

Renewable Energy Materials Needs— Frontiers of Research

Dr. Dan E. Arvizu Director National Renewable Energy Laboratory Golden, Colorado USA October 13, 2009

NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC

World Energy Supply and the Role of Renewable Energy

2030

Units = Mtoe

Source: IEA/OECD, World Energy Outlook 2008, page 78, table 2.1

Looking Ahead with Optimism— New National Priorities

- Invest \$150B in alternative energy over 10 years
- Create green jobs with clean, efficient American energy
- Double production of alternative energy in three years – enough to power 6 million homes
- Upgrade the efficiency of more than 75% of federal buildings and two million private homes
- Put one million PHEVs on U.S. roads by 2015
- Reduce CO₂ emissions by 80% below 1990 levels by 2050
- Transform our economy with science and technology

G8Website/ANSA Photo: Alessandro Di Meo

A Profound Transformation is Required Today's Energy Sustainable Ener **Imperatives for System** System Transformation Carbon neutral Dependent on foreign **DEFINE THE** • Efficient **END STATES** sources Diverse supply Subject to price options volatility **REDUCE NEW TECHNOLOGY** Minimal impact on Increasingly unreliable **RISK** resources 2/3 of source energy is ost

Produces 25% of the world's carbon emissions

ACCELERATE ADOPTION

- Creates sustainable jobs
- Accessible, affordable and secure

Getting to "Speed and Scale"– Key Challenges

Implementing Renewable Gigawatts at Scale

- · Cost
- Reliability
- Infrastructure
- Dispatchability

Displacement of Petroleum-Based Fuels

- · Cost
- Life cycle sustainability
- Fuels infrastructure
- Demand and utilization

Reducing Energy Demand of Buildings, Vehicles, and Industry

- Coordinated implementation
- · Valuing efficiency
- · Cost
- Performance and reliability

Near-Term Impact: Harvest Past R&D Energy Investments

Remove Barriers to Broad Deployment

- Fuels Economic Recovery
- Creates Jobs

Source: EIA Annual Energy Outlook 2009 Early Release

NREL Provides Data, Tools and Technical Assistance to:

Educate and inform

Develop codes and standards Inform policy options, program design, and investment choices

- Resource Assessment
- Technology Analysis
- Policy Analysis

Mid-Term Impact: Accelerate Next-Generation Technology to Market

NREL Focus on Technology and Systems Development Unique Partnering Facilities Testing and Validation Capabilities

Integrated Biorefinery Research Facility

Long-Term Impact: Requires Breakthrough/Translational Science

Managing the science-to-technology interface

Testing

Scale-up

Engineering

National Renewable Energy Laboratory

Exploratory R&D

Applied R&D

Basic R&D

Demonstration

Energy Efficiency

Technology for Cost Effective Zero Energy Buildings

NREL Zero Energy Habitat House

BIPV Products & PV-T Array

Compressorless Cooling

Computerized optimization & simulation Tools

Electrochromic Windows

Polymer Solar Water Heaters

Renewable Electricity Supply

Wind Energy Technology

US Wind Resource Exceeds Total Electrical Demand

Offshore Wind

Advanced Blades

Innovative Tall Towers

Giant Multi-megawatt Turbines

Wind Forecasting

Horns Rev Offshore Wind Farm North Sea, Denmark

Photo used by permission of Uni-Fly A/S

Nanotechnology Can Improve the Reliability and Lifetime of Wind and Ocean Power Systems

Advanced Material Coatings

- Offshore high corrosion environment applications
- High stress drivetrain components including
 - Gearing; pinions; planet bearings
- Lubrication systems & surface wear
- Anti-fouling ocean energy systems
- Ice reduction on turbine blades
- Longevity

National Renewable Energy Laboratory

Innovation for Our Energy Future

Applications of Solar Heat and Electricity

PV Conversion Technology Portfolio

Market-Competitive Targets

Market Sector	Current U.S. Market Price Range (¢/kWh)	Cost (¢/kWh) Benchmark 2005	Cost (¢/kWh) Target 2010	Cost (¢/kWh) Target 2015
Residential	5.8-16.7	23-32	13-18	8-10
Commercial	5.4-15.0	16-22	9-12	6-8
Utility	4.0-7.6	13-22	10-15	5-7

Thin Films (aSi)

Advancing amorphous and wafer replacement crystal silicon film solar cells on low-cost substrates

Organic PV

Customizing molecules, substrates, and deposition techniques to yield ultra low-cost modules

Next Generation Investigating advanced concepts

Crosscut

Synergistic technologies, evaluation approaches, and process engineering approaches applicable across multiple absorber materials and processes

Concentrating PV

Combining new, lower cost multijunction cells and innovative optical packages

Thin Films (CIGS)

Supporting the manufacture of nonvacuum processes and transferring record efficiency device performance into large area commercial modules

Dye-Sensitized Cells

Advancing the efficiency and stability of inexpensive dye-based solar cells with novel nanostructures

Building Integrated PV

Creating module form factors

Current Research Moves from Nanoparticles to Nanotubes to Improve Electron Transport

National Renewable Energy Laboratory

Innovation for Our Energy Future

Connecting the Dots: Moving to the 3rd Generation

Credits: Art Nozik, Matt Beard – NREL

Action of Fungal Cellulases

Why Follow-On Generations?

Sustainable Transportation

Advanced Vehicle Technologies

Energy Storage

Designer Nanostructured Materials are Critical to Enabling Energy Storage Systems for Renewables

State-of-the-art processing to create novel nanomaterials for energy storage:

- Hydrogen storage: porous carbons, boro-carbons, metcars, macromolecules
- Batteries: novel electrolytes and metal oxides for cathodes and anodes
- Ultracapacitors: nanotubes and high dielectric materials
- Dynamic smart windows

NREL leads DOEs hydrogen sorption Center of Excellence

- Develops high surface area, low-weight and low-cst materials
- 15 projects: 4 national labs, 10 universities, and on industrial parnter

New Directions

Enabling Innovation—Centers, Hubs and Clusters

New NREL Related Energy Frontier Research Centers:

- Center for Inverse Design
- Molecularly Assembled Material Architectures
- Materials for Energy Efficiency
- Hybrid Solar-Electric Materials
- Direct Catalytic Conversion
- Polymer-Based Solar Materials
- Solar Photophysics

Energy Solutions Require a New Approach

Multi-disciplinary/multi-institutional collaboration

- Chemistry, materials science
- Computational modeling
- Biology

Translational science—bridge basic to applied

National Renewable Energy Laboratory

Innovation for Our Energy Future

Making Transformational Change

The opportunity for making renewable energy transformational change is now before us as a solution to a global crisis.

We must seize the moment.

National Renewable Energy Laboratory

Innovation for Our Energy Future

Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by the Alliance for Sustainable Energy, LLC