³He Measurements using HMS+SHMS at 12 GeV

Xiaochao Zheng

Univ. of Virginia August 19, 2011

- Physics Motivation of Aⁿ and E12-06-110 with HMS+SHMS
- Physics Motivation of g_2^n and d_2^n and E12-06-121 with HMS+SHMS
- Summary

Nucleon valence structure provides testing ground for theories (more than Q² evolution from perturbative QCD)

 $\underset{n}{\star} F_{2}^{p}/F_{2}^{n} \text{ and } d/u \text{ at large } x$ $\underset{n}{\star} A_{1}^{p}, A_{1}^{n}, \text{ or } \Delta u/u \text{ and } \Delta d/d \text{ at large } x$

• Virtual photon
asymmetry:

$$A_{1} = \frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{1/2} + \sigma_{3/2}}$$

$$A_{1} = \frac{g_{1} - \gamma^{2} g_{2}}{F_{1}} \approx \frac{g_{1}}{F_{1}}$$

At large Q^2 , A_1 has only weak-dependence on $Q^2(g_1$ and F_1 follow the same LO and NLO evolutions, but not in higher orders or higher twists).

UNIVERSITY / VIRGINIA

Predictions for A_1 and $\Delta q/q$ at large x

The only place QCD (and many other models) can make absolute predictions for structure functions.
 WIVERSITY/VIRGINIA
 X. Zheng, August 2011, JLab Hall C Summer Workshop

The 6 GeV Hall A Measurement (21 PAC days, 2001)

Spokespeople: P. Souder, Z.-E. Meziani, J.-P. Chen

X. Zheng et al., Phys. Rev. Lett. 92, 012004 (2004); Phys. Rev. C 70, 065207 (2004)

UNIVERSITY of VIRGINIA

X. Zheng et al., Phys. Rev. Lett. 92, 012004 (2004); Phys. Rev. C 70, 065207 (2004)

UNIVERSITY of VIRGINIA

X. Zheng et al., Phys. Rev. Lett. 92, 012004 (2004); Phys. Rev. C 70, 065207 (2004)

UNIVERSITY / VIRGINIA

°,⊢ A

Polarized DIS and Nucleon Spin Structure

H. Avakian, S. Brodsky, A. Deur, F. Yuan, Phys. Rev. Lett.99:082001(2007)

UNIVERSITY of VIRGINIA

The 6 GeV Hall A Measurement (21 PAC days, 2001)

X. Zheng et al., Phys. Rev. Lett. 92, 012004 (2004); Phys. Rev. C 70, 065207 (2004)

UNIVERSITY of VIRGINIA

How Does Relativistic Effect Alter Δq ?

- The Δq measured in DIS is calculated from the matrix element. It has the physical implication as helicity distribution in the IMF (light-cone).
- From IMF to the nucleon rest frame, Δq is not invariant. So we should NOT expect the Δq of DIS to add up to the nucleon spin $(\frac{1}{2})$, as expected from the naïve quark model.
- To relate the two, one can use the Melosh-Wigner rotation, which is basically a relativistic transformation that bring in the quark transverse motions (or, "bring in the lower component of Dirac spinors").

A light cone quarkdiquark model can be used to calculate A1

(The "proton spin crisis" can be reconciled with introductory-level physics?)

X. Zheng, August zurr, ... lall C Summer Workshop

Polarized DIS and Nucleon Spin Structure

UNIVERSITY of VIRGINIA

Polarized DIS and Nucleon Spin Structure

* The JLab Hall A data were quoted by the 2007 NSAC long range plan as one of the "most important accomplishments since the 2002 LRP";

*Extensions of these measurements are **flag-ship** experiments for JLab 11 GeV.

E12-06-110 Measurement of A₁ⁿ using SHMS+HMS

spokespeople: : J.P. Chen, Z.E. Meziani, G.D. Cates, X. Zheng

- Measure A_1^n in DIS from ${}^3\vec{He}(\vec{e}, e')$ using $\overline{{}^3He} \approx \vec{n}$
 - 11 GeV beam, P_{beam}=80% (dP/P=1% Compton, Moller)
 - HMS+SHMS to detect e', measure both A₁ and A₁:
 - Will use the same target design as GEN-II (11 GeV):
 - alkali-hybrid mixtures to increase the spin-exchange efficiency;
 - narrow-lined high-power diode lasers;
 - use of convection to overcome depolarization;
 - metal-based target chamber to resist radiations and avoid cell rupture;
 - overall, R&D to better understand the target polarizations
 - Goal: 60-cm long target chamber, 12 amg density, up to 60uA beam with 60% polarization
- Total: 843h (35 days) + Target Installation

• Will reach $\Delta A_1^n = \pm 0.029(\text{stat}) \pm 0.034(\text{syst})$ at x=0.77

MUNIVERSITY / VIRGINIA

Kinematics

Production (DIS and resonance)

10^4 : 1 π rejection is needed

	Kine	E_b	E_p	θ	(e, e')	π^{-}/e	e^{+}/e^{-}	$x (Q^2, \text{ in GeV}^2) (W, \text{ in GeV})$		
		GeV	GeV	(°)	rate (Hz)			coverages		
	DIS									
1	HMS	11.0	5.70	12.5	2300.75	< 0.5	< 0/1%	0.25 - 0.35 (2.78 - 3.17) (2.6 - 3.0)		
2	HMS	11.0	6.80	12.5	1768.35	< 0.1	< 0.1%	0.35-0.55(3.26-3.78)(2.0-2.6)		
3	HMS	11.0	2.82	30.0	5.03	< 7.0	< 0.9%	0.50-0.60 ($7.84-8.87$) ($2.6-3.0$)		
4	HMS	11.0	3.50	30.0	0.94	< 1.6	< 0.1%	0.65-0.77 (9.59-10.54) (2.0-2.5)		
5	HMS	11.0	7.50	12.5	598.43	< 0.1	/ < 0.1%	0.45-0.55 (3.59-3.78) (2.0-2.3)		
Α	SHMS	11.0	5.80	12.5	2817.72	< 0.6	< 0.1%	0.25 - 0.55 (2.71 - 3.77) (2.0 - 3.0)		
В	SHMS	11.0	3.00	30.0	9.61	< 9.4	< 1.4%	0.45 - 0.77 (7.52 - 10.54) (2.0 - 3.2)		
\mathbf{C}	SHMS	11.0	2.25	30.0	28.20	< 42.3	< 10.1%	0.35 - 0.55 ($5.94 - 8.21$) ($2.8 - 3.5$)		
D	SHMS	11.0	7.50	12.5	857.47	< 0.1	< 0.1%	0.40-0.55 (3.40- 3.78) (2.0- 2.4)		
Resonances										
5	HMS	11.0	7.50	12.5	666.78	_	_	0.55-0.83 ($3.84-4.26$) ($1.3-2.0$)		
D	SHMS	11.0	7.50	12.5	440.74	—	_	0.55-0.89 ($3.84-4.36$) ($1.2-2.0$)		

→ Elastic e-³He(II) and Δ (1232) (⊥) at low Q² to check P_bP_t and beam helicity:

Kine	$E_b = E_b$		θ elastic x-sec		elastic	Asymmetry	Time
	GeV	GeV	(°)	(nb/sr)	rate (Hz)		(hours)
Elastic	2.200	2.160	12.5	106.986	2840.3	$A_{\parallel} = 0.0589$	5.1
$\Delta(1232)$	2.200	1.815	12.5	-	-	$A_{\perp} \sim { m a~few}~\%$	6

UNIVERSITY / VIRGINIA

Projected A₁ⁿ Uncertainties

x	ΔA_1^n (stat.)	ΔA_1^n (stat.)	ΔA_1^n (stat.)	$\Delta A_1^n(\text{syst.})$	ΔA_1^n (total)
	low Q^2	high Q^2	two Q^2 combined		
0.25	0.0022	—	0.0022	0.0054	0.0059
0.30	0.0020	—	0.0020	0.0063	0.0066
0.35	0.0025	0.0109	0.0024	0.0074	0.0078
0.40	0.0030	0.0084	0.0028	0.0089	0.0093
0.45	0.0029	0.0106	0.0028	0.0105	0.0109
0.50	0.0033	0.0081	0.0031	0.0124	0.0127
0.55	—	0.0069	0.0047	0.0145	0.0152
0.60	—	0.0092	0.0092	0.0168	0.0192
0.65	—	0.0105	0.0105	0.0197	0.0223
0.71	—	0.0143	0.0143	0.0246	0.0285
0.77	—	0.0288	0.0288	0.0340	0.0446

🔹 Resonance

DIS

	Undrice			S S	●△▼○	NMS	#4 _/	
x	ΔA_1^n (stat.)	$\Delta A_1^n(\text{syst.})$	ΔA_1^n (total)	- 10 (5 10	- ☆★☆ □	SHMS		50°
0.55	0.0072	0.0145	0.0162	 ~~		#	5 ∓ 22 * ≠ ≠	
0.60	0.0061	0.0169	0.0180	-	-	. • .	/	
0.65	0.0074	0.0197	0.0210	5	-	•₽ ∯∪		
0.71	0.0095	0.0242	0.0260		-	****		
0.77	0.0138	0.0323	0.0352		- - w20 ~	#1 #A #2	12.5	
0.83	0.0302	0.0530	0.0610	0		<u>W=1.232-</u> DE	 5 0.75	
0.89	0.0593	0.1003	0.1165	gue C) 0.2	25 0.	5 0.75	v
								^Ri

Efficiently use both HMS and SHMS

Expected Results

Expected Results

Combined with Hall B (proton) 11 GeV experiments

UNIVERSITY / VIRGINIA

E12-06-121 Measurement of Neutron g2 and d2

(thanks to Brad S. for providing the slides)

Summary

Frontiers of Nuclear Science

"Building on the foundation of the recent past, nuclear science is focused on three broad but highly related research frontiers: (1) QCD and its implications and predictions for the state of matter in the early universe, <u>guark confinement, the role of gluons, and</u> the structure of the proton and neutron; (2) the structure of atomic nuclei and nuclear astrophysics, which addresses the origin of the elements, the structure and limits of nuclei, and the evolution of the cosmos; and (3) developing a New Standard Model of nature's fundamental interactions, and understanding its implications for the origin of matter and the properties of neutrinos and nuclei."

E12-06-110 as a possible SHMS Commissioning Experiment

Extra slides

From ³He to Neutron

• S, S', D, Δ isobar in ³He wavefunction:

Phys. Rev. C65, 064317 (2002)

$$\boldsymbol{A}_{1}^{n} = \frac{F_{2}^{3\text{He}}}{P_{n}F_{2}^{n}(1 + \frac{0.056}{P_{n}})} \left[A_{1}^{3\text{He}} - 2\frac{F_{2}^{p}}{F_{2}^{3\text{He}}} P_{p}A_{1}^{p} \left(1 - \frac{0.014}{2P_{p}} \right) \right]$$

Other Inputs:

 $= F_2^P, F_2^D - \text{NMC}$ fits and MRST/CTEQ dominant for high x $P_n = 0.86 \substack{+0.036 \\ -0.020}, P_p = -0.028 \substack{+0.009 \\ -0.004}$ Uncertainty on Pp expected to reduce by factor of 4 from Hall A Ax and Az measurements: $= R(x,Q^2) - R1998,$ PLB 452, 194 (1999) **EMC for F_2^{3He}, F_2^{D}** Acta Phys.Polon. B27, 1407 (1996) (nucl-th/9603021) A_1^p – from fit to world data (at large x also consistent with CLAS12 expected results)

Phys. Rev. C 70, 065207 (2004)

Complementarity with the Hall A BigBite Proposal

- The current version of Hall A proposal uses the BigBite spectrometer, will provide DIS data up to x=0.71 with a 8.8 GeV beam, with smaller uncertainties than this proposal. It is unknown yet whether it will work for 11 GeV;
- Even if BigBite works for 11 GeV, it will be limited by systematics at x=0.77. And
 - The physics of Aⁿ at large x is important enough that it's worth more than one measurement;
 - A combination of the Hall A and C measurement will allow the study of the Q2-dependence of Aⁿ up to x=0.71.

The use of HMS+SHMS (close spectrometers) will allow clean measurements of A₁ⁿ with less systematics than open spectrometers. As a result, reliable and fast online and/or offline data analysis will be possible, allowing fast turn-out of physics results.

Expected Results

Combined results from Hall A (neutron) and B (proton) 11 GeV experiments

MUNIVERSITY of VIRGINIA

A_1^n in the Valence Quark Region at JLab 11 GeV

UNIVERSITY / VIRGINIA

UNIVERSITY of VIRGINIA

Beam Time Request

Production: 684 hours

Table 5: Beam time for DIS (636 hours) and resonance (48 hours) measurements. We have reduced the beam time by 45% compared to our original proposal.

Kine	E_b		θ	E_p	e^- production	e^+ prod.	Tot. Time		
	(GeV)		(°)	(GeV)	(hours)	(hours)	(hours)		
DIS									
1	11.0	HMS	12.5	5.70	12	0	12		
2	11.0	HMS	12.5	6.80	24	0	24		
3	11.0	HMS	30.0	2.82	59	1	60		
4	11.0	HMS	30.0	3.50	539	1	540		
А	11.0	SHMS	12.5	5.80	36	0	36		
В	11.0	SHMS	30.0	3.00	493	7	500		
\mathbf{C}	11.0	SHMS	30.0	2.25	91	9	100		
Resonances									
5	11.0	HMS	12.5	7.50	48	0	48		
D	11.0	SHMS	12.5	7.50	48	0	48		

- Commissioning: 3 days if not including the target, longer if include target. • Elastic; $\Delta(1232)$; Reference Cell (N₂ run)
- Configuration changes; Beam pass change;
- Moller; Target polarimetry;

+ Total: 843h (35 days) + Target Installation, ~45% of our 2006 request