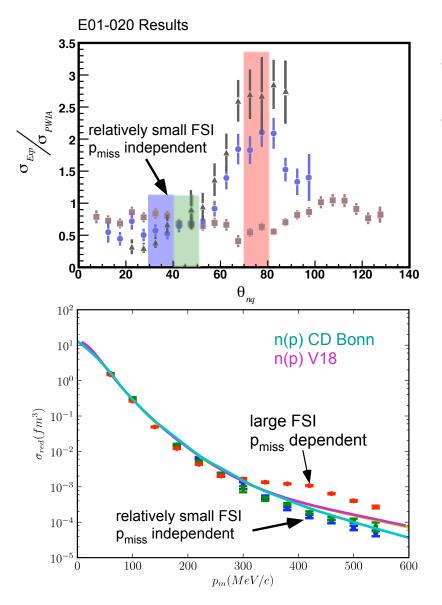
Deuteron Electro-Disintegration at Very High Missing Momenta E10-003


K. Aniol,¹ A. Asaturyan,² H. Baghdasaryan,³ F. Benmokhtar,⁴ H. Bitao,⁵ W.U. Boeglin (spokesperson),⁶ S. Danagoulian,⁷ D. Day,³ D. Gaskell,⁸ D. Higinbotham,⁸ G. Huber,⁹ S. Jeschonnek,¹⁰ X. Jiang,¹¹ M. K. Jones (co-spokesperson),⁸ N. Kalantarians,³ C. Keppel,¹² M. Kohl,¹² P.E. Markowitz,⁶ A. Mkrtchyan,² H. Mkrtchyan,² E. Piasetzky,¹³ A. Puckett,¹¹ B.A. Raue,⁶ J. Reinhold,⁶ G. Ron,¹³ M. Sargsian,⁶ R. Shneor,¹³ G. Smith,⁸ R. Subedi,³ V. Tadevosyan,² J. W. Van Orden,¹⁴ F. R. Wesselmann,¹⁵ S. Wood,⁸ and S. Zhamkochyan²

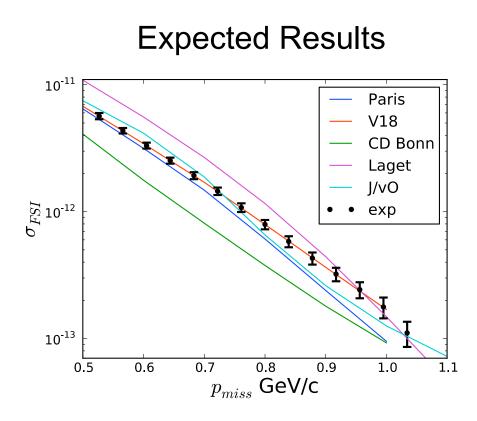
(1)California State University L.A., (2) Yerevan Physics Institute, (3) University of Virginia,
(4) Carnegie Mellon University, (5) Lanzhou University, (6) Florida International University,
(7)North Carolina A&T State University, (8) Jefferson Lab, () 9University of Regina,
(10) Ohio State University, (11) Los Alamos National Laboratory, (12) Hampton University,
(13) Tel-Aviv University, (14) Old Dominion University, (15) Xavier University of Louisiana

Motivation

- Explore a new kinematical region of the 2-nucleon system
- No Deuteron data exist at these kinematics!
- SRC studies cover similar region on missing momenta: experiment E07-006 needs deuteron data for interpretation
- DIS at high Q² and small x and J/ Ψ production are sensitive to Deuteron wave function at small distances
- Determine cross sections at missing momenta up to 1 GeV/c
- Measure at well defined kinematic settings
- Selected kinematics to minimize contributions from FSI
- · Selected kinematics to minimize effects of delta excitation

FSI Supression

- GEA confirmed in previous experiments
- high Q² opens window with small FSI


Experimental Parameters

Beam: Energy: 11 GeV Current: 80µA

Electron arm fixed at: SHMS at $p_{cen} = 9.32 \text{ GeV/c}$ $\theta_e = 11.68^\circ$ $Q^2 = 4.25 \text{ (GeV/c)}^2$ x = 1.35

Vary proton arm to measure : $p_m = 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 \text{ GeV/c}$ HMS $1.96 \le p_{cen} \le 2.3 \text{ geV/c}$ Angles: $63.5^\circ \ge \theta_p \ge 53.1$

Target: 15 cm LHD

- ✓ Measured cross sections for p_m up to 1 GeV/c
- \checkmark Errors: dominated by statistics: 7% $\,$ 20% $\,$
- ✓ Very good theoretical support available
- ✓ JLAB uniquely suited for high p_m study
- \checkmark request 21 days of beam time

Contributions

- Optics calibration measurements for both spectrometers (H(e,e'))
- Coincidence setup, check-out
- H(e,e'p) measurements over range of kinematics
- Spectrometer pointing studies
- FIU is building the Aerogel for SHMS

Open Collaboration

- Everyone contributing is invited to join
- Several Hall C staff are already collaboration members

Committment

- Many members have been involved in the first commissioning of JLAB instruments
- Contributed hardware and software in Hall A and Hall C

Suitability for Commissioning

- Cross section measurements no structure function separation
- Cross section uncertainties are statistics dominated
- No full optimization necessary to produce meaningful results

Errors due to uncertainties in kinematic variables:

$$6.8 \le \sigma_{kin} < 12.2 \%$$
 for $0.5 \le p_m \le 1.0 \text{ GeV} / c$

 $\sigma_i = 1 mr$ for all angles

 $\sigma_{E} = 3 \cdot 10^{-4}$ for the incident energy

 $\sigma_{p} = 10^{-3}$ for the absolute spectrometer momenta

Acceptances

- SHMS:
 - Momentum acceptance: $-8 \le \Delta p/p \le +4$ %
 - Solid angle: $-0.05 \le dx/dz \le 0.05$ $-0.025 \le dy/dz \le 0.025$
- HMS
 - Momentum acceptance: $-10 \le \Delta p/p \le +10$ %
 - Solid angle: $-0.06 \le dx/dz \le 0.06$ $-0.035 \le dy/dz \le 0.035$
- Target length: 15 cm

Requirements

No special requirements:

- Standard cryo target (15cm (?))
- Standard spectrometer instrumentation
- Full reconstruction in both spectrometers

Summary

- New Deuteron data in unknown kinematic territory
- Modest requirement on precision
- PID:
 - e/π separation with Cherenkov and calorimeter
 - p identification with coincidence timing
- Data can be produced while performing spectrometer commissioning
- Experience gained during this experiment will help later experiments that require higher precision