Exercise and Cardiometabolic Risk Reduction In Diabetes and Prediabetes

A Web-Based Training

Presented by IHS Division of Diabetes
Treatment and Prevention
Indian Health Service
October 2010

Physical Activity for Managing Cardiometabolic Risk

Ralph La Forge, MSc
Duke University - Endocrine Division
Durham NC

rlaforge@nc.rr.com

Agenda

-Cardiometabolic risk and physical activity at a glance
-Energy expenditure guidelines: weight reduction vs CMR
-Modes of physical activity
-Exercise and weight loss considerations
-Serial anthropometric assessment of total body adiposity
-Select PA intervention strategies
-Exercise screening of high-risk prediabetes and diabetes patient

Cardiometabolic Risk

Diabetes

Metabolic syndrome
Prediabetes

CVD
Traditional/Framingham CVD risk factors

Physical activity vs. Fitness

Generalized physical activities irrespective of intensity

Aerobic capacity "capacity driven"

Modes of Physical Activity

-Aerobic (cardiorespiratory endurance)
-Resistance training
-Flexibility
-Utilitarian/domestic activity
-Sports/recreational
-Mindful exercise

Physical activity works via multiple biologic mechanisms

many of which are not inextricably tied to weight loss

Fig. 8 Fat topography in type 2 diabetes and effect of thiazolidine-diones (TZD) (see text for a detailed discussion)

DeFronzo R. Diabetologia (2010)53:1270-1287

Functional and metabolic benefits (glucose transport, AMPK, PPAR, insulin sensitivity...)	Measurable body fat alterations, weight loss, \downarrow LDL-C, \ldots	Weight loss maintenance
500	1500	

Weekly Physical Activity and Cardiometabolic Benefit

Physical Activity Energy Expenditure Requirements

Significant reduction in body weight
A bunch with caveats

Reduction in cardiometabolic risk

Not so much with fewer caveats

Physical Activity RecommendationsWeight Loss vs. Public Health

Weight Loss:

250-300 minutes/week $=(\geq 60 \mathrm{~min} /$ day $) \times(5$ or more days/wk)
~2,000-3,000 kcal/wk

Public Health:

150 minutes/week = (30 min/day) x (5 days/wk)
~1000 - 1,500 kcal/wk

Haskell WL, et al. Med Sci Sports Exerc. 2007;39:1423-34.
Donnelly JE, et al. Med Sci Sports Exerc. 2009;41:459-71.

ACSM's Guidelines for Exercise Testing and Prescription
 - Overweight or obese:*

- Primary activity: Aerobic exercise
- Intensity: Moderate (40-60\% V02max)

- Duration: 30-60 min/day and progressing to $\mathbf{3 0 0}$ minutes/week ${ }^{\dagger}$
*Consistent with recommendations for long-term weight control: 200-300 minutes/wk moderate physical activity or $\geq 2,000 \mathrm{kcal} / \mathrm{wk}$. $\dagger 60-90 \mathrm{~min} /$ day may be necessary in some individuals.

American College of Sports Medicine. Guidelines for Exercise Testing and Prescription. $8^{\text {th }}$ ed. Philadelphia, PA: Wolters Kluwer Health/Lippincott Williams \&Wilkins; 2009.

CAVEAT

Exercise intensity (speed, resistive load) in obese patients we should be more conservative (40-60\% of aerobic capacity). This is particularly true for patients who are $\mathrm{BMI}>34$.

Eventually obese patients may progress to 60-75\% of aerobic capacity depending on cardiorespiratory responsiveness to lower levels of exercise.

What is ~ 1000 kcal of Physical Activity ?

(gross energy cost)
$\cdot 10$ miles of walking at $\sim 3 \mathrm{mph}, 160 \mathrm{lb}$ person
$\cdot 2.5-3$ hours of continuous exercise at $\sim 55-65 \%$ of effort maximum, 160 lb person
-Three 45-50 minute aerobics classes, 160 lb person
-3-hour hike over variable terrain with 10 lb backpack, 160 lb person
-3 hours of cycling at 10-12 mph, 160 lb person

* Note that in persons with BMI's >35 the caloric cost of weight bearing exercise is considerably more - e.g., $130+\mathrm{kcal} / \mathrm{mile}$ of walking

Moderate vs. Vigorous Exercise

- Moderate: $40-60 \%$ of $\mathrm{VO}_{2 \max }$ or 3-6 METs

- Vigorous: $>60 \%+$ of $\mathrm{VO}_{2 \text { max }}$ or 6 METs

IHS Division of Diabetes
10/2010

Moderate-intensity Physical Activity (Approximately 3-6 METs)	Vigorous-intensity Physical Activity
Requires a moderate amount of effort and noticeably accelerates the heart rate.	Requires a large amount of effort and causes rapid breathing and a substantial increase in heart rate.
Examples of moderate-intensity exercise include:	Examples of vigorous-intensity exercise include:
- Brisk walking	• Running

Moderate vs. Vigorous Exercise

Prediabetic, metabolic syndrome, obese, and diabetic patients usually require moderate intensity_activities (i.e., 40-60\% of aerobic capacity) or lower intensity activities.
\checkmark If recommending vigorous intensity activities (>60\% of aerobic capacity), consult the ACSM decision tree for preexercise program screening and GXT evaluation.

Intermittent vs. Continuous Exercise and Weight Loss

Short bouts of exercise result in similar reduction in body fat and improvement in fitness as long bouts of the same total energy expenditure.

Moderate intensity aerobic activity may be accumulated in different ways:
-In multiple daily bouts of at least 10 minutes in duration
-Through increases in moderate-intensity, domesticlifestyle activities

Debusk RF, et al. Am J Cardio. 1990;65:1010. Haskell W. Med Sci Ex Sports. 1994;26:649. Murphy, et al. Med Sci Ex Sports. 1998;30:152. Jakicic. JAMA. 1999;282:1554. Schmidt D. J Am Coll Nut. 2001;20:494. Macfarlane D. Prev. Med. 2006;43:332.

Type 2 Diabetes

Key activity considerations for providers

- Blunted HR response (chronotropic incompetence)
- Blunted BP response
- Blunted V02 response (inc. ventilation)
- Altered thermoregulatory response (hyperthermia)
- Peripheral neuropathy and weight-bearing exercise caution

RESISTANCE EXERCISE

Resistance Exercise Training

- The addition of resistance exercise training (RT) to energy restriction increases fat-free mass
- Compared to RT alone, RT combined with aerobic exercise may increase loss of fat mass
- RT may enhance muscular strength and
 physical function in overweight and obese people
- No evidence currently exists for
- Prevention of weight regain after weight loss
- A dose effect for RT and weight loss

RT Rx

$\checkmark 2$ to 3 sets of 8 to 12 repetitions
\checkmark at 60% to 80% 1-RMR
$\checkmark 8$ to 10 multijoint exercises of all major muscle groups in the same session (whole body) or sessions split into selected muscle groups
*Resistance training should be encouraged for people with diabetes mellitus in the absence of contraindications, retinopathy, and recent laser treatments.
** RepMin -10 rule for diabetes pts

Physical Activity Patterns in the National Weight Control Registry

Victoria A. Catenacci ${ }^{1}$, Lorraine G. Ogden ${ }^{2}$, Jennifer Stuht ${ }^{3}$, Suzanne Phelan ${ }^{4}$, Rena R. Wing ${ }^{5}$, James O. Hill ${ }^{6}$ and Holly R. Wyatt ${ }^{1}$

Obesity (2008) 16, 153-161
\checkmark NWCR* entrants report an average of
$2,621(+/-2,252) \mathrm{kcal} /$ week in physical
activity.

* Maintained ≥ 30 lb of weight loss for >1 year

Why do exercise and exercise programs tend to generate less than expected (desired) weight loss ?

- Total daily energy expenditure impact
- Gender specificity (women tend to lose less)
- Energy conservation and compensation
- Body composition changes (increased lean weight)
- Muscle fiber type (heritable Type I/II ratios)

Boutcher et.al. Obesity Rev. 2009
Donnelly et.al. Arch Int. Med. 2003

\checkmark Total daily energy expenditure has to be reduced in order for weight loss to occur.

Men vs. Women in 16-week PA
 program

ExRx:

400

kcal/session, ~2000 kcal/wk walking

Figure 1 Individual 16-month weight change in exercise groups by gender: a, women; b, men [adapted from Donnelly et al. (14)].

Variables That Determine Total Net Energy Expenditure

Energy Compensation

Increased food intake (CHO, beverages) as a result of appetite stimulation

Select skinfold assessment is a reliable means of assessing serial changes in total body adiposity in response to lifestyle therapy, particularly physical activity programs.

The most reliable skinfold site for reflecting changes in adiposity, including abdominal visceral adiposity, is the subscapular site with the tricep site as secondary.

Subscapular skinfold thickness distinguishes between transient and persistent impaired glucose tolerance: Study on Lifestyle-Intervention and Impaired Glucose Tolerance Mensink M et.al. Diabet Med. 2003 Jul;20(7):552-7. Netherlands

Adiposity was the strongest predictor of leptin, with triceps skinfold explaining 40.2 and 30.6% of leptin variance in males and females.

In females, subscapular skinfold was a significant predictor of leptin independent of triceps, while no anthropometric measure predicted leptin independent of triceps in males.
$\mathrm{N}=600$ adolescents
Kuzawa CW et.al. 2007;AmJPhys Anthropol. Northwestern U

Reference curves for triceps and subscapular skinfold thicknesses in US children and adolescents

O Yaw Addo and John H Himes Am J Clin Nutr 2010;91:635-42.

Smoothed percentiles for triceps skinfold-for-age (mm): boys aged 1.50-19.99 y ${ }^{I}$

Age	L	M	S	Percentile									
				3rd	5th	10th	25th	50th	75th	85th	90th	95th	97th
$1.50-1.99$ y	-0.0982	9.7466	0.2464	6.20	6.55	7.14	8.27	9.75	11.52	12.62	13.43	14.74	15.66
$2.00-2.49$ y	-0.1065	9.6551	0.2495	6.11	6.46	7.05	8.17	9.66	11.44	12.55	13.37	14.69	15.63
$2.50-2.99$ y	-0.1229	9.4769	0.2559	5.94	6.29	6.87	7.99	9.48	11.28	12.41	13.25	14.60	15.57
$3.00-3.49$ y	-0.1392	9.3113	0.2626	5.77	6.12	6.70	7.82	9.31	11.14	12.29	13.14	14.54	15.53
$3.50-3.99$ y	-0.1555	9.1537	0.2698	5.62	5.96	6.54	7.65	9.15	11.01	12.18	13.06	14.50	15.53
$4.00-4.49$ y	-0.1715	8.9913	0.2778	5.45	5.79	6.36	7.48	8.99	10.88	12.08	12.98	14.47	15.54
$4.50-4.99$ y	-0.1871	8.8176	0.2866	5.28	5.61	6.18	7.29	8.82	10.74	11.97	12.90	14.44	15.56
$5.00-5.49$ y	-0.2021	8.6349	0.2963	5.09	5.42	5.99	7.10	8.63	10.59	11.86	12.82	14.42	15.60
$5.50-5.99$ y	-0.2164	8.4553	0.3071	4.91	5.23	5.80	6.90	8.46	10.45	11.76	12.76	14.44	15.67
$6.00-6.49$ y	-0.2298	8.2999	0.3189	4.73	5.06	5.62	6.73	8.30	10.35	11.70	12.75	14.51	15.82
$6.50-6.99$ y	-0.2423	8.1976	0.3314	4.59	4.91	5.47	6.59	8.20	10.32	11.73	12.83	14.71	16.11
7.00-7.49 y	-0.2540	8.1739	0.3445	4.49	4.81	5.38	6.52	8.17	10.39	11.88	13.06	15.07	16.59

\checkmark Although BMI is the recommended measure for determining overweight and obesity status, the percentiles and z scores of triceps and subscapular skinfold thicknesses will allow better assessment of adiposity. In children, skinfold thicknesses are more highly correlated with measures of total body fat than BMI.

Practical Physical Activity Intervention Strategies

- Systematic pedometry
- Household circuit activity
- Physical activity encounters

Systematic Clinical Pedometry

Definition

- The systematic use of well-engineered pedometers as objective cardiometabolic risk reduction outcomes measures

Physical activity levels in American-Indian adults: The Strong Heart Family Study

Storti KL, Howard BV, et.al. Am J Prev Med. 2009 Dec;37:481-7. Univ. Pittsburgh

2604 American-Indian adults, aged 18-91 years, from 13 American-Indian communities were assessed using Accusplit AE120 pedometers over a period of 7 days during 20012003.

RESULTS:

Daily pedometer steps ranged from 1001 to 38,755 . Mean step counts by age group were:

MEN	$5384(18-29 y r s)$	WOMEN	$5038(18-29 y r s)$
	$5120(30-39)$	$5112(30-39)$	Sedentary
	$5040(40-49)$	$5054(40-49)$	Lifestyle
	$4561(50-59)$	$4582(50-59)$	
	$4321(60-69)$		$4653(60-69)$
	$3768(\geq 70)$	$3770(\geq 70)$	

CONCLUSIONS: Objectively measured data suggest that inactivity is a problem among American-Indian adults and that a majority of American-Indian adults in the SHFS may not be meeting the minimum physical activity public health recommendations.

Steps = Muscle Contractions = Outcome Measures

Each weight-bearing muscular contraction (each walking step in a 2-mile walk) is an insulin-sensitizing event utilizing similar metabolic mechanisms as metformin and PPAR $\gamma \delta$ agonists.

1 step $=.25 \mathrm{mg}$ metformin

Liver	Skeletal Muscle
Increases Fatty Acid Oxidation (Ketogenesis)	Increases Fatty Acid
Decreases Cholesterol Synthesis	Oxidation Increases Glucose
Decreases Lipogenesis	Uptake
Pancreatic Islets	Adipocyte
Modulates	Decreases Lipogenesis
	Decreases Lipolysis

* Based on DPP energy expenditure and diabetes prevention outcomes and ex/pioglitizone studies (Shadid, LaForge 2006)
** ≥ 3000 steps $/ 30$ min

Preliminary Exercise Pedometry Guidelines for Managing Cardiometabolic Risk

- A minimum of 3000 steps in 30 minutes ($\sim 3 \mathrm{mph}$ for most individuals) on 5 days each week. Three bouts of 1000 steps in 10 minutes each day can also be used to meet the recommended goal.
- A relative increase in daily walking steps of $\geq 50 \%$
- At least 10,000 steps per day for most adults with CMR
- For significant weight loss, there is preliminary support for:

Women:
18-40: 12,000 steps per day
40-50: 11,000

50-60: 10,000
60 plus: 8,000
Men:
18-50: 12,000
50 plus: 11,000

Pedometer Characteristics

- Use well-engineered pedometers
(\$10-22/each)
- Characteristics: Reliable engine, durable, readable display, comfortable
- Step-filter function for filtering spontaneous movements
- Example reliable pedometer resources: Accusplit, NewLifestyles
Accusplit® Eagle 2720
~ 2000 steps/mile* walked ($\sim 100 \mathrm{kcal} /$ mile)
*1800-2300 steps/mile depending on height of patient

Pedometer Trekking

3-10 customized paths/trails of varying length and terrain (1-6 miles) with known step count requirements

Trekking Levels/courses
Level 1: 1000-3000 steps (.5-1.5 mile courses)
Level 2: 3000-6000 steps (1.5-3 miles)
Level 3: 6000-10,000 steps (3-5 miles)
Level 4: >10,000 steps (>5 miles)

Level of difficulty: Easy (minimum terrain/grade), Moderate (moderate terrain/grade), Difficult (significant variable terrain and grade)

Trek $R x$

Ped Rx 1
1-3K steps

Ped Rx 2
3-6K steps

Prescription Form-Exercise Pedometry

PX for Outpatient Exercise Pedometry
Patient name: Date:
Therapeutic code:
Order for following patient physical activity pedometer:
-Pedometer: Eagle 2720 pedometer
Rx: steps/day ___ steps/week/month/ Other Rx:

Patient instructions: See attached physical activity and pedometer guidelines.

Workout

Utilitarian

Recreational/ sports

Utilitarian-domestic Activities do Condition and Reduce Risk

- Yardwork
- Gardening
- Housework

- Painting, cleaning, shoveling, scrubbing, washing
- Repair work
- ADLs

Energy Costs of Household Chores in 50 Men

Table 4 Comparison of energy expenditure means (METs) between age groups

${ }^{\text {a }}$ (Gunn et al. 2004)
${ }^{*} P<0.001$

3.3-5.4 METs

4-7 kcal/min
Gunn SM et. al. 2005 Europ J Appl Physio. 94:476

Physical Activity Encounters

in $24-\mathrm{hr}$ period

What is a PAE ?

$\sim 90+$ seconds or more of sustained physical activity, e.g:

- One or two flights of stairs
- Walking one block
- Sweeping/vacuuming
- Walking an extra two isles in the grocery store
- Parking 20-40 spaces further away from your destination
- Brief activities of daily living (ADLs) involving arms and legs
- Moving furniture or appliances
- Taking trash/yard waste out

Participant:

Annual Follow-up PAE Report Trends

Gender:
Age:
Health status:
Other:

Physical Activity Measure	Visit 1 (date)	Visit 2 (date)	Visit 3 (date)	Visit 4 (date)	Visit 5 (date)	Visit 6 (date)	Visit 7 (date)

Example reporting measures (outcomes):

PAEs/day or week

Step counts/day or week
Minutes/week
Household circuits/wk

Example Mindful Exercise Modalities

A Simple Taxonomy

Classical

- Hatha yoga
- Tai Chi
- Qigong exercise
- Select ethnic and spiritual dance
e.g. Native American dance
- Breathwork therapies (pranayama)

Contemporary

- NIA
- Meditation walking
- Pilates
- Physiosynthesis
- Somatics
- E-motion
- Feldenkrais
- Alexander technique
- Laban movement
- Ideokinesis
- Composite forms

Native American Dance

Examples

Arrow Dance of the Navaho Basket Dance of Cochiti Basket Dance of Woodcraft Bow \& Arrow Dance of Jemez Bow \& Arrow Dance Woodcraft Comanche Dance of Woodcraft Comanche Dance of Zuni 2nd Comanche Dance of Zunis Corn Grinding Dance Woodcraft Corn Grinding Song of Zuni Coyote Dance of Woodcraft Dance of the Mudheads at ZuniDeer Dance of the Navahos Deer Dance of San Juan

Dog Dance of San Juan Dog Dance of Woodcraft Doll Dance
Eagle Dance of Tesuque Eagle Dance of Woodcraft Green Corn of Santo Domingo Harvest Dance of Zuni Hoop Dance of Taos Hoop Dance of Woodcraft Hopi Snake Dance Mountain Chant of the Navaho
Pipe Dance of San Juan Rain Dance of Zuni
Yei-Be-Chi

Patient readiness for exercise

ACSM/AHA ExRisk Stratification

GXT with ECG

American College of Sports Medicine. Guidelines for Exercise Testing and Prescription. 8 ${ }^{\text {th }}$ ed. Philadelphia, PA: Wolters Kluwer Health/Lippincott Williams \&Wilkins; 2009.

ACSM

Exercise ECG
Testing Requirements

Moderate: 40-60\% of V02 max
Vigorous: 60\%+ of V02 max

Division of Diabetes Treatment and Prevention

Leading the effort to treat and prevent diabetes in American Indians and Alaska Natives

http://www.ihs.gov/MedicalPrograms/Diabetes/index.cfm?module=toolsQuickGuides

Questions?

Exercise Science Resources?

rlaforge@nc.rr.com

