Longitudinal spin structure studies with CLAS

Alexandre Deur

08/19/2011

<u>CLAS</u>

Physics of nucleon spin structure already presented (J. Qui, X. Zheng)

Large acceptance coverage

- \Rightarrow •Longitudinal spin structure of proton & neutron;
 - •Large kinematics coverage (DIS, resonance region, large-x);
 - •Ideal for low current targets;
 - •Complementary with high-precision, small-acceptance spectrometers;
 - •(Exclusive reactions, transversity, DVCS...).

Jefferson Lab

P+C(x)**SLAC E80:** 0.2 < x < 0.36 1976, 1980 0.18<x<0.7 E130: 0<x<0.01 3 **CERN EMC:** <u>0.010</u><x<0.7 1988 < 0.182 0.25<x<0.35 0.35<x<0.45 E80SMC, E142, E143, E154, E155, HERMES 0.45<x<0.55 E130 0.9 EMC 0.8 0.7 0.55<x<0.65 Σ quark spin contribution ~30% HERMES 0.6 E143 0.5 SMC 0.4 E155 0.65<x<1 0.3 10 -1 1 10

Data mostly in perturbative regime of QCD and at low-x

Remains to be done: nucleon spin = (quark spins+gluon spins + quark OAM+ gluon OAM)

•Gluon spin (COMPASS, RHIC)

- •Orbital angular momentum (COMPASS, DESY, HERMES, JLab)
- •Transversity (HERMES, JLab, RHIC)
- •Spin structure in non-perturbative region (JLab)

Jefferson Lab

From g_1 and F_1 at large x and Q^2 quark polarizations $\Delta q/q$ can be extracted

From g_1 and F_1 at large x and Q^2 quark polarizations $\Delta q/q$ can be extracted

$\Delta u/u$ follows expectation $\Delta d/d$ disagrees with pQCD calculations without quark orbital momentum

⇒Role of quark orbital angular momentum ?

Jefferson Lab

From g_1 and F_1 at large x and Q^2 quark polarizations $\Delta q/q$ can be extracted

Including quark orbital angular momentum in pQCD calculation solves discrepancy

⇒Evidence of the role of the (experimentally elusive) quark OAM

Transition from short to large scales: results on $\int g_1^{p} - g_1^{n} dx$

Transition from short to large scales: results on $\int g_1^{p}-g_1^{n} dx$


```
Jefferson Lab
```

•Low Q²: extraction of χpt series coefficients;

Jefferson Lab

Low Q² fit:

$$\Gamma_1^{p-n} = \frac{\kappa_n^{2} - \kappa_p^{2}}{8M^2} Q^2 + aQ^4 + bQ^6$$

a=0.80±0.07±0.23, b=-1.13±0.16±0.39
a^{XpT,Ji}=0.74, a^{XpT,B.}=2.4

•High Q²: extraction of power series coefficients (Higher twists);

pQCD without non-perturbative corrections: good description (surprising)

•High Q²: extraction of power series coefficients (Higher twists); Higher Twists: Non-perturbative power corrections:

Results from $\int g_1^{p-n} dx$:

 f_2 large (similar to leading twist at $Q^2 = 1$ GeV²) in accordance to intuition.

 μ_6/M^4 similar size as f_2 but opposite sign (true also for HT from $\int g_1^p dx$ and $\int g_1^n dx$). Overall, higher twist contribution small at $Q^2 = 1$ GeV².

Relevant to hadron-parton duality

Jefferson Lab

Accurate mapping from low to high Q^2 .

Models and data agree.
Not so clear agreement with χpT at low Q².
pQCD without non-perturbative corrections: good description (At first, surprising. HT analysis explains it as a cancelation between twist terms)

Higher moments from EG1b

Spin Polarizabilities

Higher moments from EG1b

Spin Polarizabilities

From DGLAP evolutions:

—— Without JLab data Leader, Sid

 \Rightarrow Important impact on ΔG

Leader, Sidorov and Stamenov, Phys. Rev. D75:074027 (2007)

Upcoming results from CLAS

EG4: Preliminary results on difference of polarized cross sections

One step away from $g_1: \sim g_1 \propto \sigma^{\uparrow\downarrow} \cdot \sigma^{\uparrow\uparrow}$.

Proton, 2.3 GeV

Data (black) normalized to elastic simulation (red)

EG4: Preliminary results on difference of polarized cross sections

CLAS Experiment EG1-DVCS

February-September 2009 Beam Energy = 5.7 GeV Beam polarization: >80 Target polarization: >75%

20x more π ⁺, π -,

40x more π^0 for g_1/F_1 at 6 GeV

Inner Calorimeter (424 PbWO₄ crystals) for the detection of high energy photons at forward lab angles.

Y. Prok

Perspectives with CLAS12


```
Jefferson Lab
```


Conclusion

CLAS: major contribution to JLab longitudinal spin structure program:
Investigation of transition from small to large scales;
pQCD study in region hitherto inaccessible;
Long lever arm allows efficient DGLAP extraction (ΔG)
low Q²-high W data.

Missing piece from CLAS: transversally polarized target with electron beam. Polarized HD target in Hall B: may provide a transverse target for electron beam (12 GeV). If not, will use DNP target.

12 GeV will continue the large Q² part of this program: •High-x data

- •Convergence of sum rules
 - (minimize low-x issue);
- •increase Q² range;
- •Increase lever arm for DGLAP;
- •higher precision extraction of higher twists.

