

Realizing a Clean Energy Future

IEEE Energy Conversion Congress and Exposition 2012

September 19, 2012

Dr. Dan E. Arvizu

Laboratory Director

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Energy Context

National Energy Imperatives

Security Economy Stimulating Reducing clean-energy dependence on companies and foreign sources job growth **Environment** Protecting resources and reducing global warming

A Profound Transformation is Required

Today's Energy

System

Sustainable Energy

System

TRANSFORMATION

- Dependent on non-domestic sources
- Subject to price volatility
- Increasingly vulnerable energy delivery systems
- 2/3 of source energy is wasted
- Significant carbon emissions
- Role of electricity increasing

- Carbon neutral
- Efficient
- Diverse supply options
- Sustainable use of natural resources
- Creates economic development
- Accessible, affordable and secure

4

Energy Sector Challenges

The Role of Natural Gas?

"We are in the midst of a natural gas revolution in America that is a potential game changer for the economy, environment and our national security—if we do it right."

—Tom Friedman

New York Times, August 4, 2012

Dramatic Change in US Gas Production

"Will it be a transition to a clean energy future or does it defer a clean energy future?" — Hal Harvey

Source: EIA, Annual Energy Outlook 2012

Natural gas, wind and other renewables account for the vast majority of capacity additions from 2010 to 2035

Source: EIA, Annual Energy Outlook 2012

Non-hydro renewable sources more than double between 2010 and 2035

Non-hydropower renewable generation Billion kilowatthours per year

Source: EIA, Annual Energy Outlook 2012

9

MIT Future of Natural Gas Study

* Fig. 3.12 Energy Mix in Electric Generation under a Price-Based Climate Policy, Mean Natural Gas Resources and Regional Natural Gas Markets (TkWh) [reduced GHG 80% below 2005]

Renewable Electricity Futures Study

U.S. DOE-sponsored collaboration with over 110 contributors from about 35 organizations including national laboratories, industry, universities, and NGOs

State of the Art Electric System Models

- Unprecedented <u>geographic</u> and <u>time resolution</u> for the <u>contiguous</u> United States
- Over two dozen scenarios of RE generation focused on 2050

Abundant Renewable Energy Resources

Geographic location, technical resource potential, and output characteristics are unique to each RE generation technology.

A Transformation of the U.S. Electricity System

RE generation from technologies that are commercially available today, in combination with a more flexible electric system, is more than adequate to supply 80% of total U.S. electricity generation in 2050 while meeting electricity demand on an hourly basis in every region of the country

Innovation, Integration, & Adoption

Reducing Investment Risk

- Enable basic and applied clean energy technology innovation
- Accelerate technology market introduction and adoption
- Integrate technology at scale
- Encourage collaboration in unique research and testing "partnering" facilities
- Provide analysis and expertise to inform decisions

Status of the Technologies

Solar Electricity: State of the Technology

Photovoltaics (PV)

- Market: Residential; Commercial, Utility
- Geographically diverse
- kWs to MWs to GWs
- U.S. Capacity: 4.0 GW
- U.S. Forecast: 22+ GWs in pipeline
- Costs. \$3 to \$7/W: *LCOE 7 to 16^c/kWr
- Technologies: Conversion; thin-films, crystalline silicon. Storage; battery

Solar Thermal Electric (CSP)

- Market: Commercial; Utility
- Geographically confined to "sun bowls"
- MWs to GWs
- U.S Capacity: 0.5 GW
- U.S. Forecast: ~6 GWs in pipeline
- Costs. \$4 to \$8/W: *LCOE 12 to 20 ^c/kWr
- Technologies: Conversion; parabolic troughs, central receivers, dish. Storage; thermal, up to 15 hours.

*With federal incentives; e.g. the FTC.

Updated: April 2012

Source: GTM/SEIA : U.S. Solar Market Insight Q4 2011 & 2011 Year-in-Review

Multiple Promising PV Technologies

c-Si ~ 180 um

Wind energy: State of the Technology

- Costs: 7-10 cents/kWh LCOE*
- Installed wind project cost = \$2,155/kW
- 1.5-3.0 MW commercial turbines are typical
- 10 MW prototype machines in development
- Direct drive generators more common
- Variable speed and grid-friendly operation
- Technologies targeting offshore wind markets

Updated: April 2012

* Estimate for utility-scale wind, class 4 wind sites, no subsidies

- U.S. installed capacity = 46.9 GW (12/2011)
- 38 of 50 states have utility-scale wind with 14 states > 1,000 MW installed
- Over 8.3 GW currently under construction
- U.S. wind capacity represents more than 20% of the world's installed wind power
- U.S. wind percentage of electricity is over 2.3%
- Over 400 manufacturing facilities across the U.S. make components for wind turbines

Wind Technology Innovation

- Modular large components blades, drivetrains, and tall towers
- Advanced drivetrain power conversion systems – superconducting direct drive generators
- Flexible, ultra-large rotors and systems
- Active controls for structural load reduction, improved wind plant performance, and grid-friendly operation
- Floating offshore wind turbines
- Airborne wind power systems

Biofuels: State of the Technology

Current Status:

U.S. produced 13.5 billion gallons of ethanol and 1.1 billion gallons of biodiesel (2011)

Biorefineries:

- 219 commercial corn ethanol plants
- 180 biodiesel refineries
- 28 cellulosic ethan

Cost goal:

Cellulosic ethanol—cost parity with gasoline by 2012

Major Technology Directions:

- Foundational Science: Enzymes, fermentation, understanding biomass and cell composition
- Feedstocks: Sustainable feedstock production systems
- Pretreatment & Conversion R&D: Biochemical and thermochemical conversion processes
- Advanced Biofuels and Algae: Broadening RD&D beyond cellulosic ethanol to address "drop in' and high-energy content fuels from algae and other biomass resources

Updated: 4/2012

Biofuels Innovation

New conversion technologies are being developed, offering the possibility of revolutionary, high volume methods for producing biofuel hydrocarbon fuels for our trucks, trains, ships, and aircraft . . .

Forward Progress: Infrastructure-Compatible Biofuels

A computer simulation of the process used by some very efficient cellulose degrading bacteria to deconstruct plant cell walls.

Transportation Innovation

Portfolio of technologies leading to 54.5 mpg

Degree of electrification

(power electronics &

energy storage)

Start/stop

Regenerative braking

Low rolling resistance tires

Electric infrastructure

Electric powered steering

Light weighting

8 speed transmissions

Variable cylinder mgmt

Improved aerodynamics

Diesel powered & or Alternative Fuels, H2

Turbocharging, direct fuel injection, advanced combustion

Buildings Innovation

High Performance Buildings

BIPV Products & PV-T Array

Compressorless Cooling

Electrochromic Windows

Polymer Solar Water Heaters

Computerized optimization & simulation Tools

Efficiency/Integration Innovation

Buildings

- Whole building systems integration
- Computerized building energy optimization tools
- Advanced HVAC (Heating Ventilating and air conditioning)
- Cost effective ultra energy efficient retrofits

Grid Integration

Interconnection Standards

- **IEEE Standards Development**
- Standards Testing and Validation

Smart-Grid Data Hub

RE Grid Integration

- Power Electronics for Interconnection monitoring and control
- Grid-to-vehicle interface

Advanced Vehicles

- **Fuels utilization**
- **Component technologies**
- Electric vehicle-to-grid interface

Energy Systems Integration Concept

Forward Progress: Energy Systems Integration at All Scales

NREL is working with the Sacramento Municipal Utility District on visualizing impact of DG deployments.

To achieve a clean energy vision, we must...

Invest in innovation

Invent the future we desire

Improve access to capital

Partner on a global scale

EXAMPLE

Visit us online at www.nrel.gov

NATIONAL RENEWABLE ENERGY LABORATORY

ALINE WALL