

# **NREL Overview**



Dr. Dan E. Arvizu Laboratory Director March 23, 2010

NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC

# **Energy Challenges**

### Security

 Secure supply Reliable Infrastructure

### Economy

 Economic Development Energy price volatility Affordability





### Environment

 Carbon mitigation Land and water use

# Achieving a Sustainable Energy Economy Requires a National Energy Grand Challenge\*



Lead Coordinated RD3E Strategy in Sustainable Energy



Boost R&D Investment



Building a Sustainable Energy Future: U.S. Actions for an Effective Energy Economy Transformation

Support Education & Workforce Development



Lead Globally



Promote Public Awareness & Action August 3, 2009

National Science Board

NS3

\* Recommendations of the National Science Board Task Force on Sustainable Energy

National Renewable Energy Laboratory

Innovation for Our Energy Future

# **Our Energy System**



# **New National Priorities**

**Creating new Jobs in the Clean Energy Economy.** Drive the development of new, green jobs that pay well and cannot be outsourced.

Investing in the Next Generation of Energy Technologies. Invest \$150 billion over ten years in energy research and development to transition to a clean energy economy.

**Breaking Dependence on Oil.** Promote the next generation of cars and trucks and the fuels they run on.

**Producing More Energy at Home.** Enhance U.S. energy supplies through responsible development of domestic renewable energy, fossil fuels, advanced biofuels and nuclear energy.

**Promoting Energy Efficiency.** Promote investments in the transportation, electricity, industrial, building and agricultural sectors that reduce energy bills.

**Closing the Carbon Loophole.** By stemming carbon pollution through a market-based cap, we can address in a systematic way all the energy challenges that we face: curbing our dependence on foreign oil, reducing our use of fossil fuels, and promoting new industries right here in America.



G8Website/ANSA Photo: Alessandro Di Meo

# Strategic Technology for Energy Plan (STEP) to Frame FY12 Budget

Minimal Case: (a) total US energy consumption, and (b) electric generation (hydropower counted in renewables)



### **Business Sensitive – Do Not Cite**

'50

# **A Profound Transformation is Required**

# Today's Energy System

- Dependent on foreign sources
- Subject to price volatility
- Increasingly vulnerable energy delivery systems
- 2/3 of source energy is wasted
- Produces 25% of the world's carbon emissions
- Role of electricity increasing



# Sustainable Energy System

- Carbon neutral
- Highly efficient
- Diverse supply options
- Sustainable use of natural resources
- Creates American jobs
- Accessible, affordable and secure

# **A Profound Transformation Requires...**

### Light, heat, power



### Mobility and access



- Continuing advances in science and technology to reduce cost and enable impact at scale
- A much stronger *systems focus* 
  - Recognize the energy system is a energy 'system of systems'
  - **o** Focus on efficiently delivering future energy services
  - Make optimal use of all energy resources
  - Adapt existing infrastructure
  - **o** Holistically design new infrastructure
- Concerted and coordinated efforts between government and private sector
- Greater understanding of options and their implications to guide decisions

NREL's impact will be delivered through commercialization and deployment of innovations designed to be integrated in five key systems

# **Focused on Sustainable Systems**



# **Aligned with System Outcomes**



# **The Revised Strategy Construct**



# Achieving the Potential Requires A Balanced Portfolio



# Near-Term Impact: Harvest Past R&D Energy Investments

### **Remove Barriers to Broad Deployment**

- Fuels Economic Recovery
- Creates Jobs





Source: EIA Annual Energy Outlook 2009 Early Release

# NREL Provides Data, Tools and Technical Assistance to:

Educate and inform

Develop codes and standards Inform policy options, program design, and investment choices

- Resource Assessment
- Technology Analysis
- Policy Analysis



# Mid-Term Impact: Accelerate Next-Generation Technology to Market

NREL Focus on Technology and Systems Development Unique Partnering Facilities Testing and Validation Capabilities



Integrated Biorefinery Research Facility







# Long-Term Impact: Requires Breakthrough/Translational Science



### Managing the science-to-technology interface

National Renewable Energy Laboratory

# **NREL Funding and Staffing**



Updated March 2010

### NREL FY2010 Program Portfolio \$312.7M\* (Est)



# **Energy Efficiency**



# **Buildings**

### Status U.S. Buildings:

- 39% of primary energy
- 71% of electricity
- 38% of carbon emissions

### **DOE Goal:**

- Cost effective, marketable zero energy buildings by 2025
- Value of energy savings exceeds cost of energy features on a cash flow basis

### **NREL Research Thrusts**

- Whole building systems integration of efficiency and renewable features
- Computerized building energy optimization tools
- Building integrated PV



April 10, 2008

# **Energy Used in Buildings**



Buildings use 72% of the nation's electricity and 55% of its natural gas.

Source: Buildings Energy Data Book 2007

Innovation for Our Energy Future

National Renewable Energy Laboratory

# Technology for Cost Effective Zero Energy Buildings

NREL Zero Energy Habitat House







### **Compressorless Cooling**





# Computerized optimization & simulation Tools



Electrochromic Windows





**Polymer Solar Water Heaters** 

# **Renewable Electricity Supply**



# Wind

# Today's Status in U.S.

- 35,000 MW installed capacity
- Cost 6-9¢/kWh at good wind sites\*

# **DOE Cost Goals**

- 3.6¢/kWh, onshore at low wind sites by 2012
- 7¢/kWh, offshore in shallow water by 2014

**Long Term Potential** At least 20% of the nation's electricity supply



The Siemens 2.3 MW turbine is among the largest land-based turbines deployed in the United States and is the largest at the NWTC site.

\*With no Production Tax Credit Source: U.S. Department of Energy, American Wind Energy Association

Updated 1/10

# The "20% Wind Report" Informs Our RD&D

### The 20% Wind Energy by 2030 Scenario

### How it began:

- 2006 State of the Union and Advanced Energy Initiative
- Collaborative effort of government and industry (DOE, NREL, AWEA) to explore modeled energy scenario where wind provides 20% of U.S. electricity by 2030

### **Primary Assumptions:**

- U.S. electricity consumption grows 39% from 2005 to 2030—to 5.8 billion MWh (Source: EIA)
- Wind turbine energy production (capacity factor) increases
  15% by 2030
- Wind turbine costs decrease 10% by 2030
- No major breakthroughs in wind technology

### **Primary Findings:**

- 20% wind electricity would require about 300 GW (300,000 MW) wind generation
- Affordable, accessible wind resources available across nation
- Cost to integrate wind modest
- Emissions reductions and water savings
- Transmission a challenge



www.eere.energy.gov/windandhydro

# Wind Energy Technology



US Wind Resource Exceeds Total Electrical Demand



**Offshore Wind** 



Advanced Blades



Innovative Tall Towers



**Giant Multi-megawatt Turbines** 



Wind Forecasting

### National Renewable Energy Laboratory

### **NREL Research Thrusts**

- Improved performance and reliability
- Advanced rotor development
- Utility grid integration

Photo credit: Megavind

# **Solar – Photovoltaics and CSP**

### Status in U.S.

### PV

- 1,106 MW installed capacity
- Cost 16-32¢/kWh\*

### CSP

- 419 MW installed capacity
- Cost 10-14¢/kWh\*

### **Potential:**

### PV

- 6-13 ¢/kWh by 2015\*
- 6-15 ¢/kWh by 2030\*\*

### CSP

8-11 ¢/kWh by 2015\* 7-11 ¢/kWh by 2030\*\*

\* With 30% ITC \*\* With 10% ITC Source: DOE/NREL 2010 program targets (currently under revision).





# **Solar Research Thrusts**

### **Photovoltaics**

- Higher performance cells/modules
- New nanomaterials enabled technologies
- Advanced manufacturing techniques
- Improved reliability

### **Concentrating Solar Power**

- Low cost high performance storage for baseload markets
- Advanced absorbers, reflectors, and heat transfer fluids
  - Next generation solar concentrators

8.22-megawatt Alamosa, Colo., PV solar plant

### **PV Conversion Technologies—Decades of NREL** Leadership



# Geothermal

### Today's Status in U.S.

- 3,153 MWe installed, 6443 MWe under development
- Cost 5-8¢/kWh with no PTC
- Capacity factor typically > 90%, base load power

### **Future Energy Cost**

- Near term: Hydrothermal sites at 5¢/kWh
- Longer term: Enhanced geothermal systems, huge resource at 5-10¢/kWh with mature technology

### **Long Term Potential**

 Recent MIT Analysis shows potential for 100,000 MW installed Enhanced Geothermal Power systems by 2050, cost-competitive with coal-powered generation

### **NREL Research Thrusts**

- DOE lead for Low Temperature R&D
  - Oil/gas coproduction of electricity, direct use, geothermal heat pumps
- Analysis to define pathways for broad commercial impact of geothermal systems
- R&D in advanced power conversion systems
- Systems engineering/integration



Drilling rig on South Table Mountain, testing for installation of geothermal heat pump showcase system at NREL.

Updated 1/10

# **Biomass Power**

### **Biopower status in U.S.**

- 2007 capacity 10.5 GWe
  - 5 GW Pulp and Paper
  - 2 GW Dedicated Biomass
  - 3 GW MSW and Landfill Gas
  - 0.5 GW Cofiring
- 2004 Generation 68.5 TWh
- Cost 8-10¢/kWh

### **Potential**

- Cost 4-6¢/kWh (integrated gasification combined cycle)
- 2030 160 TWh (net electricity exported to grid from integrated 60 billion gal/yr biorefinery industry)







# **Biofuels**

### **Current Biofuels Status in U.S.**

- Biodiesel
  - 175 companies; 2.7 billion gallons/yr capacity<sup>1</sup>
  - $_{\odot}$  0.5 billion gallons produced in 2009
- Corn ethanol
  - $\circ$  200 commercial plants<sup>2</sup>
  - 13.0 billion gal/yr capacity<sup>2</sup> (+1.4 billion gal/yr planned)
  - $_{\odot}$  10.5 billion gal produced in 2009
- Cellulosic ethanol
  - $_{\odot}$  30 demonstration plants funded and under construction

### Key DOE Goals

- 2012 goal: cellulosic ethanol \$1.49/gallon or ~\$2.22/gge
- 2022 goal: 36B gal Renewable Fuel; 21B gal "Advanced Renewable Fuel," 2007 Energy Independence and Security Act RFS

### **NREL Research Thrusts**

- Cellulosic biomass conversion to cellulosic ethanol
- Advanced biofuels
- Algal biofuels
- Biofuels sustainability and technoeconomic analysis

### Updated January 2010

Sources: 1- National Biodiesel Board

- 2 Renewable Fuels Association,
- all other information based on DOE and USDA sources









# **Generation 2—Cellulosic Ethanol**

**2nd generation**—from lignocellulosic biomass materials, primarily producing ethanol via biochemical or thermochemical conversion



# **Action of Fungal Cellulases**



# **Why Follow-On Generations?**



# **Sustainable Transportation**



# **Plug-In Hybrid Electric Vehicles (PHEV)**

### **Status:**

- PHEV-only conversion vehicles available
- OEMs building prototypes, and several about to come to showrooms
- NREL PHEV Test Bed

### **NREL Research Thrusts**

- Energy storage
- Advanced power electronics
- Vehicle ancillary loads reduction
- Vehicle thermal management
- Utility interconnection
- Vehicle-to-grid

### **Key Challenges**

- Energy storage life and cost
- Utility impacts
- Vehicle cost
- Recharging locations
- Tailpipe emissions/cold starts
- Cabin heating/cooling
- ~33% put cars in garage





Updated January 2010

# **Advanced Vehicle Technologies**



39

# **Hydrogen and Fuel Cells**



# **Fuel Cells and Hydrogen**

### **U.S. Status**

- 400+ fuel cell vehicles on the road
- > 60 hydrogen fueling stations \_

### **2015 Goals**

Hydrogen Production

- \$2-3/Kg for all pathways
- Renewables in \$5-10/Kg range
- **Fuel Cells** 
  - \$30/kW for transportation fuel cells
  - 5,000 hour stack life

### **NREL Research Thrusts**

- Renewable  $H_2$  production
- Fuel Cell
- Safety/codes/standards
- Early market introduction





tandard Price and

Marmat

Property lists





Updated January 2010

# **New Directions**



# **Evaluating Potential New Directions**



### **Ocean Kinetic Energy**





**Tidal** 

Pelamis—Ocean Power Delivery

Verdant—Power RITE Turbine

# Smart Grid – Renewable Energy Integration in Systems at All Scales

Today



### **Future**



# **An Integrated Approach is Required**



# **Making Transformational Change**

The opportunity for making renewable energy transformational change is now before us as a solution to a global crisis.

# We must seize the moment.

National Renewable Energy Laboratory

Innovation for Our Energy Future

# 2009 IN REVIEW

# Laboratory of the Future – **Research Support Facility**

Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by the Alliance for Sustainable Energy U.C. National Renewable Energy Laboratory

Innovation for Our Energy Future