2

(116) 60 CONTINUE

(117) DINV = XJ * YK * ZI + YJ * ZK * XI + ZJ * XK * YI

(118) * - XJ * ZK * YI - YJ * XK * ZI - ZJ * YK * XI

(119) D(I,J,K) = 1. / (DINV + 1.E-20)

(120) 47020 CONTINUE

(121)

12/8/2009 78

PGI

55, Invariant if transformation

Loop not vectorized: loop count too

small

56, Invariant if transformation
Pathscale

Nothing

12/8/2009 79

Re-Write
(141) C THE RESTRUCTURED

(142)

(143) DO 47029 J = 1, JMAX

(144) DO 47029 K = 1, KMAX

(145)

(146) IF(J.EQ.1)THEN

(147)

(148) J1 = 2

(149) J2 = 3

(150) DO 47021 I = 1, IMAX

(151) VAJ(I) = (-3. * A(I,J,K) + 4. * A(I,J1,K) - A(I,J2,K)) * DA2

(152) VBJ(I) = (-3. * B(I,J,K) + 4. * B(I,J1,K) - B(I,J2,K)) * DA2

(153) VCJ(I) = (-3. * C(I,J,K) + 4. * C(I,J1,K) - C(I,J2,K)) * DA2

(154) 47021 CONTINUE

(155)

(156) ELSE IF(J.NE.JMAX) THEN

(157)

(158) JP = J+1

(159) JR = J-1

(160) DO 47022 I = 1, IMAX

(161) VAJ(I) = (A(I,JP,K) - A(I,JR,K)) * DA2

(162) VBJ(I) = (B(I,JP,K) - B(I,JR,K)) * DA2

(163) VCJ(I) = (C(I,JP,K) - C(I,JR,K)) * DA2

(164) 47022 CONTINUE

(165)

(166) ELSE

(167)

(168) J1 = JMAX-1

(169) J2 = JMAX-2

(170) DO 47023 I = 1, IMAX

(171) VAJ(I) = (3. * A(I,J,K) - 4. * A(I,J1,K) + A(I,J2,K)) * DA2

(172) VBJ(I) = (3. * B(I,J,K) - 4. * B(I,J1,K) + B(I,J2,K)) * DA2

(173) VCJ(I) = (3. * C(I,J,K) - 4. * C(I,J1,K) + C(I,J2,K)) * DA2

(174) 47023 CONTINUE

(175)

(176) ENDIF

12/8/2009 80

Re-Write
(178) IF(K.EQ.1) THEN

(179)

(180) K1 = 2

(181) K2 = 3

(182) DO 47024 I = 1, IMAX

(183) VAK(I) = (-3. * A(I,J,K) + 4. * A(I,J,K1) - A(I,J,K2)) * DB2

(184) VBK(I) = (-3. * B(I,J,K) + 4. * B(I,J,K1) - B(I,J,K2)) * DB2

(185) VCK(I) = (-3. * C(I,J,K) + 4. * C(I,J,K1) - C(I,J,K2)) * DB2

(186) 47024 CONTINUE

(187)

(188) ELSE IF(K.NE.KMAX)THEN

(189)

(190) KP = K + 1

(191) KR = K - 1

(192) DO 47025 I = 1, IMAX

(193) VAK(I) = (A(I,J,KP) - A(I,J,KR)) * DB2

(194) VBK(I) = (B(I,J,KP) - B(I,J,KR)) * DB2

(195) VCK(I) = (C(I,J,KP) - C(I,J,KR)) * DB2

(196) 47025 CONTINUE

(197)

(198) ELSE

(199)

(200) K1 = KMAX - 1

(201) K2 = KMAX - 2

(202) DO 47026 I = 1, IMAX

(203) VAK(I) = (3. * A(I,J,K) - 4. * A(I,J,K1) + A(I,J,K2)) * DB2

(204) VBK(I) = (3. * B(I,J,K) - 4. * B(I,J,K1) + B(I,J,K2)) * DB2

(205) VCK(I) = (3. * C(I,J,K) - 4. * C(I,J,K1) + C(I,J,K2)) * DB2

(206) 47026 CONTINUE

(207) ENDIF

(208)

12/8/2009 81

Re-Write
(209) I = 1

(210) I1 = 2

(211) I2 = 3

(212) VAI(I) = (-3. * A(I,J,K) + 4. * A(I1,J,K) - A(I2,J,K)) * DC2

(213) VBI(I) = (-3. * B(I,J,K) + 4. * B(I1,J,K) - B(I2,J,K)) * DC2

(214) VCI(I) = (-3. * C(I,J,K) + 4. * C(I1,J,K) - C(I2,J,K)) * DC2

(215)

(216) DO 47027 I = 2, IMAX-1

(217) IP = I + 1

(218) IR = I – 1

(219) VAI(I) = (A(IP,J,K) - A(IR,J,K)) * DC2

(220) VBI(I) = (B(IP,J,K) - B(IR,J,K)) * DC2

(221) VCI(I) = (C(IP,J,K) - C(IR,J,K)) * DC2

(222) 47027 CONTINUE

(223)

(224) I = IMAX

(225) I1 = IMAX - 1

(226) I2 = IMAX - 2

(227) VAI(I) = (3. * A(I,J,K) - 4. * A(I1,J,K) + A(I2,J,K)) * DC2

(228) VBI(I) = (3. * B(I,J,K) - 4. * B(I1,J,K) + B(I2,J,K)) * DC2

(229) VCI(I) = (3. * C(I,J,K) - 4. * C(I1,J,K) + C(I2,J,K)) * DC2

(230)

(231) DO 47028 I = 1, IMAX

(232) DINV = VAJ(I) * VBK(I) * VCI(I) + VBJ(I) * VCK(I) * VAI(I)

(233) 1 + VCJ(I) * VAK(I) * VBI(I) - VAJ(I) * VCK(I) * VBI(I)

(234) 2 - VBJ(I) * VAK(I) * VCI(I) - VCJ(I) * VBK(I) * VAI(I)

(235) D(I,J,K) = 1. / (DINV + 1.E-20)

(236) 47028 CONTINUE

(237) 47029 CONTINUE

(238)

12/8/2009 82

PGI

144, Invariant if transformation

Loop not vectorized: loop count too small

150, Generated 3 alternate loops for the inner loop

Generated vector sse code for inner loop

Generated 8 prefetch instructions for this loop

Generated vector sse code for inner loop

Generated 8 prefetch instructions for this loop

Generated vector sse code for inner loop

Generated 8 prefetch instructions for this loop

Generated vector sse code for inner loop

Generated 8 prefetch instructions for this loop

160, Generated 4 alternate loops for the inner loop

Generated vector sse code for inner loop

Generated 6 prefetch instructions for this loop

Generated vector sse code for inner loop

o o o

12/8/2009 83

Pathscale

(lp47020.f:132) LOOP WAS VECTORIZED.

(lp47020.f:150) LOOP WAS VECTORIZED.

(lp47020.f:160) LOOP WAS VECTORIZED.

(lp47020.f:170) LOOP WAS VECTORIZED.

(lp47020.f:182) LOOP WAS VECTORIZED.

(lp47020.f:192) LOOP WAS VECTORIZED.

(lp47020.f:202) LOOP WAS VECTORIZED.

(lp47020.f:216) LOOP WAS VECTORIZED.

(lp47020.f:231) LOOP WAS VECTORIZED.

(lp47020.f:248) LOOP WAS VECTORIZED.

12/8/2009 84

LP47020

0

500

1000

1500

2000

2500

0 50 100 150 200 250

Vector Length

M
F

L
O

P
S

Original PS-Quad

Restructured PS-Quad

Original PS-Dual

Restructured PS-Dual

Original PGI-Dual

Restructured PGI-Dual

Original PGI-Quad

Restructured PGI-Quad

12/8/2009 85

Original
(42) C THE ORIGINAL

(43)

(44) DO 48070 I = 1, N

(45) A(I) = (B(I)**2 + C(I)**2)

(46) CT = PI * A(I) + (A(I))**2

(47) CALL SSUB (A(I), CT, D(I), E(I))

(48) F(I) = (ABS (E(I)))

(49) 48070 CONTINUE

(50)

PGI

44, Loop not vectorized: contains call

Pathscale

Nothing

12/8/2009 86

Restructured
(69) C THE RESTRUCTURED

(70)

(71) DO 48071 I = 1, N

(72) A(I) = (B(I)**2 + C(I)**2)

(73) CT = PI * A(I) + (A(I))**2

(74) E(I) = A(I)**2 + (ABS (A(I) + CT)) * (CT * ABS (A(I) - CT))

(75) D(I) = A(I) + CT

(76) F(I) = (ABS (E(I)))

(77) 48071 CONTINUE

(78)

PGI

71, Generated an alternate loop for the inner loop

Unrolled inner loop 4 times

Used combined stores for 2 stores

Generated 2 prefetch instructions for this loop

Unrolled inner loop 4 times

Used combined stores for 2 stores

Generated 2 prefetch instructions for this loop

Pathscale

(lp48070.f:71) LOOP WAS VECTORIZED.

12/8/2009 87

LP48070

0

500

1000

1500

2000

2500

3000

3500

0 50 100 150 200 250 300 350 400 450 500

Vector Length

M
F

L
O

P
S

Original PS-Quad

Restructured PS-Quad

Original PS-Dual

Restructured PS-Dual

Original PGI-Dual

Restructured PGI-Dual

Original PGI-Quad

Restructured PGI-Quad

OPTIMIZING YOUR CODE

Cache-Blocking

July 2009 Slide 88

What is Cache Blocking?

Cache blocking is a combination of strip mining and loop
interchange, designed to increase data reuse.

Takes advantage of temporal reuse: re-reference array elements
already referenced
Good blocking will take advantage of spatial reuse: work with the
cache lines!

Many ways to block any given loop nest
Which loops get blocked?
What block size(s) to use?

Analysis can reveal which ways are beneficial

But trial-and-error is probably faster

December 09 Slide 89

Cache Use in Stencil Computations

2D Laplacian

do j = 1, 8

do i = 1, 16

a = u(i-1,j) + u(i+1,j) &

- 4*u(i,j) &

+ u(i,j-1) + u(i,j+1)

end do

end do

Cache structure for this example:
Each line holds 4 array elements
Cache can hold 12 lines of u data

No cache reuse between outer loop
iterations

December 09 Slide 90

34679101213151830120

i=1

i=16

j
=
1

j
=
8

Blocking to Increase Reuse

Unblocked loop: 120 cache misses

Block the inner loop

do IBLOCK = 1, 16, 4

do j = 1, 8

do i = IBLOCK, IBLOCK + 3

a(i,j) = u(i-1,j) + u(i+1,j) &

- 2*u(i,j) &

+ u(i,j-1) + u(i,j+1)

end do

end do

end do

Now we have reuse of the “j+1” data

December 09 Slide 91

3467891011122080

i=1

i=13

j
=
1

j
=
8

i=5

i=9

Blocking to Increase Reuse

One-dimensional blocking reduced
misses from 120 to 80

Iterate over 4 4 blocks

do JBLOCK = 1, 8, 4

do IBLOCK = 1, 16, 4

do j = JBLOCK, JBLOCK + 3

do i = IBLOCK, IBLOCK + 3

a(i,j) = u(i-1,j) + u(i+1,j) &

- 2*u(i,j) &

+ u(i,j-1) + u(i,j+1)

end do

end do

end do

end do

Better use of spatial locality (cache
lines)

December 09 Slide 92

34678910111213151617183060

i=1

i=13

j
=
1

j
=
5

i=5

i=9

Obligatory GEMM discussion

Matrix-matrix multiply (GEMM) is the canonical cache-blocking example

Operations can be arranged to create multiple levels of blocking

Block for register

Block for cache (L1, L2, L3)

Block for TLB

No further discussion here. Interested readers can see

Any book on code optimization

Sun‟s Techniques for Optimizing Applications: High Performance Computing contains a decent introductory discussion

in Chapter 8

Insert your favorite book here

Gunnels, Henry, and van de Geijn. June 2001. High-performance matrix multiplication

algorithms for architectures with hierarchical memories. FLAME Working Note #4 TR-

2001-22, The University of Texas at Austin, Department of Computer Sciences

Develops algorithms and cost models for GEMM in hierarchical memories

Goto and van de Geijn. 2008. Anatomy of high-performance matrix multiplication. ACM

Transactions on Mathematical Software 34, 3 (May), 1-25

Description of GotoBLAS DGEMM

What Could Go Wrong?

You‟re doing it wrong.
Your block size is too small (too much loop overhead).

Your block size is too big (data is falling out of cache).

You‟re targeting the wrong cache level (?)

You haven‟t selected the correct subset of loops to block.

The compiler is already blocking that loop.

Prefetching is acting to minimize cache misses.

Computational intensity within the loop nest is very large,
making blocking less important.

“I tried cache-blocking my code, but it didn’t help”

A Real-Life Example: NPB MG

Multigrid PDE solver

Class D, 64 MPI ranks

Global grid is 1024 1024
1024

Local grid is 258 258 258

Two similar loop nests account for
>50% of run time

27-point 3D stencil

There is good data reuse along
leading dimension, even without
blocking

do i3 = 2, 257

do i2 = 2, 257

do i1 = 2, 257

! update u(i1,i2,i3)

! using 27-point stencil

end do

end do

end do

i1 i1+1i1-1

i2-1

i2

i2+1

i3-1

i3

i3+1

cache lines

I’m Doing It Wrong
Block the inner two loops

Creates blocks extending along i3 direction

do I2BLOCK = 2, 257, BS2

do I1BLOCK = 2, 257, BS1

do i3 = 2, 257

do i2 = I2BLOCK, &

min(I2BLOCK+BS2-1, 257)

do i1 = I1BLOCK, &

min(I1BLOCK+BS1-1, 257)

! update u(i1,i2,i3)

! using 27-point stencil

end do

end do

end do

end do

end do

Block size
Mop/s/proces

s

unblocked 531.50

16 16 279.89

22 22 321.26

28 28 358.96

34 34 385.33

40 40 408.53

46 46 443.94

52 52 468.58

58 58 470.32

64 64 512.03

70 70 506.92

That’s Better
Block the outer two loops

Preserves spatial locality along i1 direction

do I3BLOCK = 2, 257, BS3

do I2BLOCK = 2, 257, BS2

do i3 = I3BLOCK, &

min(I3BLOCK+BS3-1, 257)

do i2 = I2BLOCK, &

min(I2BLOCK+BS2-1, 257)

do i1 = 2, 257

! update u(i1,i2,i3)

! using 27-point stencil

end do

end do

end do

end do

end do

Block size
Mop/s/proces

s

unblocked 531.50

16 16 674.76

22 22 680.16

28 28 688.64

34 34 683.84

40 40 698.47

46 46 689.14

52 52 706.62

58 58 692.57

64 64 703.40

70 70 693.87

OPTIMIZING YOUR CODE

Tuning Malloc

July 2009 Slide 98

GNU malloc library
malloc, calloc, realloc, free calls

Fortran dynamic variables

Malloc library system calls
Mmap, munmap =>for larger allocations
Brk, sbrk => increase/decrease heap

Malloc library optimized for low system memory

use
Can result in system calls/minor page faults

GNU Malloc

99

Detecting “bad” malloc behavior
Profile data => “excessive system time”

Correcting “bad” malloc behavior
Eliminate mmap use by malloc
Increase threshold to release heap memory

Use environment variables to alter malloc
MALLOC_MMAP_MAX_ = 0
MALLOC_TRIM_THRESHOLD_ = 536870912

Possible downsides
Heap fragmentation
User process may call mmap directly
User process may launch other processes

PGI‟s –Msmartalloc does something similar for
you at compile time

Improving GNU Malloc

100

Google created a replacement “malloc” library

“Minimal” TCMalloc replaces GNU malloc

Limited testing indicates TCMalloc as good or

better than GNU malloc

Environment variables not required

TCMalloc almost certainly better for allocations

in OpenMP parallel regions

There‟s currently no pre-built tcmalloc for Cray

XT, but some users have successfully built it.

Google TCMalloc

101

Memory Allocation: Make it local

Linux has a “first touch policy” for memory allocation
*alloc functions don‟t actually allocate your memory
Memory gets allocated when “touched”

Problem: A code can allocate more memory than available
Linux assumed “swap space,” we don‟t have any
Applications won‟t fail from over-allocation until the memory is finally
touched

Problem: Memory will be put on the core of the “touching”
thread

Only a problem if thread 0 allocates all memory for a node

Solution: Always initialize your memory immediately after
allocating it

If you over-allocate, it will fail immediately, rather than a strange place
in your code
If every thread touches its own memory, it will be allocated on the
proper socket

July 2009 Slide 102

OPTIMIZING YOUR CODE

Using Libraries

July 2009 Slide 103

Using Libraries

Cray‟s Scientific Libraries team has worked to optimize
common library calls for each architecture

There are more library routines than developers, so tell us what‟s
important

Let the wrappers choose the right library for you
As long as you have xtpe-<arch> loaded, the wrappers will pick
the best library for you
Linking against the wrong library can dramatically reduce
performance

Library calls are tuned for general cases, if you have a
particular size, they may be able to do better

GEMMs are tuned for square matrices, if yours aren‟t square, they
may be able to help you do better.

July 2009 Slide 104

OPTIMIZING YOUR CODE

Case Study (Not for the faint of heart)

July 2009 Slide 105

Original Code :

December 09 Slide 106

do NBC=1_ST,MAXFRIC

do NC=1_ST,NCELLS

DX(1) = XC(1,NC) - MUDWAL(1,NBC)

DX(2) = XC(2,NC) - MUDWAL(2,NBC)

DX(3) = XC(3,NC) - MUDWAL(3,NBC)

DOT = MUDWAL(4,NBC)*DX(1) + (MUDWAL(5,NBC)*DX(2) &

+ MUDWAL(6,NBC)*DX(3))

if (DOT > 0.0_FP) then

DST = DX(1)*DX(1) + DX(2)*DX(2) + DX(3)*DX(3)

if (DST < DWALL(NC)) then

DWALL(NC) = DST

ICHNG(NC) = NBC

end if

end if

end do

end do

Finds ‘smallest’ ‘positive’ distance : note the two ‘IF’ statements

The Loop count of MAXFRIC and NCELLS is in the 100,000’s

Totally memory bound code, XC and/or MUDWALL do not fit into cache.

MPI – 64 ranks : Timing is 261.2 seconds

Slide 107

Original Code : Plan
do NBC=1_ST,MAXFRIC : Double block

do NC=1_ST,NCELLS : Double block

DX(1) = XC(1,NC) - MUDWAL(1,NBC)

DX(2) = XC(2,NC) - MUDWAL(2,NBC)

DX(3) = XC(3,NC) - MUDWAL(3,NBC)

DOT = MUDWAL(4,NBC)*DX(1) + (MUDWAL(5,NBC)*DX(2)&

+ MUDWAL(6,NBC)*DX(3))

if (DOT > 0.0_FP) then

DST = DX(1)*DX(1) + DX(2)*DX(2) + DX(3)*DX(3)

if (DST < DWALL(NC)) then

DWALL(NC) = DST

ICHNG(NC) = NBC

end if

end if

end do

end do

Maybe we can ‘Block’ the MAXFRIC and NCELLS to keep things in cache.

Try to use both L1 and L2 cache blocking.

December 09

What double-blocking looks like

December 09 Slide 108

Total Memory

Footprint

Fits in L2

Fits in L1
Total Size

NBLOCK2NBLOCK1

Slide 109

Double block Code :
do NBC_2=1_ST,MAXFRIC,BLOCK2

do NC_2=1_ST,NCELLS,BLOCK2

do NBC_1=NBC_2,MIN(NBC_2+BLOCK2-1,MAXFRIC),BLOCK1

do NC_1=NC_2,MIN(NC_2+BLOCK2-1,NCELLS),BLOCK1

do NBC=NBC_1,MIN(NBC_1+BLOCK1-1,MAXFRIC)

do NC=NC_1,MIN(NC_1+BLOCK1-1,NCELLS)

DX(1) = XC(1,NC) - MUDWAL(1,NBC)

DX(2) = XC(2,NC) - MUDWAL(2,NBC)

DX(3) = XC(3,NC) - MUDWAL(3,NBC)

DOT=MUDWAL(4,NBC)*DX(1)+(MUDWAL(5,NBC)*DX(2) &

+ MUDWAL(6,NBC)*DX(3))

if (DOT > 0.0_FP) then

DST = DX(1)*DX(1) + DX(2)*DX(2) + DX(3)*DX(3)

if (DST < DWALL(NC)) then

DWALL(NC) = DST

ICHNG(NC) = NBC

end if

end if

end do

end do

end do

end do

end do

end do

The L2 blocking is done via the BLOCK2

The L1 blocking is doen via the BLOCK1

Optimal sizes for BLOCK2/1 are found by figuring out what

would fit, and then refined by testing.

BLOCK2 = 8*1024 : BLOCK1 = 1024

December 09

Slide 110

Progress so far :
Original code 261.2 seconds

Blocked code is 94.4 seconds….

Speed up of 2.76X faster…..

NOTES : NONE of this vectorized due to non unit stride….

Would getting it to vectorize speed things up, or is the code still memory
bandwidth bound to/from the L1 cache ??

We would need to restructure the „XC‟ arrays, which we can not do, but
we could copy them…. I.E. strip mine / break the logic to vectorize part of
the loop.

December 09

Slide 111

SSE packed Code :
do NC=1_ST,NCELLS

XC_T(NC,1) = XC(1,NC)

XC_T(NC,2) = XC(2,NC)

XC_T(NC,3) = XC(3,NC)

enddo

do NBC_2=1_ST,MAXFRIC,BLOCK2

do NC_2=1_ST,NCELLS,BLOCK2

do NBC_1=NBC_2,MIN(NBC_2+BLOCK2-1,MAXFRIC),BLOCK1

do NC_1=NC_2,MIN(NC_2+BLOCK2-1,NCELLS),BLOCK1

do NBC=NBC_1,MIN(NBC_1+BLOCK1-1,MAXFRIC)

do NC=NC_1,MIN(NC_1+BLOCK1-1,NCELLS) :Break loop
DX_T(NC,1) = XC_T(NC,1) - MUDWAL(1,NBC)

DX_T(NC,2) = XC_T(NC,2) - MUDWAL(2,NBC)

DX_T(NC,3) = XC_T(NC,3) - MUDWAL(3,NBC)

DOT_T(NC)=MUDWAL(4,NBC)*DX_T(NC,1)+ &

(MUDWAL(5,NBC)*DX_T(NC,2)+MUDWAL(6,NBC)*DX_T(NC,3))

enddo

do NC=NC_1,MIN(NC_1+BLOCK1-1,NCELLS)

if (DOT_T(NC) > 0.0_FP) then

DST = DX_T(NC,1)*DX_T(NC,1) &

+ DX_T(NC,2)*DX_T(NC,2)+DX_T(NC,3)*DX_T(NC,3)

if (DST < DWALL(NC)) then

DWALL(NC) = DST

ICHNG(NC) = NBC

end if

end if

end do; end do; end do; end do; end do; end do

Copy XC to XC_T

Break ‘NC’ loop into two

First NC loop vectorizes

Second loop does test

December 09

Slide 112

Progress or not :
Original code 261.2 seconds

Blocked code is 94.4 seconds….

Speed up of 2.76X faster…..

SSE packed code is 92.1 seconds… 2.83X faster…

Not much faster; code still very memory (L1 bound)

Time to give up……

NEVER!!!

Look at „IF‟ logic; would switching the IF‟s make it faster???

December 09

Slide 113

Logic switch:
Original logic

DOT_T(NC)=MUDWAL(4,NBC)*DX_T(NC,1)+

(MUDWAL(5,NBC)*DX_T(NC,2)+MUDWAL(6,NBC)*DX_T(NC,3))

if (DOT_T(NC) > 0.0_FP) then

DST=DX_T(NC,1)*DX_T(NC,1)+DX_T(NC,2)*DX_T(NC,2)+DX_T(NC,3)*DX_T(NC,3)

if (DST < DWALL(NC)) then

Or

Switched logic

DST_T(NC) = DX_T(NC,1)*DX_T(NC,1) + DX_T(NC,2)*DX_T(NC,2)+DX_T(NC,3)*DX_T(NC,3)

if (DST_T(NC) < DWALL(NC)) then

if((MUDWAL(4,NBC)*DX_T(NC,1)+ &

(MUDWAL(5,NBC)*DX_T(NC,2)+MUDWAL(6,NBC)*DX_T(NC,3))) > 0.0_FP) then

The DST cost is 3 loads, 3*, 2+

The DOT cost is 6 loads, 3*, 2+

The DST is 50/50 branching, the DOT goes to zero if we get the best DOT early on…

It just might be faster…..

December 09

Slide 114

Switched logic Code :
do NC=1_ST,NCELLS

XC_T(NC,1) = XC(1,NC)

XC_T(NC,2) = XC(2,NC)

XC_T(NC,3) = XC(3,NC)

enddo

do NBC_2=1_ST,MAXFRIC,BLOCK2

do NC_2=1_ST,NCELLS,BLOCK2

do NBC_1=NBC_2,MIN(NBC_2+BLOCK2-1,MAXFRIC),BLOCK1

do NC_1=NC_2,MIN(NC_2+BLOCK2-1,NCELLS),BLOCK1

do NBC=NBC_1,MIN(NBC_1+BLOCK1-1,MAXFRIC)

do NC=NC_1,MIN(NC_1+BLOCK1-1,NCELLS)

DX_T(NC,1) = XC_T(NC,1) - MUDWAL(1,NBC)

DX_T(NC,2) = XC_T(NC,2) - MUDWAL(2,NBC)

DX_T(NC,3) = XC_T(NC,3) - MUDWAL(3,NBC)

DST_T(NC) = DX_T(NC,1)*DX_T(NC,1) &

+ DX_T(NC,2)*DX_T(NC,2)+DX_T(NC,3)*DX_T(NC,3)

enddo

do NC=NC_1,MIN(NC_1+BLOCK1-1,NCELLS)

if (DST_T(NC) < DWALL(NC)) then

if((MUDWAL(4,NBC)*DX_T(NC,1)+ &

(MUDWAL(5,NBC)*DX_T(NC,2)+MUDWAL(6,NBC)*DX_T(NC,3))) > 0.0_FP) then

DWALL(NC) = DST_T(NC)

ICHNG(NC) = NBC

end if

end if

end do; end do; end do; end do; end do; end do

Switch logic test.

Put ‘best’ test on outside.

Put largest work on inside

December 09

Slide 115

Progress or not number 2 :
Original code 261.2 seconds

Blocked code is 94.4 seconds… 2.76X faster…..

SSE packed code is 92.1 seconds… 2.83X faster…

Switched logic code is 83.0 seconds

Speed up of 3.15X faster

Are we done yet …

NEVER!!!

Did the reversing of logic change the BLOCKING factors…. ?

Go back and test BLOCK2 and BLOCK1…

December 09

Slide 116

Progress or not number 3 :

Increasing BLOCK2 larger then 8*1024 slows things down FAST….

Decreasing BLOCK2 smaller then 8*1024 slows things down slowly….

Expected behavior, BLOCK2 is L2 factor, our work was done on L1..

Making BLOCK1 larger then 1024 slows things down FAST….

Making BLOCK1 512 … 74.8 seconds

Making BLOCK1 256 … 71.7 seconds

Making BLOCK1 smaller (128) slow things down (80.3)

December 09

Slide 117

Final result (or is it…) :
Original code 261.2 seconds

Blocked code is 94.4 seconds…. 2.76X faster…..

SSE packed code is 92.1 seconds… 2.83X faster…

Switched logic code is 83.0 seconds… 3.15X faster

Re-block L1 code is 71.7 seconds

Code is now 3.64X FASTER….

December 09

Original
do NBC=1_ST,MAXFRIC

do NC=1_ST,NCELLS

DX(1) = XC(1,NC) -

MUDWAL(1,NBC)

DX(2) = XC(2,NC) -

MUDWAL(2,NBC)

DX(3) = XC(3,NC) -

MUDWAL(3,NBC)

DOT = MUDWAL(4,NBC)*DX(1) + &

(MUDWAL(5,NBC)*DX(2) + &

MUDWAL(6,NBC)*DX(3))

if (DOT > 0.0_FP) then

DST = DX(1)*DX(1) +

DX(2)*DX(2) + DX(3)*DX(3)

if (DST < DWALL(NC)) then

DWALL(NC) = DST

ICHNG(NC) = NBC

end if

end if

end do

end do

Rewritten
do NC=1_ST,NCELLS

XC_T(NC,1) = XC(1,NC)

XC_T(NC,2) = XC(2,NC)

XC_T(NC,3) = XC(3,NC)

enddo

do NBC_2=1_ST,MAXFRIC,BLOCK2

do NC_2=1_ST,NCELLS,BLOCK2

do NBC_1=NBC_2,MIN(NBC_2+BLOCK2-1,MAXFRIC),BLOCK1

do NC_1=NC_2,MIN(NC_2+BLOCK2-1,NCELLS),BLOCK1

do NBC=NBC_1,MIN(NBC_1+BLOCK1-1,MAXFRIC)

do NC=NC_1,MIN(NC_1+BLOCK1-1,NCELLS)

DX_T(NC,1) = XC_T(NC,1) - MUDWAL(1,NBC)

DX_T(NC,2) = XC_T(NC,2) - MUDWAL(2,NBC)

DX_T(NC,3) = XC_T(NC,3) - MUDWAL(3,NBC)

DST_T(NC) = DX_T(NC,1)*DX_T(NC,1) &

+ DX_T(NC,2)*DX_T(NC,2)+DX_T(NC,3)*DX_T(NC,3)

enddo

do NC=NC_1,MIN(NC_1+BLOCK1-1,NCELLS)

if (DST_T(NC) < DWALL(NC)) then

if((MUDWAL(4,NBC)*DX_T(NC,1)+ &

(MUDWAL(5,NBC)*DX_T(NC,2)+MUDWAL(6,NBC)*DX_T(NC,3)))

> 0.0_FP) then

DWALL(NC) = DST_T(NC)

ICHNG(NC) = NBC

end if

end if

end do;

end do;

end do;

end do;

end do;

end do Slide 118

IMPROVING I/O

July 2009 Slide 119

Improving I/O

Don‟t forget to stripe!
The default stripe count will almost always be suboptimal
The default stripe size is usually fine.

Once a file is written, the striping information is set
Stripe input directories before staging data
Stripe output directories before writing data

Stripe for your I/O pattern
Many-many – narrow stripes
Many-one – wide stripes

Reduce output to stdout
Removedebugging prints (eg. “Hello from rank n of N”)

July 2009 Slide 120

IMPROVING I/O – SEE
LONNIE’S TALK

July 2009 Slide 121

SEEK HELP

The Best Optimization Technique:

December 09 Slide 122

NCCS: help@nccs.gov

NICS: help@teragrid.org

Contact Your Liaison

Jeff Larkin: larkin@cray.com

Nathan Wichmann: wichmann@cray.com

