E12-10-006, E12-11-007, PR12-11-108

SIDIS Charged-Pion Production with SoLID and Pol. Targets

Jin Huang, MIT for the Hall A SoLID SIDIS collaboration

Experiments/Proposals

E12–10–006 (PAC35): Transversely pol. ³He, Collins, Sivers, Pretzelosity E12–11–007 (PAC37): Longitudinally pol. ³He, Worm–gear TMDs PR12–11–108 (PAC38): Transversely pol. Proton

Collaboration

 ANL, Peking U., CalState-LA, CIAE, W&M, Duke, FIU, Hampton, Huangshan U., Huazhong U.S.T., IMP CAS, Cagliari U. and INFN, INFN-Catania, INFN-Bari and U. of Bari, INFN-Frascati, INFN-Pavia, Torino U. and INFN, JLab, JSI (Slovenia), Lanzhou U, LBNL, Longwood U, LANL, MIT, Miss. State, New Mexico, ODU, Penn State at Berks, Rutgers, Seoul Nat. U., St. Mary's, Syracuse, Shandong U, Tel aviv, Temple, Tsinghua U, UConn, Glasgow, UIUC, Kentucky, Maryland, UMass, New Hampshire, USTC, UVa

and the Hall A Collaboration

Strong theory support, Over 180 collaborators, 50 institutions,

8 countries, strong overlap with PVDIS Collaboration

Jin Huang <jinhuang@jlab.org> Hall C Summer Workshop

Transverse Momentum Dependent (TMD) Parton Distributions

- TMD PDFs link
 - Intrinsic motion of partons
 - Parton spin
 - Spin of the nucleon
- Multi-Dimension structure
 - Probes orbital motion of quarks
- A new phase of study, fast developing field
 - Great advance in theories (factorization, models, Lattice
 - Not sys. studied until recent years
 - Semi-Inclusive DIS (SIDIS): HERMES, COMPASS, Jlab-6GeV, ...
 - p-p(p_bar) process : FNAL, BNL, ...

Jefferson Lab

in DIS Nucleon -> Plate

Imaging the dynamics

Transverse motion preserved

Leading-Twist TMD PDFs

		Quark polarization							
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)					
ion	U	$f_1 = \bullet$		$h_1^{\perp} = \underbrace{\bullet}_{\mathbf{Boer-Mulders}}$					
Polarizat	L		$g_1 = - + - + -$ Helicity	$h_{1L}^{\perp} = \checkmark - \checkmark$ Long-Transversity					
Nucleon	Т	$f_{1T}^{\perp} = \underbrace{\bullet}_{Sivers} - \underbrace{\bullet}_{V}$	$g_{1T} = \begin{array}{c} \bullet \\ \bullet \\ \hline \end{array} - \begin{array}{c} \bullet \\ \bullet \\ \hline \end{array}$	$h_{1} = \begin{array}{c} \bullet \\ \bullet \\ Transversity \\ \bullet \\ \bullet \\ Transversity \\ \bullet \\ \bullet \\ Pretzelosity \\ \end{array}$					

Leading-Twist TMD PDFs

Access TMDs through Hard Processes

Partonic scattering amplitude Fragmentation amplitude

Distribution amplitude

 $f_{1T}^{\perp q}(SIDIS) = -f_{1T}^{\perp q}(DY)$

$$h_1^{\perp}(\text{SIDIS}) = -h_1^{\perp}(\text{DY})$$

Jin Huang <jinhuang@jlab.org>

Tool: Semi-inclusive DIS (SIDIS)

- Gold mine for TMDs
- Access all eight leading-twist TMDs through spin-comb. & azimuthal-modulations

SIDIS is Gold Mine for TMD

				$d\sigma \qquad a^2 \qquad y^2$
				$\frac{dxdyd\phi_{S}dzd\phi_{h}dP_{h\perp}^{2}}{dxdyd\phi_{S}dzd\phi_{h}dP_{h\perp}^{2}} = \frac{1}{xyQ^{2}}\frac{1}{2(1-\varepsilon)}$
	$f_1 = \bullet$			$\{F_{UU,T} +$
Boer–Mulder	$h_1^{\perp} = (\uparrow)$	_		$+ \varepsilon \cos(2\phi_h) \cdot F_{UU}^{\cos(2\phi_h)} + \dots$
	$h_{1L}^{\perp} = \checkmark$	_		$+S_L[\varepsilon\sin(2\phi_h)\cdot F_{UL}^{\sin(2\phi_h)}+]$
	$g_1 = \bullet$			$+S_L \lambda_e [\sqrt{1-\varepsilon^2} \cdot F_{LL} +]$
	$g_{1T} = $	_		$+ S_T \lambda_e \left[\sqrt{1 - \varepsilon^2} \cos(\phi_h - \phi_S) \cdot F_{LT}^{\cos(\phi_h - \phi_S)} + \dots \right]$
Transversity	$h_{1T} = $	_		$+S_T[\varepsilon\sin(\phi_h+\phi_S)\cdot F_{UT}^{\sin(\phi_h+\phi_S)}]$
Sivers	$f_{1T}^{\perp} = \bullet$	_	•	$+\sin(\phi_{h}-\phi_{S})\cdot(F_{UT}^{\sin(\phi_{h}-\phi_{S})}+)$
Pretzelosity	$h_{1T}^{\perp} = $	_		+ $\varepsilon \sin(3\phi_h - \phi_S) \cdot F_{UT}^{\sin(3\phi_h - \phi_S)} + \dots]$

 $S_{\rm L}$, $S_{\rm T}$: Target Polarization; λ_e : Beam Polarization

SIDIS is Gold Mine for TMD

$$\frac{d\sigma}{dxdyd\phi_{S}dzd\phi_{h}dP_{h\perp}^{2}} = \frac{\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2(1-\varepsilon)}$$

$$f_{1} = \bullet \qquad \{F_{UU,T} + \\ \text{Boer-Mulder} \quad h_{1}^{\perp} = \uparrow - \bullet \qquad +\varepsilon\cos(2\phi_{h}) \cdot F_{UU}^{\cos(2\phi_{h})} + \dots \\ \text{Worm Gear} \quad h_{1L}^{\perp} = \checkmark - \checkmark + \frac{S_{L}}{\sum}[\varepsilon\sin(2\phi_{h}) \cdot F_{UL}^{\sin(2\phi_{h})} + \dots] \\ \text{Helicity} \quad g_{1} = \bullet - \bullet + \frac{S_{L}}{\sum}\lambda_{e}[\sqrt{1-\varepsilon^{2}} \cdot F_{LL} + \dots] \\ \text{Worm Gear} \quad g_{1T} = \bullet - \bullet + \frac{S_{L}}{\sum}\lambda_{e}[\sqrt{1-\varepsilon^{2}}\cos(\phi_{h} - \phi_{S}) \cdot F_{LT}^{\cos(\phi_{h} - \phi_{S})} + \dots] \\ \text{Transversity} \quad h_{1T} = \bullet - \bullet + \frac{S_{T}}{\sum}\varepsilon\sin(\phi_{h} + \phi_{S}) \cdot F_{UT}^{\sin(\phi_{h} + \phi_{S})} \\ \text{Sivers} \quad f_{1T}^{\perp} = \bullet - \bullet + \sin(\phi_{h} - \phi_{S}) \cdot (F_{UT}^{\sin(\phi_{h} - \phi_{S})} + \dots) \\ \text{Pretzelosity} \quad h_{1T}^{\perp} = \bullet - \bullet + \varepsilon\sin(3\phi_{h} - \phi_{S}) \cdot F_{UT}^{\sin(3\phi_{h} - \phi_{S})} + \dots] \}$$

 $S_{\rm L}$, $S_{\rm T}$: Target Polarization; λ_e : Beam Polarization

Т

Polarized ³He Target

- High 10³⁶ N/cm²/s polarized luminosity
- Achieved performance:
 - High polarization
 > 60% achieved
 - Supports both long. & trans. spin
 - Frequent spin flip

n Lab

 Advantages over pol. deuteron targets for n

Polarized NH₃ Target

Existing target

- 3 cm NH₃ target, in 5T field
- Dynamic nuclear polarization/NMR polarimetry
- Optimized for long. setting
- New
 - New magnet design (proposed) 28° opening (L/T)
 - AFP spin flip (R&D planned)
- Beam line design
 - beam line experience of Hall A g2p/GEP-II
 - Simulated in GEANT
 - 100nA beam, 10³⁵/cm²/s

The SoLID Spectrometer

- High Luminosity
- Large acceptance: enable 4D-mapping
- Full azimuthal angular coverage: small systematics
- Largely share hardware with PVDIS

Phase space coverage

- Natural Extension of E06-010
- Much wider phase space
 - Also data at low and high z value to access target frag. and exclusive channels.
- Both transverse and longitudinal polarized target.
 6/7 polarized leading twist TMDs Studied

Transversity $h_{1T} = 4$ - 4

- The third PDFs in addition to f_1 and g_{1L} -
- 10% quark tensor charge from both SSA data
 - Fundamental property, benchmark test of Lattice QCD

Sivers Function $f_{1T} = \bullet$

- Correlation between nucleon spin with quark angular momentum
- Important test for factorization $f_{1T}^{\perp q}\Big|_{SIDIS} = -f_{1T}^{\perp q}\Big|_{D-Y}$
- Different sign with twist-3 quark-gluon corr. dis. at high P_T ?
 - See Dr. Qiu's talk
- T-odd final state interaction -> Target SSA

Worm-gear functions

- Dominated by real part of interference between L=0 (S) and L=1 (P) states
- No GPD correspondence
- Lattice QCD -> Moments of worm-gear TMDs
- Model Calculations $-> h_{1L}^{\perp} = ? -g_{1T}$
- Connections with Collinear PDFs through WW approx. and LIR.

 $h_{11}^{\perp} =$

 $\boldsymbol{g}_{1\mathrm{T}}$

0

-0.1

-0.2

-0.3

-0.4

 $h_{11}^{\perp(1)}$

P-D int.

S-P int.

0.25 0.5 0.75 x

Pretzlosity: $h_{1T}^{\perp} =$

- Relativistic effect of quark PRD 78, 114024 (2008)
- (in models) direct measurement of OAM PRD 58, 096008 (1998)
- Expect first non-zero Pretzelosity asymmetries

Map asymmetries in a 4–D (x, z, Q^2 , P_T): Neutron

	1 < Q ² < 2 0.30 < z < 0.35	1 < Q ² < 2 0.35 < z < 0.40	1 < Q ² < 2 ===== 0.40 < z < 0.45	$\int_{-\infty}^{1 < Q^2 < 2} \frac{1 < Q^2 < 2}{2 + 1} \frac{1}{2} \frac{Q^2 < 2}{2} \frac{1}{2} \frac{1}{2} \frac{Q^2 < 2}{2} \frac{1}{2} \frac{1}{$	1 < Q ² < 2 -==±Ω.50 < z < 0.55	1 < Q ² < 2 	1 < Q ² < 2 	= 1 < Q ² < 2 ∞= 0.65 < z < 0.00
0.6 0.4 0.2		mare a	Anna a Anna a Anna a	Anna A	******			
P ₁ GeV/c)	2 < Q ² < 3 0.30 < z < 0.35	2 < Q ² < 3 0.β5 < z < 0.40 +==±III	2 < Q ² < 3 Q.49 < z < 0.45	2 < Q ² < 3 Qr45 < z < 0.50	2 < Q ² < 3 0.50 < z < 0.55 II ^{II} =	2 < Q ² < 3 0.55 < z < 0.60 I ^{[=} =	2 < Q ² < 3 0.60 < z < 0.65 II =	2 < Q ² < 3 0.65 < z < 0.10 3 0.
0.6 0.4 0.2	······ ·	······ ·	······ . ······ . Izz···· ·	115x++ + + +	1]1-1 -	·· ¹ ··· ·	1111 = + 	۵ ۱۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰
	3 < Q ² < 4 0.30 < z < 0.35 ±EI	3 < Q ² < 4 0.35 < z < 0.40 ≖ ≖ ⊥ <u>⊺</u>	3 < Q ² < 4 0.40 ⊈ z < 0.45	3 < Q ² < 4 0.45 < z < 0.50	3 < Q ² < 4 0.50 < z < 0.55	3 < Q ² < 4 0.55 < z < 0.60	3 < Q ² < 4 0.60 < z < 0.65	3 < Q ² < 4 0.65 < z < 0.0
0.4 0.2 0	I m + I I I]II = + + +	11173-3 - 2 - 211-21]]I]=s r +IIIz+ = +ert I	III I I III I I III I I	IIIII +trii= I +trii= I +trii= I	III: IffreI I Ingli I		1 -0 1 -0 -0 -1 -1 -0
	4 < Q ² < 5 0.30 < z < 0.35	4 < Q ² < 5 0.35 < z < 0.40	4 < Q ² < 5 0.40 < z < 0.45	4 < Q ² < 5 0.45 < z < 0.50	4 < Q ² < 5 0.50 < z < 0.55	4 < Q ² < 5 0.55 < z < 0.60	4 < Q ² < 5 0.60 < z < 0.65	4 < Q ² < 5 0.65 < z < 0.0 0.
0.4 0.2 0		I = [II = =====	I I IIIII • II I	II = 1 = 1 = 1	I I I I	I IIII	I _{II} I I	0 1 I I I 0 -0
2.2 1 1 2.4 2.6 6 0.6	5 < Q ² < 6 0.30 < z < 0.35	5 < Q ² < 6 0.35 < z < 0.40	5 < Q ² < 6 0.40 < z < 0.45	5 < Q ² < 6 0.45 < z < 0.50	5 < Q ² < 6 0.50 < z < 0.55	5 < Q ² < 6 0.55 < z < 0.60	5 < Q ² < 6 0.60 < z < 0.65	5 < Q ² < 6 0.65 < z < 0.70 0.00
0.4	3111	111 1	II =	Ir "	I I	ŢŢ	I	-0 -0 -0
ු 1.2 දින් 1 පි.8 පි.8	6 < Q ² < 8 0.30 < z < 0.35	6 < Q ² < 8 0.35 < z < 0.40	6 < Q ² < 8 0.40 < z < 0.45	6 < Q ² < 8 0.45 < z < 0.50	6 < Q ² < 8 0.50 < z < 0.55	6 < Q ² < 8 0.55 < z < 0.60	6 < Q ² < 8 0.60 < z < 0.65	6 < Q ² < 8 0. 0.65 < z < 0. 0
0.4 0.2 0	0.1 0.2 0.3 0.4 0.5	z 0.1 0.2 0.3 0.4 0.5 x	I 0.1 0.2 0.3 0.4 0.5	I 0.1 0.2 0.3 0.4 0.5	า ^{0.1} ม ์ใก้ใ ในลิเ กิส์ 4)กับ	ı nuang@jiab!org≯	I 0.1 0.2Hail 안4SUar	I I Mer Workshop

Proton 4–D Projection

2.2 1 0.0 0.0 0.0 0.0 0.0 0.0		$\begin{bmatrix} 1 < Q^2 < 2 \\ 11 & 0.35 < z < 0.40 \end{bmatrix}$	1 < Q ² < 2 111 10.40 < z < 0.45	I 1 < Q ² < 2 III I0.45 < z < 0.50	$I = 1 < Q^2 < 2$ II = 10.50 < z < 0.55 III = 0	I 1 < Q ² < 2 III 10.55 < z < 0.60	I 1 < Q ² < 2 II 0.60 < z < 0.65 III =	$\begin{array}{c c} I & 1 < Q^2 < 2 & 0.1 \\ I & 0.65 < z < 0.70^{.1} \\ \hline III & 0.00 & 0.0 \\ \hline IIII & 0.0 & 0.0 \\ \hline IIIII & 0 & 0 \\ \hline \end{array}$
0.4 0.2 0	1 < Q ² < 2 	**** • **** •	IIII I	3111 . 1111 1	ini . Illi :	IIII - IIII - IIII I		
21.2 1 9.9 9.8 0 6	2 < Q ² < 3 0.30 4 z < 0.35	2 < Q ² < 3 0.35 < z < 0.40	2 < Q ² < 3 0.40 < z < 0.45 I I I I	2 < Q ² < 3 0145 < z < 0.50	2 < Q ² < 3 0 ¹ 50 < z < 0.55 I I	2 < Q ² < 3 0.55 < z < 0.60 I I	2 < Q ² < 3 0.60 < z < 0.65	2 < Q ² < 3 0.1 0.65 < z < 0.70 ^{.1} i 0.0
0.0 0.4 0.2 0	tini i Hili i	HIII - HIII - HHI -	IIII (IIII) IIII (
2.2 1 9.4 0 8.0 0 0 0	3 < Q ² < 4 0.30 < z < 0.35 I	3 < Q ² < 4 0.35 < z < 0.40 I	3 < Q ² < 4 0.40 < z < 0.45	3 < Q ² < 4 0.45 < z < 0.50	3 < Q ² < 4 0.50 < z < 0.55	3 < Q ² < 4 0.55 < z < 0.60	3 < Q ² < 4 0.60 < z < 0.65	3 < Q ² < 4 0.1 0.65 < z < 0.70.1 0.0
0.4 0.2 0	I I I I J I	= 	I I I	₹∓ ŧ	I I I	III	I I	I -0.0 -0.1 -0.1
2.2 1.2 0.4 0.6 0.6	4 < Q ² < 5 0.30 < z < 0.35	4 < Q ² < 5 0.35 < z < 0.40	4 < Q ² < 5 0.40 < z < 0.45	4 < Q ² < 5 0.45 < z < 0.50	4 < Q ² < 5 0.50 < z < 0.55	4 < Q ² < 5 0.55 < z < 0.60	4 < Q ² < 5 0.60 < z < 0.65	4 < Q ² < 5 0.1 0.65 < z < 0.70.1 -0.0
0.4 0.2 0	I I	Ξ	II	I	ŧ	I	Ŧ	H 0.0
0.2 1 0.8 0.6	5 < Q ² < 6 0.30 < z < 0.35	5 < Q ² < 6 0.35 < z < 0.40	5 < Q ² < 6 0.40 < z < 0.45	5 < Q ² < 6 0.45 < z < 0.50	5 < Q ² < 6 0.50 < z < 0.55	5 < Q ² < 6 0.55 < z < 0.60	5 < Q ² < 6 0.60 < z < 0.65	5 < Q ² < 6 0.1 0.65 < z < 0.70 ^{.1} 0.0
0.4	ī	I	I	1	ł	I	ł	
201.2 1 201.2 1 201.2 1 201.2 1 201.2 1 201.2 1 201.2 1 2 1 2 1.2 1 2 1.2 1 2 1.2 1 2 1.2 1 2 1.2 1 2 1	6 < Q ² < 8 0.30 < z < 0.35	6 < Q ² < 8 0.35 < z < 0.40	6 < Q ² < 8 0.40 < z < 0.45	6 < Q ² < 8 0.45 < z < 0.50	6 < Q ² < 8 0.50 < z < 0.55	6 < Q ² < 8 0.55 < z < 0.60	6 < Q ² < 8 0.60 < z < 0.65	6 < Q ² < 8 0.1 0.65 < z < 0.7 0
0.4 0.2 0	0.1 0.2 0.3 0.4 0.5	0.1 0.2 0.3 0.4 0.5	0.1 0.2 0.3 0.4 0.5	0.1 0.2 0.3 0.4 0.5	I 0.1 0.2 0.3 0.4 0.5	0.1 0.2 0.3 0.4 0.5	0.1 0.2 0.3 0.4 0.5	0.10.20.30.40.5

Jefferson Lab

SIDIS Factorization Test at 11 GeV

- Proton/deuteron/³He unpolarized data in a large phase space coverage.
- Understand SIDIS process (Factorization , P_T dependence)
 - Complementary to Hall B & C R_{SIDIS} , P_T dependence studies.
- Understand the Nuclear effect in the light nuclei.

E12-10-006 dedicated unpolarized data

Responsibilities

International collaboration

- (8 countries, 50+ institutes and 190+ collaborators)
- Rapid Growth in US-China Collaboration (2 grants from NSFC)
- Joint effort with PVDIS–SoLID (shared detector/DAQ).
- Complete study of magnet options (pursuing CLEO now)
- Pipeline DAQ (Hall D standard)
- GEM Tracker (Chinese Hadron Collaboration with Jlab/UVA/INFN)
 - +**Tracking** (Caltech + U. Mass + Syracuse + JLab)
- MRPC TOF (Chinese Hadron Collaboration, successful in RHIC-STAR)
- ✓ Detailed conceptual design of Gas Cerenkov (Duke + Temple)
- Two proposed technologies: Shashlyk/SciFi for E&M Cal (Duke+ UVA + MIT + Los Alamos)

Recent Progress I:

Magnet Choices and Simulation Framework

- Possible choices of magnets
 - BABAR, CLEO, CDF, ZEUS, Hall D, New design
 - Field and acceptance studied for the first four
- GEMC based simulation framework
 - Allow for quantitative decisions on magnet acceptance
 - Rates/background studies

Recent Progress II: Cerenkov Detector Design

- Good progress with optics design
 - $\circ\,$ Near perfect optics eff. achieved with Winston cone $+\,$ 6x6'' det.
- Viable photo detectors
 - Field-resistive PMTs or GEM-CsI detectors, Test on-goning
- Next stage is R&D and prototyping.

Plots by S. Malace

Other Major Progress

► GEM

- R&D Efforts from UVa/INFN/JLab are combined with the GEM R&D for the Super-BigBite & EIC
- Two major Grand support from China
- EM calorimeters
 - Choices of Shashlik & SciFi (Pb or Fe) studied
 - The Shashlik design is more favored
- MRPC
 - Onsite test in November
- DAQ system
 - Follows the Hall D path
- Web: http://hallaweb.jlab.org/12GeV/SoLID/

Summary

- SIDIS is a powerful tool to study Parton dynamics in the amplitude level (TMDs)
 - Tensor Charge, Spin-OAM correlation, flavor dependence, etc.
- SoLID is an ideal device to study SIDIS
 - High luminosity, large acceptance and full azimuthal coverage
 - Will provide ultimate precision (4-D) of SSA/DSA, at high-x (valence), low Q² region, which is crucial input to global analysis.
 - Test SIDIS factorization, P_T dependence at JLab12 (complementary to SIDIS programs in Hall B/C)
- Integrated Effort in SoLID R&D with PVDIS
 - Steady progress
 - In preparation for the Director Review.

