



# Compton Scattering Experiments at 12 GeV



Compton@12GeV

F.-X. Girod

Experimental Hall B

Introduction

6 GeV Hall-A Hall-B 12 GeV Hall-A 11 GeV CLAS12

GPD extraction procedures Local fits of CFFs Global fits of GPDs Hybrid fits of GPDs

Conclusion

## F.-X. Girod August 20<sup>th</sup> 2011

## Overview

# 1 Introduction



## 3 12 GeV Hall-A 11 GeV CLAS12

GPD extraction procedures Local fits of CFFs Global fits of GPDs Hybrid fits of GPDs

# **5** Conclusion

Compton@12GeV

F.-X. Girod



Introduction

6 GeV

Hall-A

12 GeV

Hall-A 11 GeV CLAS12

GPD extraction procedures Local fits of CFFs Global fits of GPDs Hybrid fits of GPDs

Compton@12GeV

F.-X. Girod



Introduction

6 GeV

Hall-A

Hall-B

12 GeV

Hall-A 11 GeV CLAS12

GPD extraction procedures Local fits of CFFs Global fits of GPDs Hybrid fits of GPDs

Conclusion

# Introduction

#### Elastic scattering Nucleon Form Factors



$$\begin{split} J_{\text{EM}}^{\mu} &= F_1 \gamma^{\mu} + \frac{\kappa}{2M} F_2 i \sigma^{\mu\nu} q_{\nu} \\ \frac{d\sigma}{d\Omega} &= \frac{\sigma_{\text{Mott}}}{\epsilon (1+\tau)} \left[ \tau G_{\text{M}}^2 + \epsilon G_{\text{E}}^2 \right] \\ \tau &= \frac{Q^2}{4M^2} \\ Q^2 &= -(k_i - k_f)^2 = -m_{\gamma^*}^2 \\ \frac{1}{\epsilon} &= 1 + 2(1+\tau) \tan^2 \frac{\theta_e}{2} \\ G_{\text{E}} &= F_1 - \tau F_2 \\ G_{\text{M}} &= F_1 + F_2 \end{split}$$



Hofstadter Nobel prize 1961

"The best fit in this figure indicates an rms radius close to 0.74  $\pm$  0.24  $\times$  10  $^{-13}$  cm."

#### Compton@12GeV

F.-X. Girod



6 GeV Hall-A Hall-B 12 GeV Hall-A 11 GeV CLAS12 GPD extraction procedures Local fits of CFFs Global fits of GPDs

#### Elastic scattering Nucleon Form Factors



#### Compton@12GeV

F.-X. Girod



ntroduction

6 GeV Hall-A Hall-B 12 GeV Hall-A 11 GeV CLAS12 GPD extraction procedures Local fits of CFFs Global fits of GPDs

Hybrid fits of GPDs Conclusion

#### Elastic scattering Nucleon Form Factors

Compton@12GeV

F.-X. Girod





#### Deep Inelastic Scattering Parton Distributions

$$\lim_{Q^2 \to \infty} \sigma_{\text{DIS}}(x_B) = \int_{x_B}^1 \frac{\mathrm{d}\xi}{\xi} \sum_a f_a(\xi, \mu) \hat{\sigma}^a\left(\frac{x_B}{\xi}, \frac{Q}{\mu}\right)$$

#### SLAC-MIT group, 7-18 GeV electrons on

hydrogen



Compton@12GeV

F.-X. Girod



Hall-A 11 GeV CLAS12 GPD extraction procedures Local fits of CFFs Global fits of GPDs Hybrid fits of GPDs

Conclusion

6 GeV Hall-A

Hall-B

Friedman, Kendall, Taylor, Nobel prize 1990

#### Deep Inelastic Scattering Parton Distributions

#### Compton@12GeV

F.-X. Girod





Hall-B 12 GeV Hall-A 11 GeV CLAS12 GPD extraction procedures Local fits of CFFs Global fits of GPDs Hybrid fits of GPDs

#### Deep Inelastic Scattering Parton Distributions



Compton@12GeV F.-X. Girod Experimental Hall B 6 GeV Hall-A Hall-B 12 GeV Hall-A 11 GeV CLAS12 GPD extraction procedures Local fits of CFFs Global fits of GPDs Hybrid fits of GPDs Conclusion

#### Deep Exclusive Processes Generalized Parton Distributions

Compton@12GeV

F.-X. Girod





#### Compton@12GeV

#### F.-X. Girod



| Introduction        |
|---------------------|
| 6 GeV               |
| Hall-A              |
| Hall-B              |
| 12 GeV              |
| Hall-A 11 GeV       |
| CLAS12              |
| GPD extraction      |
| procedures          |
| Local fits of CFFs  |
| Global fits of GPDs |
| Hybrid fits of GPDs |

Conclusion

#### Observables sensitivities to GPD





|                       |                             |                                  |                                           | Meson   | Flavor                             |
|-----------------------|-----------------------------|----------------------------------|-------------------------------------------|---------|------------------------------------|
|                       |                             |                                  |                                           | $\pi^+$ | $\Delta u - \Delta d$              |
|                       | $\mathcal{I}m$              | $\mathcal{R}e$                   | $\mathcal{\tilde{H}},\mathcal{\tilde{E}}$ | $\pi^0$ | $2\Delta u + \Delta d$             |
| н                     | A <sub>LU</sub>             |                                  |                                           | $\eta$  | $2\Delta u - \Delta d + 2\Delta s$ |
| $\tilde{\mathcal{H}}$ | A <sub>UL</sub>             | $\sigma$ , $\textit{A}_{\rm LL}$ |                                           | $ ho^+$ | u – d                              |
| ε                     | $A_{\rm UT}$ , $A_{\rm LT}$ |                                  | $\mathcal{H},\mathcal{E}$                 | $ ho^0$ | 2u + d                             |
|                       |                             |                                  |                                           | ω       | 2u – d                             |
|                       |                             |                                  |                                           | $\phi$  | s                                  |

#### DVCS

DVMP

Only a global analysis of all observables can disentangle GPDs

## Interplay between spin and flavor decompositions

Compton@12GeV

F.-X. Girod



6 GeV Hall-A Hall-B 12 GeV Hall-A 11 GeV CLAS12 GPD extraction procedures Local fits of CFFs Global fits of GPDs Hybrid fits of GPDs

Introduction

|                                                                      | Process                                         | Flavor                             | $q/\bar{q}/g$                   |                                     |  |
|----------------------------------------------------------------------|-------------------------------------------------|------------------------------------|---------------------------------|-------------------------------------|--|
| $\mathcal{H}, \mathcal{E}, \tilde{\mathcal{H}}, \tilde{\mathcal{E}}$ | pDVCS                                           | 4u + d + s                         | $q+ar{q}$ , $lpha_{{f S}}g$     |                                     |  |
|                                                                      | nDVCS                                           | 4d + u + s                         | $q+ar{q}$ , $lpha_{	extsf{S}}g$ | (polarized) deuteron                |  |
|                                                                      | $\rho^+$                                        | u – d                              | $q+ar{q}$ , $g$                 |                                     |  |
|                                                                      | $\rho^0$                                        | 2u + d                             | $q+ar{q}$ , $g$                 | $Im(\mathcal{H}E^*)$ in A $_{UT}$   |  |
|                                                                      | ω                                               | 2u — d                             | $q+ar{q}$ , $g$                 |                                     |  |
| $\mathcal{H},\mathcal{E}$                                            | $\phi$                                          | s                                  | $q+ar{q}$ , $g$                 |                                     |  |
|                                                                      | $J/\psi$ , $\Upsilon$                           |                                    | g                               |                                     |  |
|                                                                      | $(\pi^{+}\pi^{-})_{L=0}$                        | 2u — d                             | $q-ar{q}$                       | interfere with $(\pi^+\pi^-)_{L=1}$ |  |
|                                                                      | $\kappa^{*0} \Sigma^+$ , $\kappa^{*+} \Sigma^0$ | d - s                              | $2q - \bar{q}$                  | SU(3)                               |  |
|                                                                      | $\kappa^{*+}\Lambda$                            | 2u - d - s                         | $2q - \bar{q}$                  | SU(3)                               |  |
|                                                                      | $\pi^+$                                         | $\Delta u - \Delta d$              | $2q - \bar{q}$                  |                                     |  |
| $	ilde{\mathcal{H}},	ilde{\mathcal{E}}$                              | π <sup>0</sup>                                  | $2\Delta u + \Delta d$             | $q - \bar{q}$                   |                                     |  |
|                                                                      | η                                               | $2\Delta u - \Delta d + 2\Delta s$ | $q - \bar{q}$                   |                                     |  |
|                                                                      | $\kappa^{*0}\Sigma^+$ , $\kappa^{*+}\Sigma^0$   | d - s                              | $2q + \bar{q}$                  | SU(3)                               |  |
|                                                                      | <i>к</i> *+л                                    | 2u - d - s                         | $2q + \bar{q}$                  | SU(3)                               |  |

#### Physical content of GPDs :

Momentum distributions in the transverse plane

$$q_X(x,\vec{b}_{\perp}) = \int \frac{d^2 \vec{\Delta}_{\perp}}{(2\pi)^2} H(x,0,t) e^{-i\vec{\Delta}_{\perp} \cdot \vec{b}_{\perp}} - \frac{1}{2M} \frac{\partial}{\partial b_y} \int \frac{d^2 \vec{\Delta}_{\perp}}{(2\pi)^2} E(x,0,t) e^{-i\vec{\Delta}_{\perp} \cdot \vec{b}_{\perp}}$$

M. Burkardt, Phys. Rev. **D62**, (2000) 071503  $\xi \neq 0$  in M. Diehl, Eur. Phys. J. **C25** (2002) 223



Compton@12GeV

F.-X. Girod



| Introduction                 |
|------------------------------|
| 6 GeV<br>Hall-A              |
| Hall-B                       |
| 12 GeV                       |
| Hall-A 11 GeV                |
| CLAS12                       |
| GPD extraction<br>procedures |
| Local fits of CFFs           |
| Global fits of GPDs          |
| Hybrid fits of GPDs          |
| Conclusion                   |

QCDSF-UKQCD collaboration, Nucl. Phys. Proc. Suppl. **153** (2006) 146 (n = 1 and 2 Mellin moment w.r.t. x of distributions)

u and d quarks have opposite orbital motions in a transversly polarized proton

## Physical content of GPDs :

Energy-momentum tensor of q flavored quarks

$$\langle \rho_{2} | \hat{\tau}^{q}_{\mu\nu} | \rho_{1} \rangle = \bar{U}(\rho_{2}) \left[ \begin{array}{c} M_{2}^{q}(t) \ \frac{P_{\mu}P_{\nu}}{M} + J^{q}(t) \ \frac{\iota(P_{\mu}\sigma_{\nu\rho} + P_{\nu}\sigma_{\mu\rho})\Delta^{\rho}}{2M} + d_{1}^{q}(t) \ \frac{\Delta_{\mu}\Delta_{\nu} - g_{\mu\nu}\Delta^{2}}{5M} \end{array} \right] U(\rho_{1})$$
To measure gravitational FFs : graviton scattering or GPDs identities :

K.Goeke,& al, Phys. Rev. D75 (2007) 094021

#### Compton@12GeV

F.-X. Girod



Introduction

6 GeV Hall-A

Hall-B 12 GeV Hall-A 11 GeV CLAS12 GPD extraction procedures Local fits of CFFs Global fits of GPDs Hybrid fits of GPDs Conclusion

### Unified view of hadron structure Wigner Distributions

FFs, PDFs, GPDs, TMDs, inflation of acronyms all related to the same Wigner distribution



- Most general one-parton density matrix
- Not known how to measure
- Provides a unifying description
- Constraints for model building







Compton@12GeV

F.-X. Girod



ntroduction

6 GeV Hall-A Hall-B 12 GeV Hall-A 11 GeV CLAS12

GPD extraction procedures Local fits of CFFs Global fits of GPDs Hybrid fits of GPDs

Conclusion

Unified framework for GPDs and TMDs within a 3Q LC picture of the nucleon C. Lorcé *et al*, arXiv:1102.4704, JHEP 1105:041,2011

## Overview of the nucleon structure Unpolarized quark in unpolarized nucleon



Compton@12GeV

F.-X. Girod



| Introduction        |
|---------------------|
| 6 GeV               |
| Hall-A              |
| Hall-B              |
| 12 GeV              |
| Hall-A 11 GeV       |
| CLAS12              |
| GPD extraction      |
| procedures          |
| Local fits of CFFs  |
| Global fits of GPDs |
| Hybrid fits of GPDs |
| Conclusion          |

Quadrupole deformation of transverse position for quarks at large transverse momentum Intuitive from a semi-classical picture of confinement

C. Lorcé et al, arXiv:1106.0139

Compton@12GeV

F.-X. Girod



Introduction

#### 6 GeV Hall-A Hall-B 12 GeV Hall-A 11 GeV CLAS12

GPD extraction procedures Local fits of CFFs Global fits of GPDs Hybrid fits of GPDs

Conclusion

# 6 GeV dedicated experiments

Hall-A E00-110, Scaling tests of  $\sigma_{\text{DVCS}}$ ,  $F_1\mathcal{H} + \xi G_M \tilde{\mathcal{H}} - F_2 \frac{t}{4M^2} \mathcal{E} + \cdots$ C. Muñoz *et al.*, Phys. Rev. Lett. 97 (2006) 262002

 $E_b = 5.75 \text{ GeV}, \mathcal{P}_b = 75.3\%, \mathcal{L} = 10 \times 10^{37} \text{ cm}^{-2} \text{s}^{-1}, \int \text{d}t \mathcal{L} = 13294 \text{ fb}^{-1}$  (3.26 C)



Compton@12GeV

F.-X. Girod

Experimental Hall B

Hall-A E00-110, Scaling tests of  $\sigma_{\text{DVCS}}$ ,  $F_1\mathcal{H} + \xi G_M \tilde{\mathcal{H}} - F_2 \frac{t}{4M^2} \mathcal{E} + \cdots$ C. Muñoz *et al.*, Phys. Rev. Lett. 97 (2006) 262002



Compton@12GeV

F.-X. Girod Experimental Hall B Hall-A E00-110, Scaling tests of  $\sigma_{\text{DVCS}}$ ,  $F_1 \mathcal{H} + \xi G_M \tilde{\mathcal{H}} - F_2 \frac{t}{4M^2} \mathcal{E} + \cdots$ C. Muñoz *et al.*, Phys. Rev. Lett. 97 (2006) 262002



Compton@12GeV

F.-X. Girod Experimental Hall B Hall-A E03-106, DVCS off the Neutron,  $F_1H + \xi G_M \tilde{H} - F_2 \frac{t}{4M^2} \mathcal{E} + \cdots$ M. Mazouz *et al.*, Phys. Rev. Lett. 99 (2007) 242501





Compton@12GeV

F.-X. Girod



Introduction

6 GeV Hall-A Hall-B 12 GeV Hall-A 11 GeV CLAS12 GPD extraction procedures

Local fits of CFFs Global fits of GPDs Hybrid fits of GPDs

Hall-B E01-113, DVCS BSA,  $F_1 \mathcal{H} + \xi G_M \tilde{\mathcal{H}} - F_2 \frac{t}{4M^2} \mathcal{E} + \cdots$ Solenoid and calorimeter

Hydrogen target, beam polarisation  $\approx$  80%,  $\int \mathcal{L} \approx$  45 fb<sup>-1</sup>







Compton@12GeV

F.-X. Girod



Introduction

6 GeV

Hall-A Hall-B

12 GeV Hall-A 11 GeV CLAS12

GPD extraction procedures Local fits of CFFs Global fits of GPDs Hybrid fits of GPDs

# Hall-B E01-113, DVCS BSA, $F_1 \mathcal{H} + \xi G_M \tilde{\mathcal{H}} - F_2 \frac{i}{4M^2} \mathcal{E} + \cdots$

#### Flavor of analysis

- kinematical coverage
- · exclusivity cuts
- π<sup>0</sup> subtraction



Compton@12GeV

F.-X. Girod



Introduction

6 GeV

Hall-A Hall-B

12 GeV Hall-A 11 GeV CLAS12

GPD extraction procedures Local fits of CFFs Global fits of GPDs Hybrid fits of GPDs

#### Hall-B E01-113, DVCS BSA, $F_1 \mathcal{H} + \xi G_M \tilde{\mathcal{H}} - F_2 \frac{t}{4M^2} \mathcal{E} + \cdots$ FXG *et al.*, Phys. Rev. Lett. 100 (2008) 162002



Compton@12GeV

F.-X. Girod



6 GeV Hall-A Hall-B 12 GeV Hall-A 11 GeV CLAS12 GPD extraction procedures Local fits of CFFs Global fits of GPDs

Introduction

Hybrid fits of GPDs

Compton@12GeV

F.-X. Girod

## Hall-B E01-113, $\sigma_{\text{DVCS}}$ , $F_1 \mathcal{H} + \xi G_M \tilde{\mathcal{H}} - F_2 \frac{t}{4M^2} \mathcal{E} + \cdots$ Preliminary



18

### **Hall-B E01-113,** $\sigma_{\text{DVCS}}$ , $F_1 \mathcal{H} + \xi G_M \tilde{\mathcal{H}} - F_2 \frac{t}{4M^2} \mathcal{E} + \cdots$ Preliminary



Compton@12GeV

F.-X. Girod



Introduction

6 GeV

Hall-A Hall-B

12 GeV Hall-A 11 GeV CLAS12

GPD extraction procedures Local fits of CFFs Global fits of GPDs Hybrid fits of GPDs

Compton@12GeV

F.-X. Girod



Introduction

6 GeV

Hall-A

Hall-B

12 GeV

Hall-A 11 GeV CLAS12

GPD extraction procedures Local fits of CFFs Global fits of GPDs Hybrid fits of GPDs

Conclusion

# 12 GeV upgrade

Hall-A E12-06-114,  $\sigma_{\text{DVCS}}$ ,  $F_1\mathcal{H} + \xi G_M \tilde{\mathcal{H}} - F_2 \frac{t}{4M^2} \mathcal{E} + \cdots$ 

Upagraded equipment has already run (E07-007) and is ready to take beam "Rosenbluth" separation of inteference and DVCS squared



Compton@12GeV

F.-X. Girod



Introduction

6 GeV

Hall-A

Hall-B

12 GeV

Hall-A 11 GeV

CLAS12

GPD extraction procedures Local fits of CFFs Global fits of GPDs Hybrid fits of GPDs

## Hall-A E12-06-114, $\sigma_{\text{DVCS}}$ , $F_1\mathcal{H} + \xi G_M \tilde{\mathcal{H}} - F_2 \frac{t}{4M^2} \mathcal{E} + \cdots$

Upagraded equipment has already run (E07-007) and is ready to take beam "Rosenbluth" separation of inteference and DVCS squared

Luminosity: from  $4 \cdot 10^{37}$  to  $1 \cdot 10^{38}$  Hz/cm<sup>2</sup>

 $E_b = 8.8 \text{ GeV}, Q^2 = 4.8 \text{ GeV}^2, x_B = 0.50$ 



Helicity-dependent cross sections (pb/GeV4)

Statistical uncertainty: from 3 % to 5 %

#### Beamtime request (days)

| Q² (GeV) | x <sub>B</sub> =0.36 | x <sub>B</sub> =0.5 | x <sub>B</sub> =0.6 |
|----------|----------------------|---------------------|---------------------|
| 3.0      | 3                    |                     |                     |
| 4.0      | 2                    |                     |                     |
| 4.6      | 1                    |                     |                     |
| 3.1      |                      | 5                   |                     |
| 4.8      |                      | 4                   |                     |
| 6.3      |                      | 4                   |                     |
| 7.2      |                      | 7                   |                     |
| 5.1      |                      |                     | 13                  |
| 6.0      |                      |                     | 16                  |
| 7.7      |                      |                     | 13                  |
| 9.0      |                      |                     | 20                  |

Total: 88 + 12 (overhead) = 100 days

#### Systematic uncertainty: 4 %

- 2.5% acceptance
- 3% π<sup>0</sup> contamination

Compton@12GeV

F.-X. Girod



Introduction

6 GeV

Hall-A

rian D

12 GeV

Hall-A 11 GeV

CLAS12

GPD extraction procedures Local fits of CFFs Global fits of GPDs Hybrid fits of GPDs

## CLAS12 (11 GeV)

Compton@12GeV

F.-X. Girod



Experimental Hall B Introduction 6 GeV Hall-A Hall-B 12 GeV Hall-A 11 GeV CLAS12 GPD extraction procedures Local file of CFFs

Global fits of GPDs Hybrid fits of GPDs

## Hall-B E12-06-119, proton DVCS, $F_1 \mathcal{H} + \xi G_M \tilde{\mathcal{H}} - F_2 \frac{t}{4M^2} \mathcal{E} + \cdots$



Statistical uncertainties from 1 % (low  $Q^2$ ) to 10 % (high  $Q^2$ )

Compton@12GeV

F.-X. Girod

Experimental Hall B

## Hall-B E12-06-119, proton DVCS, $F_1 \mathcal{H} + \xi G_M \tilde{\mathcal{H}} - F_2 \frac{t}{4M^2} \mathcal{E} + \cdots$

80 days @  $\mathcal{L}=10^{35}~\text{cm}^{-2}\text{s}^{-1}$  with 85% polarized beam



Statistical uncertainties from 1 % (low  $Q^2$ ) to 10 % (high  $Q^2$ )

Compton@12GeV

F.-X. Girod



Hybrid fits of GPDs Conclusion Hall-B E12-06-119, proton DVCS,  $F_1 \mathcal{H} + \xi G_M \tilde{\mathcal{H}} - F_2 \frac{t}{4M^2} \mathcal{E} + \cdots$ 

Compton@12GeV

F.-X. Girod



Introduction

6 GeV

Hall-A Hall-B

12 GeV

Hall-A 11 GeV

CLAS12

GPD extraction procedures Local fits of CFFs Global fits of GPDs Hybrid fits of GPDs

Conclusion





Dotted curve : no D-term, dashed-dotted : factorized t-dependence  $Q^2 = 3.3 \text{ GeV}^2$ ,  $x_B = 0.2$  (left and middle),  $-t = 0.45 \text{ GeV}^2$  (left and right)

Hall-B E12-06-119, proton DVCS,  $F_1 \mathcal{H} + \xi G_M \tilde{\mathcal{H}} - F_2 \frac{1}{AM^2} \mathcal{E} + \cdots$ 

0.45  $Q^2 = 2.2$ Q<sup>2</sup>=2.6 Q<sup>2</sup>=3.5 Q<sup>2</sup>=4.5 =0.25 =0.25 =0.25 -0.25 -0.05 0.12 1.50.12 1.50.12 1.50.12 1.5 0.45 Å Q<sup>2</sup>=2.2 x<sub>B</sub>=0.35  $Q^2 = 5.5$  $x_p = 0.35$ Q<sup>2</sup>=3.5  $Q^2 = 7$ x<sub>p</sub>=0.35 x-=0.35 -0.05 0.12 1.50.12 1.50.12 1.50.12 1.5 0.45 Q<sup>2</sup>=3.5  $Q^{2}=7$ Q2-22  $\dot{Q}^2 = 5.5$ x.=0.45 x.=0.45 =0.45 x\_=0.45 -0.05 0.12 1.50.12 1.50.12 1.50.12 1.5 t

Compton@12GeV

F.-X. Girod



## Hall-B E12-06-119, longitudinally polarized proton DVCS $A_{UL}$ $F_1 \tilde{\mathcal{H}} + \xi G_M \mathcal{H} + G_M \frac{\xi}{1+\xi} \mathcal{E} + \cdots$

120 days @  $\mathcal{L} = 2 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$  with 80% polarized NH<sub>3</sub>



F.-X. Girod **Experimental Hall B** Introduction 6 GeV Hall-A Hall-B 12 GeV Hall-A 11 GeV GPD extraction procedures Local fits of CFFs Global fits of GPDs Hybrid fits of GPDs Conclusion

Compton@12GeV

## Hall-B E12-06-119, longitudinally polarized proton DVCS $A_{UL}$ $F_1 \tilde{H} + \xi G_M \mathcal{H} + G_M \frac{\xi}{1+\xi} \mathcal{E} + \cdots$

120 days @  $\mathcal{L}=2\times 10^{35}~\text{cm}^{-2}\text{s}^{-1}$  with 80% polarized  $\text{NH}_3$ 



Compton@12GeV

F.-X. Girod



Introduction 6 GeV

Hall-A Hall-B

12 GeV Hall-A 11 GeV CLAS12 GPD extraction procedures Local fits of CFFs Global fits of GPDs Hybrid fits of GPDs

Hall-B E12-06-119, longitudinally polarized proton DVCS  $A_{UL}$  $F_1 \frac{\tilde{H}}{\tilde{H}} + \xi G_M \mathcal{H} + G_M \frac{\xi}{1+\xi} \mathcal{E} + \cdots$ 

120 days @  $\mathcal{L}=2\times 10^{35}~\text{cm}^{-2}\text{s}^{-1}$  with 80% polarized  $\text{NH}_3$ 



Experimental Hall B Introduction 6 GeV Hall-A Hall-A Hall-A Hall-A 11 GeV CLASI2 GPD extraction procedures

Local fits of CFFs Global fits of GPDs Hybrid fits of GPDs

Conclusion

Compton@12GeV

F.-X. Girod

#### Hall-B LOI11-105, transversly polarized target DVCS $A_{UT}$ More on angular momentum



Compton@12GeV

F.-X. Girod

Compton@12GeV

F.-X. Girod



Introduction

6 GeV

Hall-A Hall-B

12 GeV

Hall-A 11 GeV

CLAS12

GPD extraction procedures

Local fits of CFFs Global fits of GPDs Hybrid fits of GPDs

Conclusion

# **GPD** extraction procedures

# Model independent extraction Using only $A_{LU}$ and $A_{UL}$ with sensitivity to ${\cal H}$ and $\tilde{{\cal H}}$

- CFFs varied within VGG model range
- Independence on Q<sup>2</sup>
- *H*(t) more flat than *H*(t)
- Stable results
- Large uncertainties



Compton@12GeV

F.-X. Girod



#### Global approach, holographic principle

Compton@12GeV

F.-X. Girod



Introduction D. Müller et al strategy to fit data 6 GeV Hall-A  $\begin{cases} \mathcal{H} \\ \mathcal{E} \end{cases} (x_{\mathrm{Bj}}, t, \mathcal{Q}^2) \stackrel{\mathrm{LO}}{=} \int_{-1}^{1} dx \frac{2x}{\xi^2 - x^2 - i\epsilon} \begin{cases} H \\ E \end{cases} (x, \eta = \xi, t, \mathcal{Q}^2)$ Hall-B 12 GeV Hall-A 11 GeV CLAS12  $\Im \mathcal{F}(x_{\mathrm{Bi}}, t, \mathcal{Q}^2) \stackrel{\mathrm{LO}}{=} \pi F(\xi, \xi, t, \mathcal{Q}^2), \quad F = \{H, E, \widetilde{H}, \widetilde{E}\}$ GPD extraction procedures  $\Re e \begin{cases} \mathcal{H} \\ \mathcal{S} \end{cases} (x_{\mathrm{Bj}}, t, \mathcal{Q}^2) \stackrel{\mathrm{LO}}{=} \operatorname{PV} \int_{c}^{1} dx \frac{2x}{\ell^2 - r^2} \begin{cases} H \\ E \end{cases} (x, x, t, \mathcal{Q}^2) \pm \mathcal{D}(t, \mathcal{Q}^2)$ Local fits of CFFs Hybrid fits of GPDs  $H^{\rm val}(x,x,t) = \frac{1.35 \, r}{1+x} \left(\frac{2x}{1+x}\right)^{-\alpha(t)} \left(\frac{1-x}{1+x}\right)^{b} \left(1 - \frac{1-x}{1+x} \frac{t}{M^{\rm val}}\right)^{-1}$ Conclusion  $\mathcal{D}(t) = d \left( 1 - \frac{t}{M_{\star}^2} \right)^{-2} \qquad r = \lim_{x \to 0} H(x, x) / H(x, 0)$  $\alpha(t) = 0.43 + 0.85 t / \text{GeV}^2$ 

#### Global approach, holographic principle

Compton@12GeV

F.-X. Girod





12 GeV

Hall-A 11 GeV CLAS12

GPD extraction procedures Local fits of CFFs Global fits of GPDs Hybrid fits of GPDs



## Global approach, holographic principle



## Hybrid fits of GPDs

#### Compton@12GeV

F.-X. Girod



#### H. Moutarde, F. Sabatié

Compton@12GeV

F.-X. Girod



Introduction

6 GeV

Hall-A

Hall-B

12 GeV

Hall-A 11 GeV CLAS12

GPD extraction procedures

Local fits of CFFs Global fits of GPDs

Hybrid fits of GPDs

Conclusion

# **Beyond JLab**

### Nucleon structure for hadron-hadron colliders





Multiple hard processes in pp indicate

Forward dipion production at RHIC

Also underlying event physics

• CDF 3 jet +  $\gamma$  consistent with  $\rho \sim$  0.3 fm

Very hard to tune MC generators (many

substantial correlations

Crucial at LHC

parameters)

Compton@12GeV

F.-X. Girod



Introduction

6 GeV

Hall-A Hall-B

12 GeV

Hall-A 11 GeV CLAS12

GPD extraction procedures

Local fits of CEEs

Global fits of GPDs

Hybrid fits of GPDs

Compton@12GeV

F.-X. Girod



Introduction

6 GeV

Hall-A

Hall-B

12 GeV

Hall-A 11 GeV CLAS12

GPD extraction procedures Local fits of CFFs

Global fits of GPDs Hybrid fits of GPDs

Conclusion

## Conclusion

#### Compton@12GeV

F.-X. Girod



Introduction

6 GeV

Hall-A

Hall-B

12 GeV

Hall-A 11 GeV CLAS12

GPD extraction procedures Local fits of CFFs Global fits of GPDs

Hybrid fits of GPDs

- Unified framework for nucleon tomography
- First dedicated results on Compton Scattering
- Essential component of a long range plan to extract GPDs
- Interplay between spin and flavor decompositions requires also other reactions
- Also crucial for QCD backgrounds at LHC and beyond

