SANE

Hovhannes Baghdasaryan University of Virginia Hall-C Workshop

Outline

- Goal of SANE (Spin Asymmetries of the Nucleon Experiment)
- ✤ Motivation
- ✤ Experiment
- Parallel Setup
- Perpendicular Setup
- ✤ What still needs to be done
- ✤ Summary

" LET'S ENROL ON THE LAST ONE. WE'VE MORE CHANCE OF GETTING A DOB DONG THAT THESE DAYS."

Goal of the experiment

- * Measure A_{80} and $A_{||}$ on polarized protons in frozen ammonia with polarized electron beam
- \Rightarrow Extract A_1^p and A_2^p
- * Extract g_1^p and g_2^p (Spin Structure Functions)
- ★ Calculate Twist-3 matrix element $d_2 = \int_0^1 x^2 (2g_1 + 3g_2) dx$ (Quantifying quark gluon interactions)
- * Probe the Approach of A_1 to x=1 at constant Q^2 to test quark models and pQCD

Structure Functions

- + Structure Functions F_1, F_2 (Investigated thoroughly)
- + Spin Structure Functions g_1 and g_2 (polarization observables)
 - ✤ In Quark-Parton Model

$$F_1(x) = \frac{1}{2} \sum_i e_i^2 (q_i^+ + q_i^-) \qquad g_1(x) = \frac{1}{2} \sum_i e_i^2 (q_i^+ - q_i^-)$$

Describe charge and spin distributions of the parton. On the other hand $g_2 = g_2^{WW} + \bar{g}_2$ consists of twist-2 part g_2^{WW} (Wandzura-Wilczek) which is function of g_1 only \bar{g}_2 which has part of twist-2 chiral odd transversity and twist-3 effect (responsible for quark-gluon correlations)

Extraction

 $A_{80} \sim [(\cos(\theta_0)\cos(80) + \sin(80)\sin(\theta_0)\cos(\phi))E' + \cos(80)E]M_pG_1 + 2[\cos(\theta_0)\cos(80) - \cos(80) + \sin(80)\sin(\theta_0)\cos(\phi)]E'EG_2$

 $A_{180} \sim \left((\cos(\theta_0)E' + E)M_p G_1 - Q^2 G_2 \right)$

Solve for $\frac{M_p \cdot G_1}{W_1}, \frac{G_2}{W_1}$ which can be used to extract A_1 and A_2

$$A_{1} = \nu \cdot \frac{M_{p} \cdot G_{1}}{W_{1}} - Q^{2} \cdot \frac{G_{2}}{W_{1}} \qquad g_{1} = \frac{(E - E')}{M_{p}}G_{1}$$
$$A_{2} = \sqrt{Q^{2}} \left(\frac{M_{p} \cdot G_{1}}{W_{1}} + \nu \cdot \frac{G_{2}}{W_{1}}\right) \qquad g_{2} = \frac{(E - E')^{2}}{M_{p}^{2}}G_{2}$$

 A_1 and A_2 are obtained in model independent way using experimental asymmetries only

Motivation

Motivation

EXPERIMENT

Hall-C –TJNAF

UVA NH₃ Polarized target 80 and 180 degree

Electron arm BETA detector Tracker (Regina, NSU) Cerenkov (T) Lucite (N.Carolina A&T) BigCal HMS arm 15-45° BEAM 80-100nA current Chicane He bag

Detectors

- ✤ Tracker
 - ✤ 3 planes X(64),Y1(128),Y2(128) 3mm
- ✤ Cerenkov
 - ✤ 8 Mirrors (4 spherical, elliptical)
- ✤ Lucite
 - ✤ 28 Lucite bars
- ✤ BigCal
 - ✤ 32x32(3.82cm)+24x30(4cm) lead glass

Experiment Challenge

✤ BigCal Calibration

No time for detector calibration using elastic events

SOLUTION :

Neural Network (uses information from 25 blocks and position of central block)

Calibration using neutral pions

Better than 10% cluster energy resolution

Pileup

Average cluster size with E>0.8 GeV

- Generated cluster size is similar to Data cluster size
- Block energy cut >10 MeV
- Most energetic block cut >150 MeV
- No Pile-up observer

Run Info

- Experiment ran Feb Mar 2009
- Energy/field Beam Pol* Proposed /FOM**
 - 4.7 GeV Parallel
 66%
 39%

 5.9 GeV Parallel
 88%
 35%

 4.7 GeV Perp
 85%
 58%

 5.9 GeV Perp
 71%
 62%

Target Pol 69%

(*) Measured by Moller polarimeter

(**) FOM=($P_{targ}*P_{Beam}$)²*I_{Beam}

Parallel Field Orientation

- Q² 1.7 GeV²
 Q² 2.5 GeV²
 Q² 3.5 GeV²
- Low x_{Bj} or High W shows small asymmetry
- **Small Q² dependence**
- Statistical errors only

What else needs to be done

- Radiative corrections
- Try to understand run dependent behavior for sum of the runs
- Match kinematic binning with 80° data

80° Field Orientation

- Q² 1.7 GeV²
 Q² 2.5 GeV²
 Q² 3.5 GeV²
- Non-zero Asymmetry (2%)
 In some kinematics ranges A₈₀ is about 20% of A₁₈₀

What else needs to be done

- Only shows about 50% of data taken
- Kinematics dependent dilution factors
- RAD corrections
- Better binning

Physics Asymmetries

 A_1 asymmetries show fair agreement with CLAS Model for 2.5< Q^2 <3.5 GeV2

We observe some disagreement at larger Q²

Preliminary A₁ and A₂ asymmetries were obtained

Radiative corrections need to be applied

Summary

- * SANE collaboration collected data and extracted in model independent way preliminary A_1 and A_2
- * Obtained A₁ agrees with CLAS model curve at small Q² and disagrees at Q²>3.5 GeV2
- + A_{80} is about 2% for Q² = 1.7 GeV²
- * Preliminary A_{80} from only part of the data set with tight event selection cut

To Do List:

- ✤ Use all statistics to decrease statistical errors
- ✤ Calculate radiative corrections
- + Calculate g_1 and g_2
- ✤ Calculate Nachtmann moments

SANE Collaboration (E-07-003)

E. Brash, P. Carter, M. Veilleux Christopher Newport University, Newport News, VA

W. Boeglin, P. Markowitz, J. Reinhold Florida International University, Miami, FL

I. Albayrak, O. Ates, C. Chen, E. Christy, C. Keppel, M. Kohl, Y. Li, A. Liyanage, P. Monaghan, X. Qiu, L. Tang, T. Walton, Z. Ye, L. Zhu Hampton University, Hampton, VA

P. Bosted, J.-P. Chen, S. Covrig, W. Deconink, A. Deur,
C. Ellis, R. Ent, D. Gaskell, J. Gomez, D. Higinbotham,
T. Horn, M. Jones, D. Mack, G. Smith, P. Solvignon, S. Wood
Thomas Jefferson National Accelerator Facility, Newport News, VA

A. Puckett LANL, Los Alamos, NM

W. Luo Lanzhou University, China

J. Dunne, D. Dutta, A. Narayan, L.Ndukum, Nuruzzaman Mississippi State University, Jackson. MI

A. Ahmidouch, S. Danagoulian, J. German, Martin Jones North Carolina A&T State University, Greensboro, NC

M. Khandaker Norfolk State University, Norfolk, VA

A. Daniel, P.M. King, J. Roche Ohio University, Athens, OH

A.M. Davidenko, Y.M. Goncharenko, V.I. Kravtsov, Y.M. Melnik, V.V. Mochalov, L. Soloviev, A. Vasiliev Institute for High Energy Physics, Protvino, Moscow Region, Russia

C. Butuceanu, G. Huber University of Regina, Regina, SK V. Kubarovsky Rensselaer Polytechnic Institute, Troy, NY

L. El Fassi, R. Gilman Rutgers University, New Brunswick, NJ

S. Choi, H-K. Kang, H. Kang, Y. Kim Seoul National University, Seoul, Korea

M. Elaasar State University at New Orleans, LA

W. Armstrong, D. Flay, Z.-E. Meziani, M. Posik, B. Sawatzky, H. Yao *Temple University, Philadelphia, PA*

O. Hashimoto, D. Kawama, T. Maruta, S. Nue Nakamura, G. Toshiyuki Tohoku U., Tohoku, Japan

K. Slifer University of New Hampshire

H. Baghdasaryan, M. Bychkov, D. Crabb, D. Day, E. Frlez, N. Kalantarians, K. Kovacs, N. Liyanage,
V. Mamyan, J. Maxwell, J. Mulholland, D. Pocanic,
S. Riordan, O. Rondon, M. Shabestari
University of Virginia, Charlottesville, VA

L. Pentchev College of William and Mary, Williamsburg, VA

F. Wesselmann Xavier Unniversity, New Orleans, LA

Asaturyan, H. Mkrtchyan, V. Tadevosyan Yerevan Physics Institute, Yerevan, Armenia

Ph.D. student, M.S. Student, Student