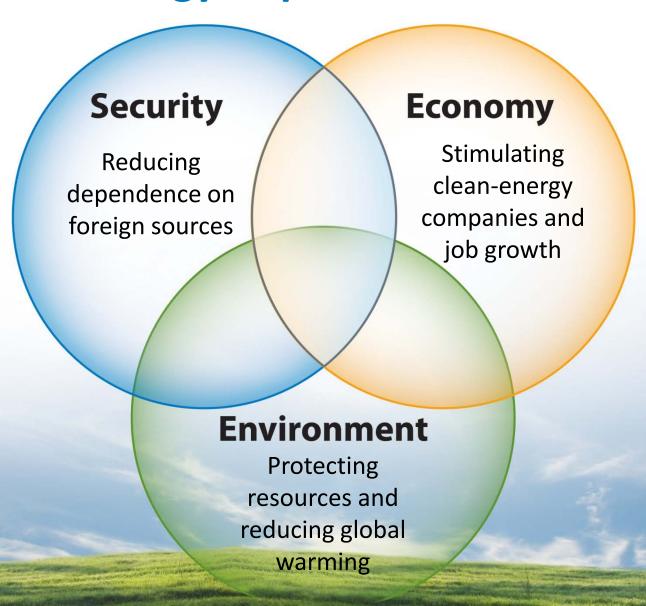


STEM Education and Achieving Our Clean Energy Goals for the Future



UCF 4th Annual Senior Design Symposium on Renewable & Sustainable Energy

April 13, 2012

Dr. Dan E. Arvizu Laboratory Director

National Energy Imperatives

National Renewable Energy Laboratory— Who We Are

The DOE's only national lab dedicated to energy efficiency and renewable energy

- Leading clean-energy innovation for 34 years
- 2547 employees with \$388.6M annual budget
- Several major world-class multi-million dollar partnering facilities, dozens of additional research labs
- Campus is a living model of sustainable energy
- Operated by Alliance for Sustainable Energy, LLC (MRIGlobal, Battelle, CU-Boulder, CSU, CSM, Stanford, MIT)

Scope of Mission

Residential Buildings

Commercial Buildings

Personal and Commercial Vehicles

Renewable Energy

Solar

Wind and Water

Biomass

Hydrogen

Geothermal

Systems Integration

Grid Infrastructure

Distributed Energy

Interconnection

Battery and Thermal Storage

Transportation

Private Industry

Federal Agencies

Defense Dept.

State/Local Govt.

International

National Goals and NREL's Role

By 2035, 80% of America's electricity will come from clean energy sources

Support deployment of 1 million electric vehicles (EVs) on the road by 2015

Double renewable energy generation by 2012

Reduce our daily petroleum consumption in 2020 by 3.5 million barrels (18%) – from a 19 million-barrel baseline – and by 85% by 2050

Reduce energy-related greenhouse gas emissions by 17% by 2020 and 83% by 2050, from a 2005 baseline

NREL's Vision for the Energy System

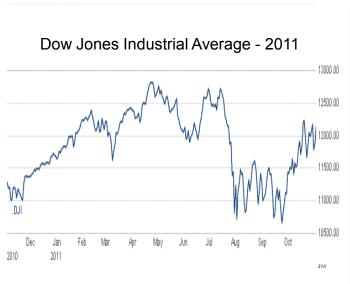
By 2050, we will have a clean and sustainable energy system that contributes to economic prosperity, enhances national security, and maintains environmental quality

Sustainable Energy System

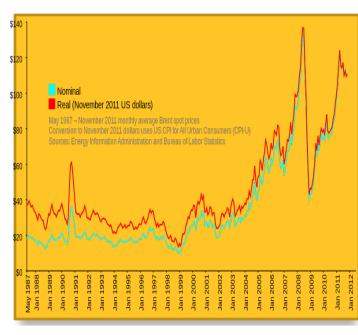
Fuel Production Systems

> Highly Efficient Fuel Flexible

Transportation Systems Renewable Fuels

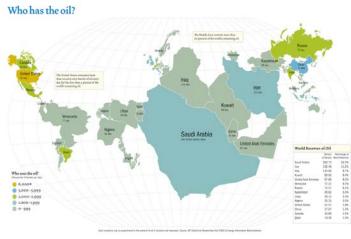

NREL Roles and Strategic Intents

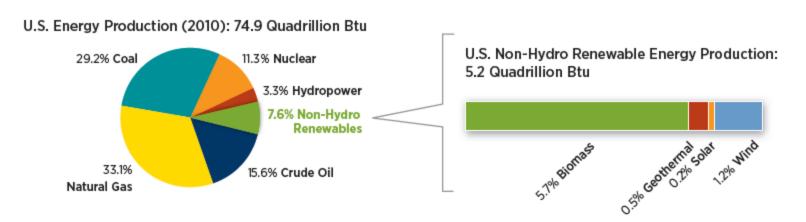
Deliver Marketdelevant Sustainable Energy Innovations Lead Renewable
Integration in Highly
Efficient Systems at All
Scales

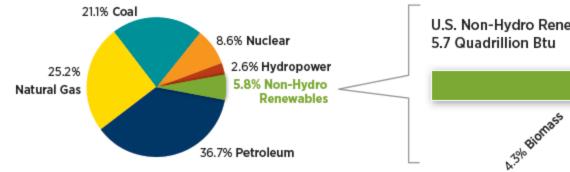

Increase the Speed of Commercialization and the Scale of Deployment

Develop the Laboratory of the Future

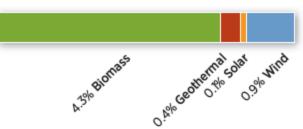
Mounting Evidence



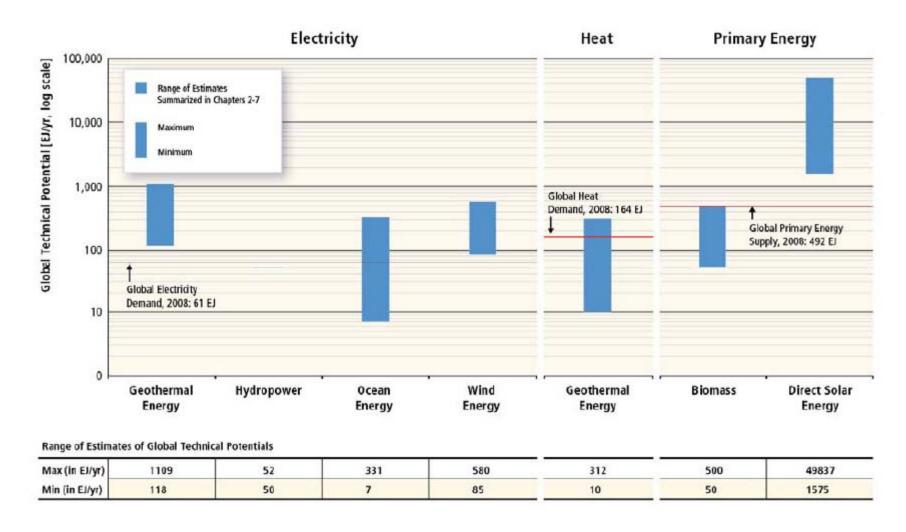




U.S. Energy Production and Consumption (2010)

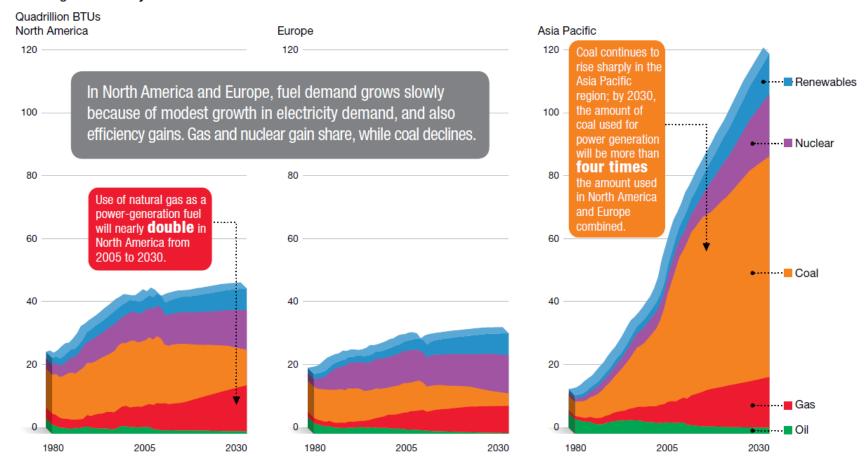

U.S. Energy Consumption (2010): 98.0 Quadrillion Btu

Source: EIA; full references are provided starting on p. 123.


Note: Because hydropower is considered a conventional source of energy, it is accounted for separate from other new renewable sources of energy. Energy consumption is higher than energy production due to oil imports.

U.S. Non-Hydro Renewable Energy Consumption:

U.S. Energy Background Information | September 2011


Ranges of global technical potentials of RE sources

Source: IPCC Special Report Renewable Energy Sources (SRREN)

Many expect electricity demand to grow faster than renewable energy generation

Power generation by fuel

Source: ExxonMobile

http://www.exxonmobil.com/corporate/files/news pub eo 2010.pdf

9

A Profound Transformation is Required

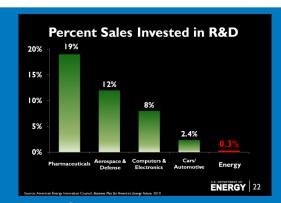
Today's U.S. Energy System

Sustainable Energy System

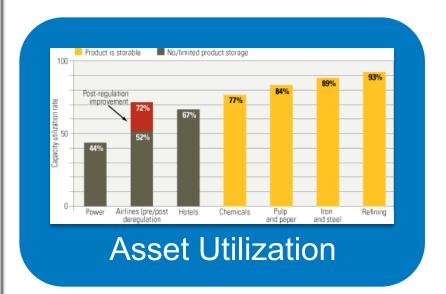
TRANSFORMATION

- Dependent on foreign sources
 - Subject to price volatility
- Increasingly vulnerable energy delivery systems
- 2/3 of source energy is wasted
 - Produces 25% of the world's carbon emissions
 - Role of electricity increasing

- Carbon neutral
 - Efficient
- Diverse supply options
- Sustainable use of natural resource
 - Creates American jobs
 - Accessible, affordable and secure


Innovation, Integration & Adoption

Reducing Investment Risk


- Enable basic and applied clean energy technology innovation
- Accelerate technology market introduction and adoption
- Integrate technology at scale
- Encourage collaboration in unique research and testing "partnering" facilities
- Provide analysis and expertise to inform decisions

Energy Sector Challenges

R&D Investment Drives Innovation

Capital Intensive with Long Life Cycles

Innovation for the Future

Integration:

Integrating renewable energy at all scales

Solar:

 Lowering cost of solar energy systems by 75% by 2020

Biofuels:

 Advanced biofuels – enabling cost-effective refining into transportation fuels

Wind:

System and component reliability, resource modeling and forecasting

Efficiency:

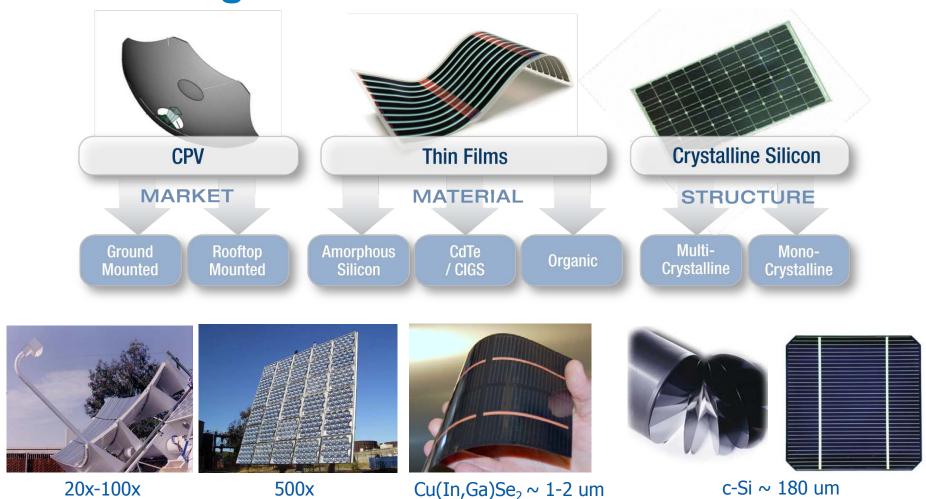
- Whole building systems integration
- Battery performance

Solar Electricity: State of the Technology

Photovoltaics (PV)

- Market: Residential; Commercial, Utility
- Geographically diverse
- kWs to MWs to GWs
- U.S. Capacity: 4.0 GW
- U.S. Forecast: 22+ GWs in pipeline
- Costs. \$3 to \$7/W: *LCOE 7 to 16¢/kWr
- Technologies: Conversion; thin-films, crystalline silicon. Storage; battery

*With federal incentives; e.g. the FTC.


Solar Thermal Electric (CSP)

- Market: Commercial; Utility
- Geographically confined to "sun bowls"
- MWs to GWs
- U.S Capacity: 0.5 GW
- U.S. Forecast: ~6 GWs in pipeline
- Costs. \$4 to \$8/W: *LCOE 12 to 20
 ¢/kWr
- Technologies: Conversion; parabolic troughs, central receivers, dish.
 Storage; thermal, up to 15 hours.

Updated: April 2012

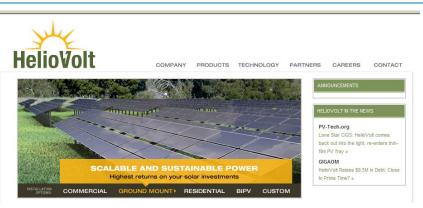
Source: GTM/SEIA: U.S. Solar Market Insight Q4 2011 & 2011 Year-in-Review

Pursuing a Range of Promising PV Technologies

Market Relevant Process Innovation

natcoretechnology advancing solar science

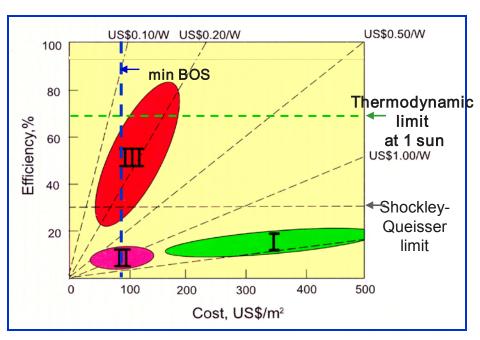
"Black Silicon"
Nanocatalytic
Wet-Chemical
Etch

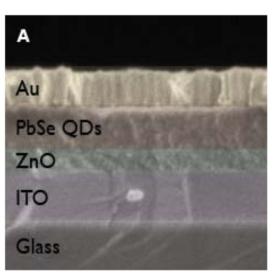

2008

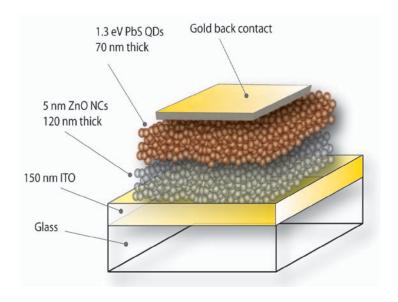
Flash Quantum Efficiency System

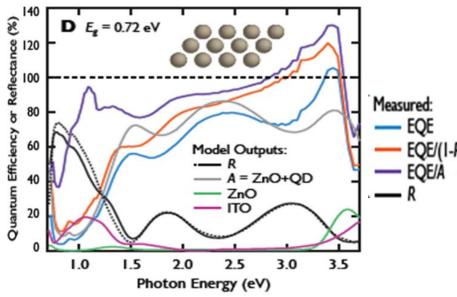
Revolutionary CIGS thin-film manufacturing process using inket printing

THE WORLD'S
BEST SOLAR CELLS
JUST GOT BETTER
with Innovalight solar
technology.

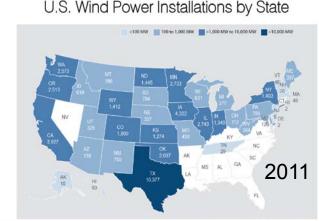

Raise Efficiency and Lower
Cost Per Watt in Under 90 days
Innovalight's patented technologies
cost effectively increase the
conversion efficiency of crystalline
silicon solar cells. The easy-toimplement technologies improve cell
manufacturers' existing factory
output and reduce production costs.


Silicon Ink NREL Incubator Project




English | 中文

Solar Science Innovation



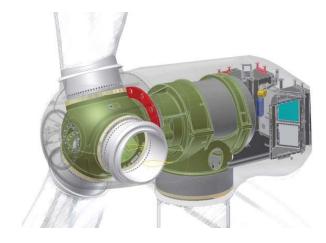
Wind Energy: State of the Technology

AWEA

- Costs: 7-10 cents/kWh LCOE*
- Installed wind project cost = \$2,155/kW
- 1.5-3.0 MW commercial turbines are typical
- 10 MW prototype machines in development
- Direct drive generators more common
- Variable speed and grid-friendly operation

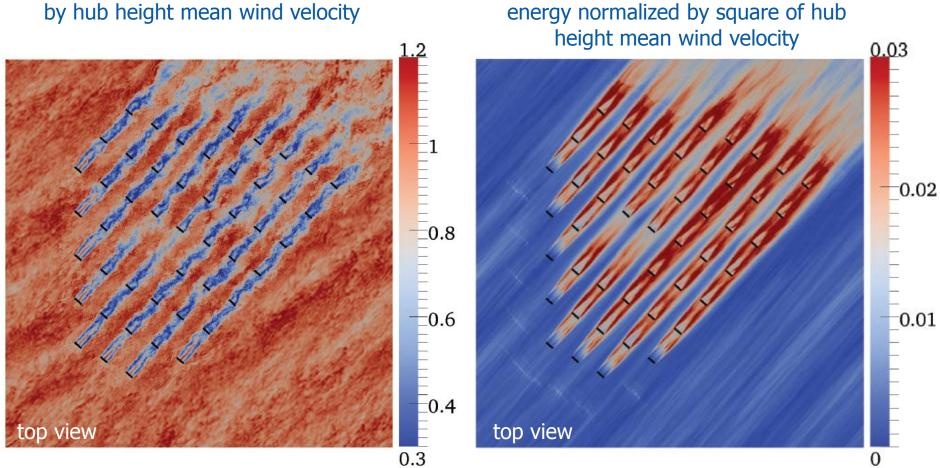
Update Technologies targeting offshore wind

* Estimatatives; scale wind, class 4 wind sites, no subsidies


- U.S. installed capacity = 46.9 GW (12/2011)
- 38 of 50 states have utility-scale wind with 14 states > 1,000 MW installed
- Over 8.3 GW currently under construction
- U.S. wind capacity represents more than 20% of the world's installed wind power
- U.S. wind percentage of electricity is over 2.3%
- Over 400 manufacturing facilities across the U.S. make components for wind turbines

Wind Technology Innovation

- Modular large components blades, drivetrains, and tall towers
- Advanced drivetrain power conversion systems – superconducting direct drive generators
- Flexible, ultra-large rotors and systems
- Active controls for structural load reduction, improved wind plant performance, and grid-friendly operation
- Floating offshore wind turbines
- Airborne wind power systems



Wind Plant Simulation

Instantaneous velocity normalized by hub height mean wind velocity

Resolved-scale turbulent kinetic

Meandering shows up in resolved turbulent kinetic energy

Biofuels: State of the Technology

Current Status:

U.S. produced 13.5 billion gallons of ethanol and 1.1 billion gallons of biodiesel (2011)

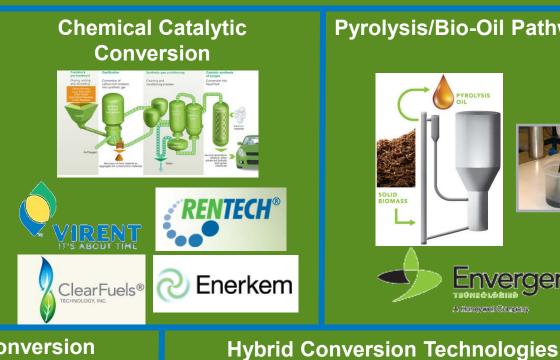
Biorefineries:

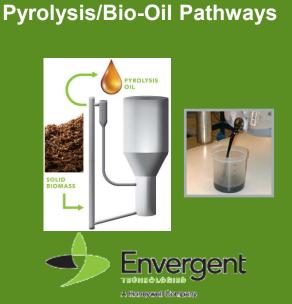
- 219 commercial corn ethanol plants
- 180 biodiesel refineries
- 28 cellulosic ethan

Cost goal:

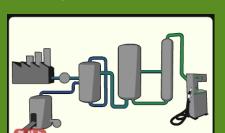
Cellulosic ethanol—cost parity with gasoline by 2012

Updated: 4/2012


Major Technology Directions:


- Foundational Science: Enzymes, fermentation, understanding biomass and cell composition
- Feedstocks: Sustainable feedstock production systems
- Pretreatment & Conversion R&D:
 Biochemical and thermochemical conversion processes
- Advanced Biofuels and Algae: Broadening RD&D beyond cellulosic ethanol to address "drop in' and high-energy content fuels from algae and other biomass resources

Biofuels Innovation


New conversion technologies are being developed, offering the possibility of revolutionary, high volume methods for producing biofuel hydrocarbon fuels for our trucks, trains, ships, and aircraft...

Biological Conversion

Efficiency/Integration Innovation

Buildings

- Whole building systems integration
- Computerized building energy optimization tools
- Advanced HVAC (Heating Ventilating and air conditioning)
- Cost effective ultra energy efficient retrofits

Grid Integration

Interconnection Standards

- IEEE Standards Development
- Standards Testing and Validation

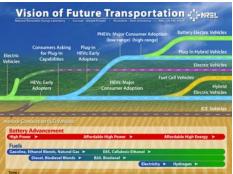
Smart-Grid Data Hub

RE Grid Integration

- Power Electronics for Interconnection monitoring and control
- Grid-to-vehicle interface

Advanced Vehicles

- Fuels utilization
- Component technologies
- Electric vehicle-to-grid interface



innovation Impact: Partnering is Key

ABENGOA SOLAR

KONARKA®

NREL Opportunities

- Employment
 - http://www.nrel.gov/employment/
- DOE's Science Undergraduate Laboratory Internship (SULI) Program
 - http://science.energy.gov/wdts/suli/

- http://scgf.orau.gov/
- NREL's Research Participant Program
 - http://www.nrel.gov/rpp/student_internships.html
- For more information on NREL's education programs
 - http://www.nrel.gov/rpp/
 - Linda.Lung@nrel.gov

NREL's Energy Vision

A clean and sustainable energy system contributing to economic prosperity, enhancing national security, and maintaining environmental quality

Ingredients for Success*

*My View

Dimensions of Professional Careers*

Economic

Live

Social

Love

Psychological

Learn

Spiritual

Leave a Legacy

^{*}Steven R. Covey

My Personal Passions

GMiS

Ingredients for Success

- Find something that really interests you
- Understand your own life balance
- Learn from everyone
- Be committed / dedicated
- Take risks and prepare for success
 - •••
- Give back

