*A NASA Approach to

"At-Risk Materials-Chemicals"

[~Mission Critical Materials-Chemicals]

By I. Sam Higuchi

NASA-HQ, Environmental Management Division

23 April 2008 Meeting

MERIT (Materials of Emerging Regulatory Interest Team)

* **Disclaimer:** This presentation does not represent the official views or position of NASA, the presentation reflects only the personal views of the presenter.

THIS NOT "WHERE I AM," THIS IS "WHERE I WAS"

1)Invitation to you – within the next 45-days

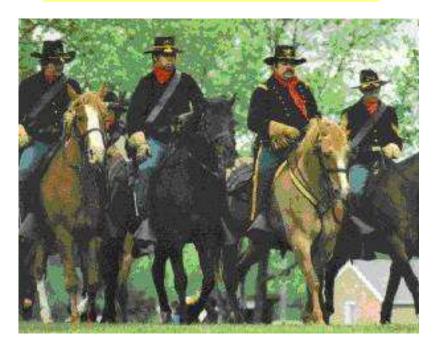
2) My background

"STRATEGIC MATERIALS"

("At-Risk Materials-Chemicals") -

TWO COMMON ELEMENTS*:

Criticality of application (lack of substitutability)
 Vulnerability of supply (domestic sufficiency)


* Industrial College of the Armed Forces (National Defense University) (2007) "Industrial Study"

NASA works with Space Exploration Equipment

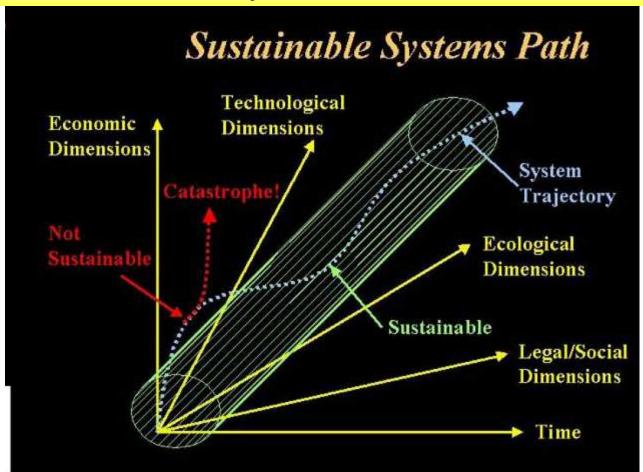
DOD works with:

- Weapons Systems and
- Weapons Platforms D. Dunn (AF Space Command)

Weapons Systems

http://mva.sd.gov/images%5Cmuseum%5Cmarch.jpg

http://www.msa.md.gov/msa/mdmanual/01glance/symbol s/images/1198-1-542b.jpg

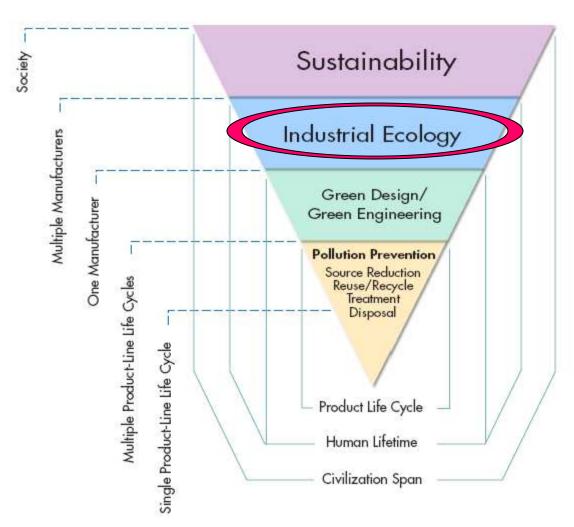

Weapons Platform

<u>General Approach [Sam's approach]:</u> At-Risk Materials-Chemicals [~ mission critical materials]				
Management Tool	Choices and Selected Direction	<u>Remarks</u>		
<u>I. Strategic Risk</u> <u>Management:</u>	 A) Accept, or B) Mitigate, or C) Monitor – watch list, or D) <u>Investigate – Research Study</u> 	NASA-wide Risk Management (ERM) using a Research Study Document with updates – new findings added		
<u>II. Programmatic</u> <u>Analysis and</u> <u>Evaluation:</u>	Program phases <u>A) Early: 1) who is being served; 2) what</u> <u>is going on</u> <u>B) Growth: 1) what are they doing; 2) what</u> <u>ought they be doing</u> C) Mature: 1) did it work -desired outcome; 2) what would happen in absence of the program	STUDY OUTLINE: 1) General Context: What is going on? 2) Technical Context: What is going on in the area of science and technology? 3) Environment, Safety and Health Context: What is going on to screen for ESH risks? 4) Sector Profiles (benchmarking & best practices): What are others doing? 5) What are some insights from Academia? 6) What is NASA doing? 7) What are some possibilities for NASA actions?		
<u>III. Program Logic</u> <u>Model Design:</u>	A) Target Audience: Design-Engineers B) Objectives: 1) Influence design (DfESH), 2) data credibility in materials & materials processes, 3) data is user friendly, 4) compliance with Global restrictions, 5) options for substitutes, 6) include potential emerging restrictions, 7) additional enhancements (examples; cost, energy, performance), 8) promotes Sustainable Materials Management.	Emphasis on: Keeping U.S. (domestic) aerospace industry as <u>world class suppliers</u> of aerospace products and services		

"The Future isn't what it used to be." -- Yogi Berra

The "Global Materials-Chemicals Regulatory System" (part of the "Legal/ Social Dimensions") is "dynamic".

The "System" is not static.



www.epa.gov/ORD/NRMRL/Pubs/508NRMRLinterVIRT.pdf

Environmental Manager's Perspective

Environmental and Organizational Scales of

Environmental Impact Reduction Approaches

Modified by I. S. Higuchi & C. C. Hudson (2005) from Coulter, Bras et al. 1995.

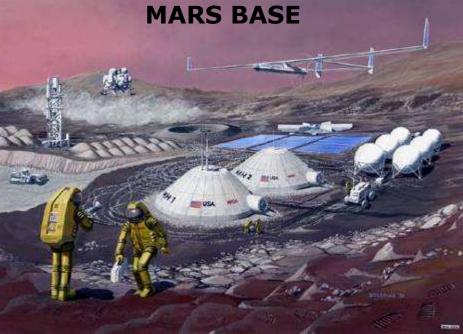
<u>Sustainability:</u> Optimizes the following three items simultaneously ("Triple Bottom Line"):

- 1) Renewable over nonrenewable resources,
- 2) Ecosystem health, and
- 3) Human welfare.
- <u>Traditionally Pollution</u> <u>Prevention:</u> *Minimizes* one <u>or</u> more of the following:
- 1) Non-renewable resources, <u>or</u>
- 2) Environmental impact, or
- 3) Safety & health hazards.

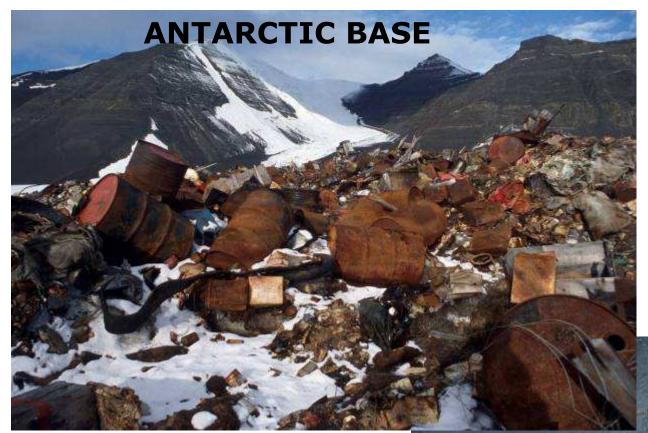
"THE SCIENCE OF SUSTAINABILITY"

INDUSTRIAL ECOLOGY

A SYSTEMS APPROACH TO ENVIRONMENTAL PROTECTION


1世发后,二世等些

B Karn, D. Bauer, D. Cash, R. Correll, T. Johnson 2003 "Merging Emerging Ideas: 'Science of Sustainability' (Industrial Ecology) and Science and Technology for Sustainability'' http://www.epa.gov/industrialecology/workshops/merging_emerging.ppt


REMOTE SITE RESEARCH:

http://www.nasa.gov/centers/glenn/images/content/101885main_C91_08781_516x387.jpg

http://www.nasa.gov/centers/glenn/images/content/101903main_C88_11517_516x387.jpg

MATERIALS MANAGEMENT

REMOTE SITE RESEARCH: "THE REALITY"

ARCTIC BASE

www.cep.aq/default.asp?casid=6896

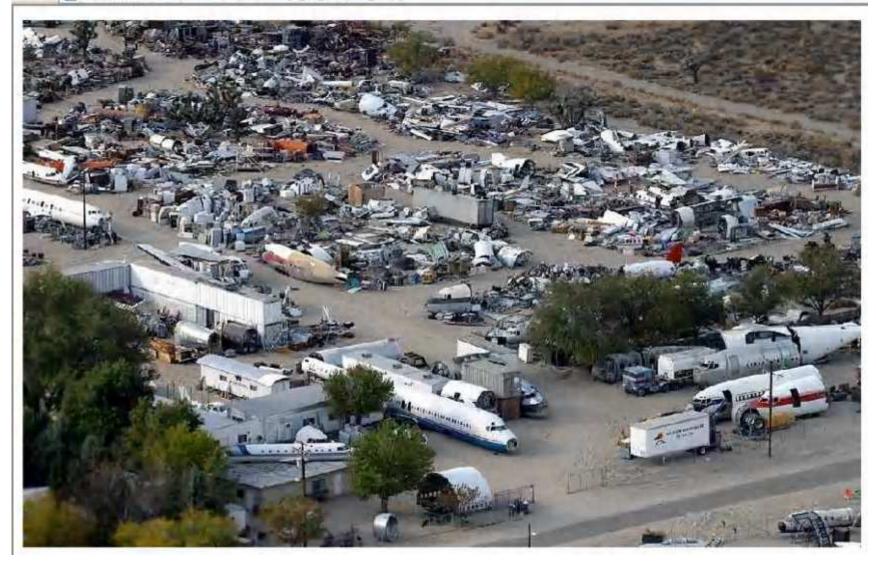
http://web.archive.org/web/20051125095443/ www.antarctica.ac.uk/About_BAS/Cambridge /Divisions/EID/Environment/fb_before.jpg

http://response.restoration.noaa.gov/pribilof/

Can NASA afford this?

- LUNAR "MOUNT TRASH-MORE"
- MARTIAN "MOUNT TRASH-AND-SOME-MORE"

<u>Lunar and Martian Research</u> <u>Bases: "Sustainment" –</u>


AT WHAT COST TO TAXPAYERS?*

- 1) \$8,300 (Titan IVB) to \$8,500 (space shuttle) per pound to LEO (in 2000 dollars)
- 2) \$35,000 per pound to Saturn (Cassini probe)
- * H E McCurdy (2001) "Faster Better Cheaper: Low-Cost Innovation in the U.S. Space Progam"

Nucor -- http://www.nucor.com/indexstory.aspx?story=16

AEROSPACE BONE-YARD

Address Ahttp://www.airfields-freeman.com/CA/ElMirage_CA_boneyard_03.jpg

Note 12. Environmental and Disposal Liabilities

<u>U.S. Government</u> <u>– FY 2007</u> <u>Financial. Report</u>

In billions of dollars)	2007	2006
Department of Energy:		
Environmental Management Program	188.6	159.1
Legacy Environmental Liabilities - other	29.4	28.1
Active and Surplus Facilities	29.2	27.6
High-level Waste and Spent Nuclear Fuel	16.4	15.5
Total Department of Energy.	263.6	230.3
Department of Defense:		
Environmental Restoration	33.1	33.5
Disposal of Weapon Systems Program	31.4	30.2
Base Realignment and Closure	5.1	4.1
Environmental Corrective Other	2.9	2.2
Total Department of Defense	72.5	70.0
Il other agencies	5.9	4.9
Total environmental and disposal liabilities		305.2

"DOD also bears responsibility for disposal of chemical weapons and environmental costs associated with the <u>disposal of weapons systems</u> (primarily <u>nuclear powered aircraft carriers and submarines</u>)."

<u>The FY 2007 Financial Report of the United States</u> <u>Government (Financial Report)</u> http://www.gao.gov/financial/fy2007/07frusg.pdf

DEPARTMENT OF DEFENSE

AGENCY FINANCIAL REPORT NOVEMBER 15, 2007

FISCAL YEAR 2007

Note 14. Environmental and Disposal Liability (Pages 65-68)

Environmental Disposal for Weapons Systems Programs

(Excluding Nuclear Ships and Chemical

Weapons Disposal):

*Other National Defense Weapons Systems = \$0.20B plus Other = \$3.24B

http://www.defenselink.mil/comptroller/pa r/fy2007/Entire_Document_(5.1_KB).pdf

DOE/ME-0030

The Department of Energy Strategic Plan

"Protecting National, Energy, and Economic Security with Advanced Science and Technology and Ensuring Environmental Cleanup"

September 30, 2003

So, what will NASA's 2060 STRATEGIC PLAN be like?

- Will "off earth" <u>Environmental</u> <u>Cleanup</u> be:
- 1) a part of NASA's mission, and
- 2) one of NASA's strategic goals?
- --- The choice is yours.

The Department of Energy's overarching mission is to advance the national, economic and energy security of the United States; to promote scientific and technological innovation in support of that mission; and to ensure the environmental cleanup of the national nuclear weapons complex.

The Department has four strategic goals toward achieving the mission:

- Defense Strategic Goal: To protect our national security by applying advanced science and nuclear technology to the Nation's defense.
- Energy Strategic Goal: To protect our national and economic security by promoting a diverse supply and delivery of reliable, affordable, and environmentally sound energy.
- Science Strategic Goal: To protect our national and economic security by providing that class scientific research capacity and advancing contribution knowledge.

Environment Strategic Goal: To protect the environment by providing a responsible resolution to the environmental legacy of the Cold War and by providing for the permanent disposal of the Nation's high-level radioactive waste.

AEROSPACE SECTOR MATERIAL INPUT AND POLLUTANT OUTPUT				
INPUTS PROCESSES ("middle-of-pipe"		OUTPUTS ("end-of-pipe" compliance)		
	pollution prevention)	AIR EMISSIONS	WASTEWATER	SOLID/ HAZARDOUS/ RESIDUAL WASTES
Cutting oils, degreasing & cleaning solvents, acids, metals	Metal Shaping	Solvent wastes	Acid/ alkaline wastes	Scrap metal, waste solvents
Metals, abrasive materials, machining oils	Grinding/ Polishing	Metal shavings/ particulates, dust from abrasive materials	Wastewaters with oil, grease, and metal from machining	Abrasive waste, metal shavings, dust
Acid/ alkaline solutions, metal bearing & cyanide bearing solutions	Plating	Volatized solvents and cleaners	Waste rinse water containing acids/ alkalines cyanides, and solvents	Metal wastes, solvent wastes, filter sludges, wasted plating material
Solvent based or water based paints	Painting	Paint overspray, solvents	Cleaning water containing paint and stripping solutions	Waste paint, empty containers, spent paint application equipment
Acid/ alkaline cleaners and solvents	Cleaning, depainting, and vapor degreasing	Solvent wastes, acid aerosols, paint chips and particulates	Wastewater containing acids/ alkalines, spent solvents	Spent solvents, paint/ solvent sludges, equipment and abrasive materials, paint chips

From EPA's <u>Profile of the Aerospace Industry</u> (November 1998) EPA/310-R-98-001

Alaskan Humor:

Which End Are You Dealing With?

http://www.msa.md.gov/msa/mdmanual/01gla nce/symbols/images/1198-1-542b.jpg

http://www.ers.usda.gov/amberw aves/September06/DataFeature/ Photo/datafeature.jpg

http://apps.atlantaga.gov/citycouncil/Members/ct martin/gallery_photos/images/YF-horse3_jpg.jpg

Design-Engineer's Perspective

Learning to Speak the Jargon:		
<u>NEW TERMS</u>		
TERMS	MEANING	
PRP	Product Realization Process	
IPM	Integrated Project Management	
PLM	Product Lifecycle Management	
PDM	Product Data Management	
PDE	Product Data Exchange	
STEP	Standard for Exchange of Product model data	
ISO 10303	ISO standard for STEP	

Practical Engineering Questions About Selecting Materials* * M. Kutz (2002) Handbook of Materials Selection		
Set #1: What, Why, and How	Set #2: Specific Design Situation	
 What materials have been used in particular industrial applications? Why were these materials selected? Were the materials processed in special ways? How did material properties relate to performance in service? Were there any problems initially, and did any develop later? What precautions are recommended? What were the key tradeoffs between properties and performance? What were the limitations imposed by the selected materials? 	 What materials might have the characteristics that meet the needs of the application I'm working on? Where would I find information about such materials? What processing techniques might I use to create parts or components from these materials? How do I take into account properties and manufacturing processes in design process? How would I confirm that the materials I specify and purchase have the properties I'm looking for? How does the organization I'm working for go about supplying the materials required by the design I'm proposing, and what limitations may be imposed on my selection by such factors as cost, environmental degradation, etc.? 	

What is the Problem?

Materials efforts (new compositions, processing, manufacturing) are not linked with the design process.

Materials Engineer Materials Development **Highly Empirical** • Process Testing Design Systems Design **Independent of Use** Materials Input from **Existing Models** • "Knowledge Base" of Data Unlinked (Data Sheets, Graphs, Transformation Heuristics, Experience, etc.) Design System/Sub-System Design is Micromechanics **Heavily Computational and** Design Rapid 1.0 µm **Clean Sheet of Paper to** Ouantum **Engine Design - 30 Months** Design 0.1 µm Well Established Testing Leo ChristodoulouDARPA DSO Protocols

(2007) "Accelerated Insertion of

Materials (AIM)"

0.1 nm

FILLING IN MATERIALS PROPERTIES GAP

In the Past, Design was limited by available Materials.

Today, it is becoming increasingly possible to make Materials to meet Design needs through <u>Materials</u> <u>Chemistry Research, Hybrids, and Nano-Technology</u>.

Assessing the Value of Research in the Chemical Sciences (1998) http://www.nap.edu/openbook/0309061393/html/45.html, copyright 1998, 2000 The National Academy Press, all rights reserved

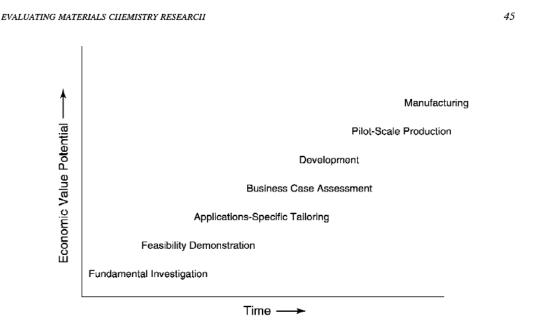
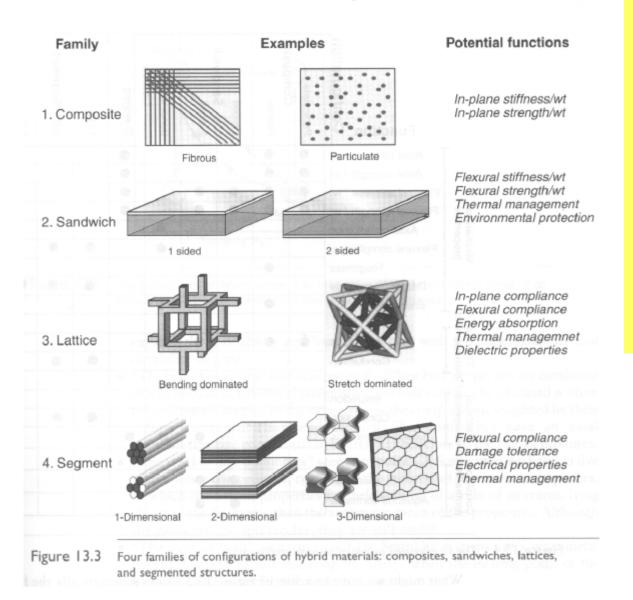



FIGURE 4.1 Phase transitions of research projects.

13.2 Filling holes in material-property space 343

HYBRIDS 1.Composite 2.Sandwich 3.Lattice 4.Segment

> M. F. Asby (2005) <u>Materials</u> <u>Selection in Mechanical</u> Design 3ed

"The Holy Grail for Materials Research The 'inverse problem' *Given a desired macroscopic property, how do we design from first principles the molecule or material possessing it?*

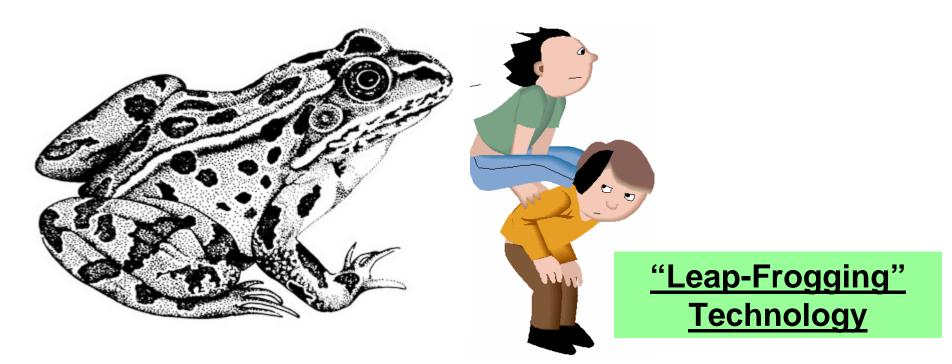
And then, how do we make the material?"

Ex-metallurgist, NSF

D.W. Hess (November 30, 2006) Division of Materials Research, NSF "Reverse Engineering a Possible Future"

Gold (Au) a Nobel Metal

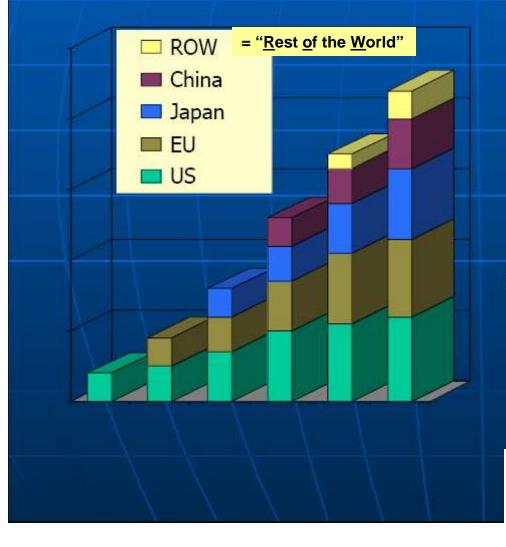
NANOTECHNOLOGY


• Its shape is flat in the nano-world;

• It is reactive in the nano-world.

J. Phys. Chem. A, Vol. 107, No. 32, 2003 6171

H. Ha1kkinen, B. Yoon, U. Landman, X. Li, H. Zhai, & L. Wang (2003) "On the Electronic and Atomic Structures of Small AuN - (N) 4-14) Clusters: A Photoelectron Spectroscopy and Density-Functional Study"; J. Phys. Chem. A 2003, 107, 6168-6175


Figure 4. Optimized low-energy structures for Au_h^- clusters with N = 4-14. Several isomers are shown for each size, and the groundstate is labeled by " N^- in each case. See Table 1 for the corresponding energetic and structural information.

Increasing Global Restrictions

Emerging Markets

- Developing Countries
- Increasing Regulations
- Differing Requirements
- Customer Drivers
 - End-user ISO 14001 programs driving suppliers

Brian Sherin (CSP co-Founder, EORM / President, ESHconnect) & Jen Jeng (Associate EHS Consultant, EORM) (October 2001) "SESHA Academic Lecture Series: Design for Safety/ Design for the Environment in the Semiconductor Industry"

A STRATEGIC APPROACH TO EMERGING CHEMICAL ISSUES

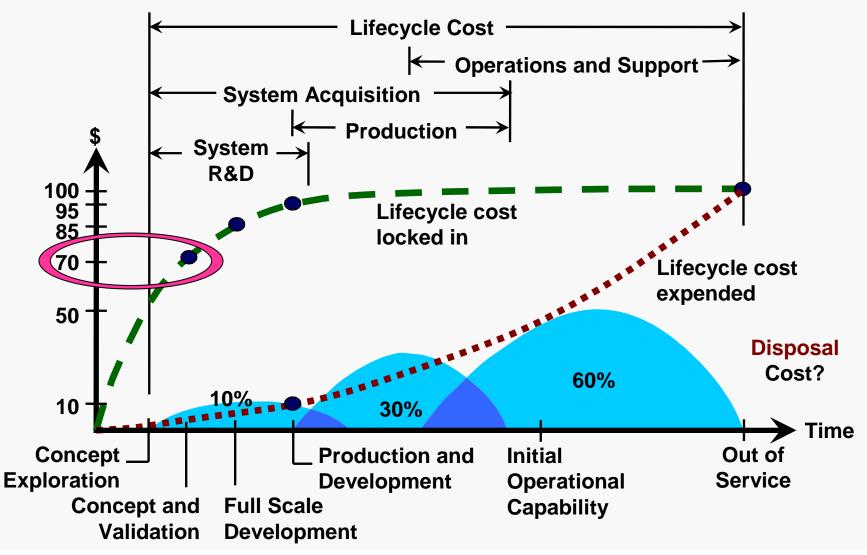
An interactive workshop on developing strategies to address the increasing pressure on global manufacturers from chemical controls and government regulatory programs

SEPTEMBER 2006

Tuesday and Wednesday, September 26-27

National Institute of Standards and Technology, Gathersburg, MD www.NIST.gov

Jointly sponsored by U.S. Industry and

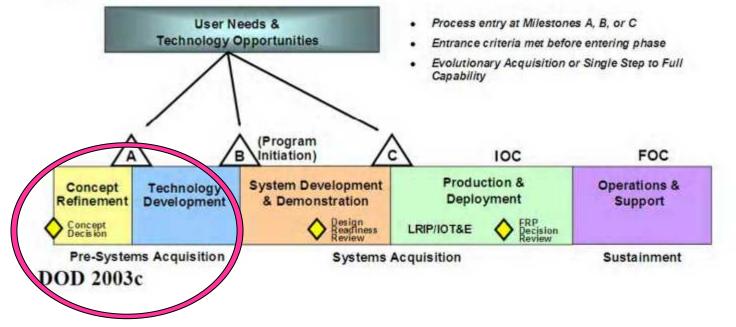


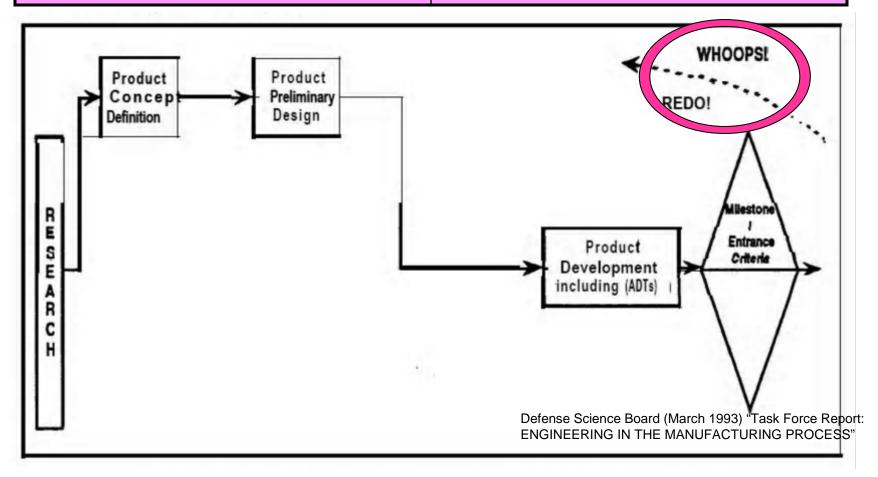
National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce

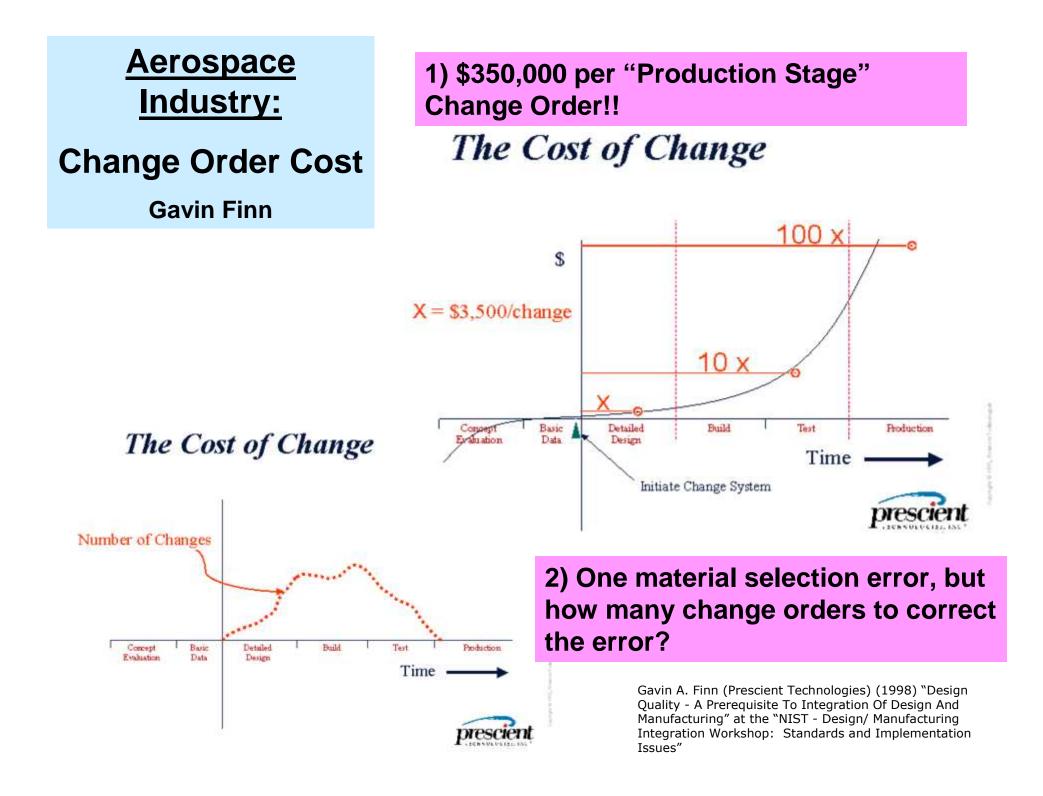
Organized by: American Chemical Society (ACS)

American National Standards Institute (ANSI) Company Member Forum American Society for Testing and Materia's (ASTM) Automotive Industry Action Group (AIAG) National Institute of Standards and Technology (NIST) NSF International NIST – 2006 Workshop on Global Chemical Restrictions

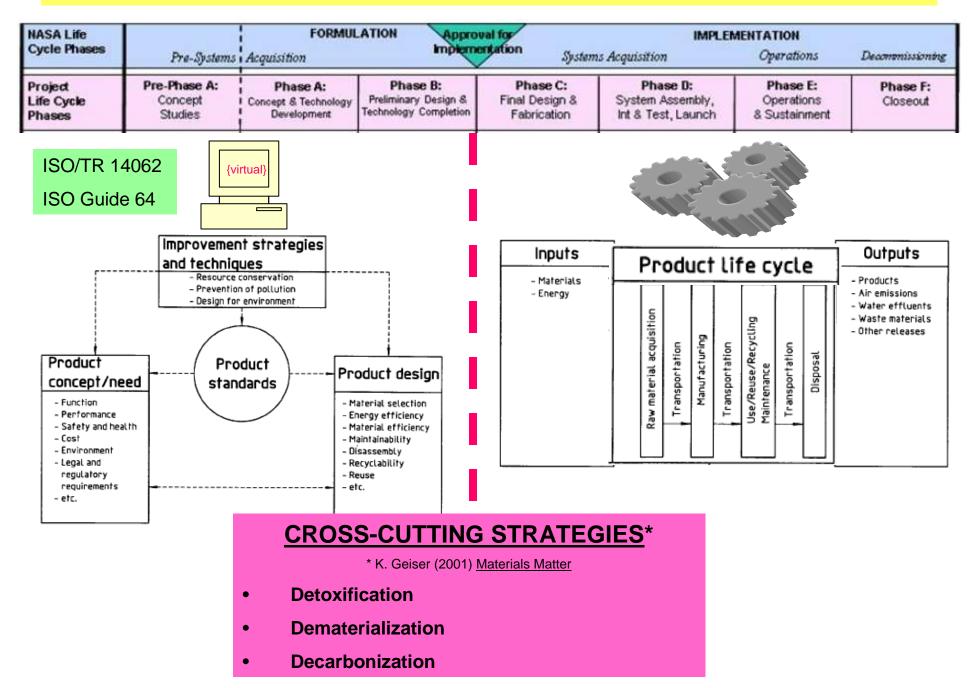

Percentage of Cost Locked In by Phase


From W. J. Larson & L. K. Pranke (1999) Human Spaceflight: Mission Analysis and Design


Requirements, before Milestone B"



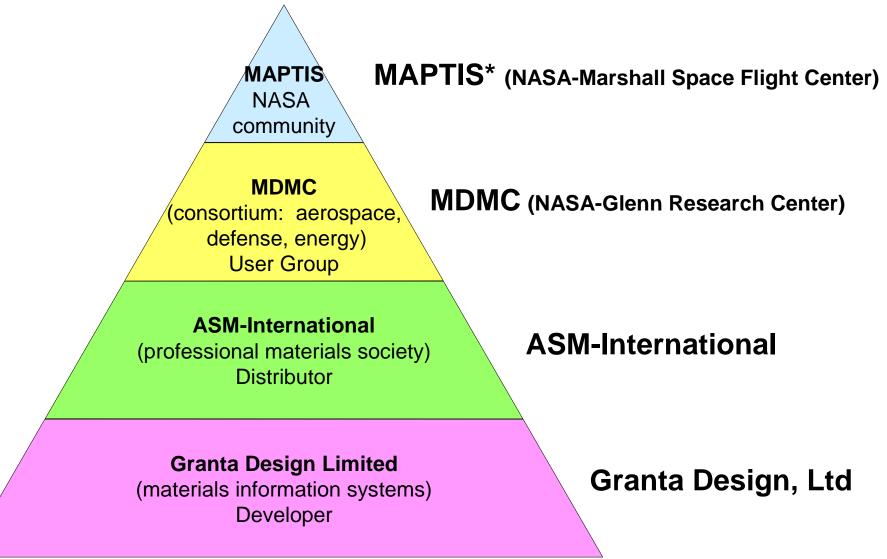
National Research Council (2004) "Retooling Manufacturing"


"WHOOPS WE DID IT AGAIN!"		
<u>Case #1</u>	<u>Case #2</u>	
We picked a Restricted Material!	We got our "Exemption" but nobody wants to manufacture the stuff!	
Redo!	Redo!	

So, where do we start looking for some answers to these challenges?

Product (Project, Program) Life-cycle Management (PLM)

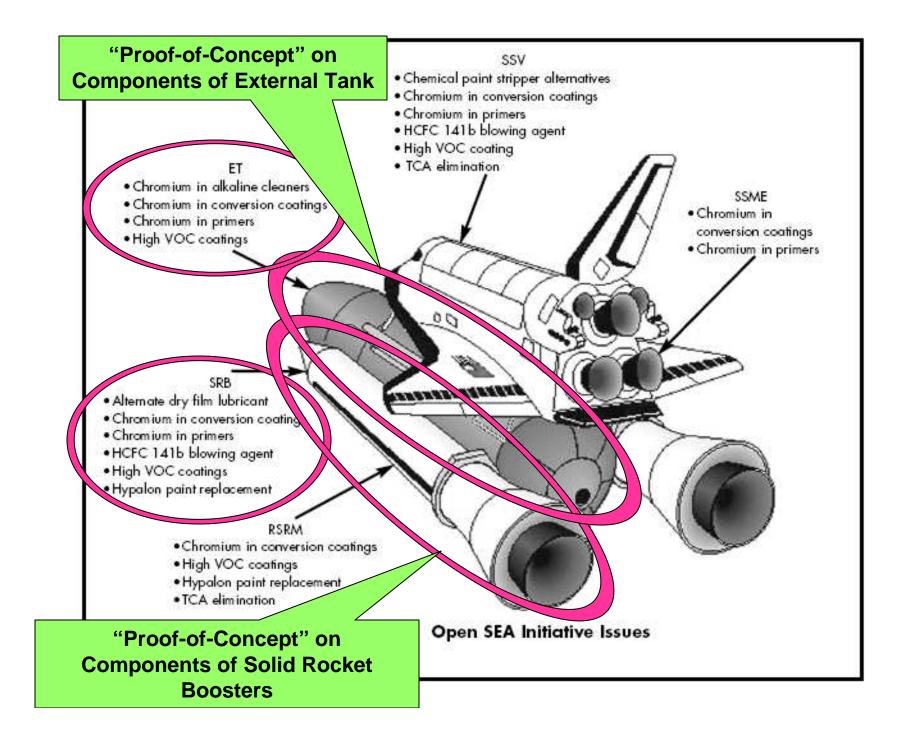
WHAT ARE THE NEEDS OF

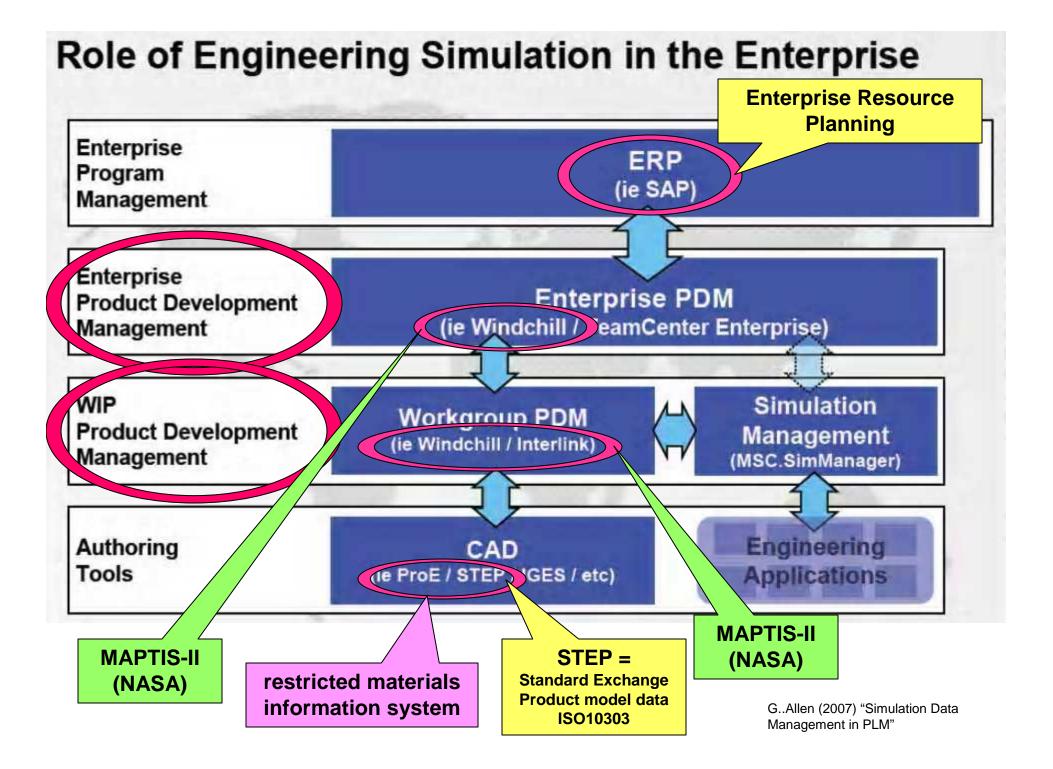

DESIGN-ENGINEERS?

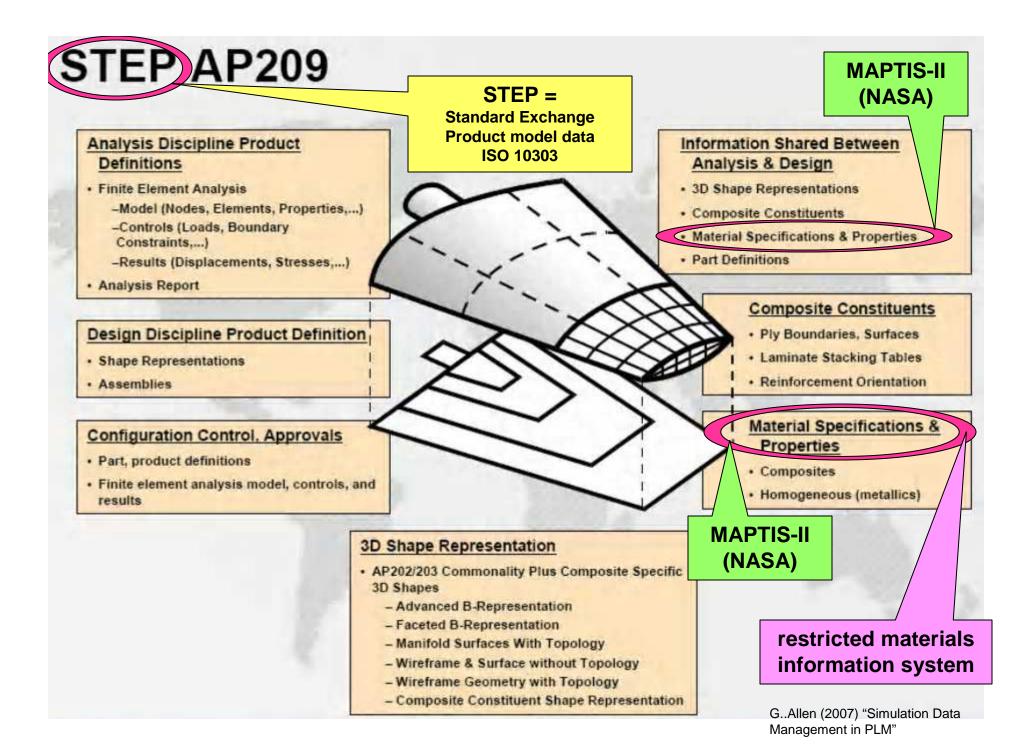
"For <u>information</u> to contribute to <u>knowledge</u>, it <u>NEEDS</u> to be:

- 1. Relevant,
- 2. Timely,
- 3. Accurate,
- 4. Comprehensible, and ideally
- 5. In Useful form."

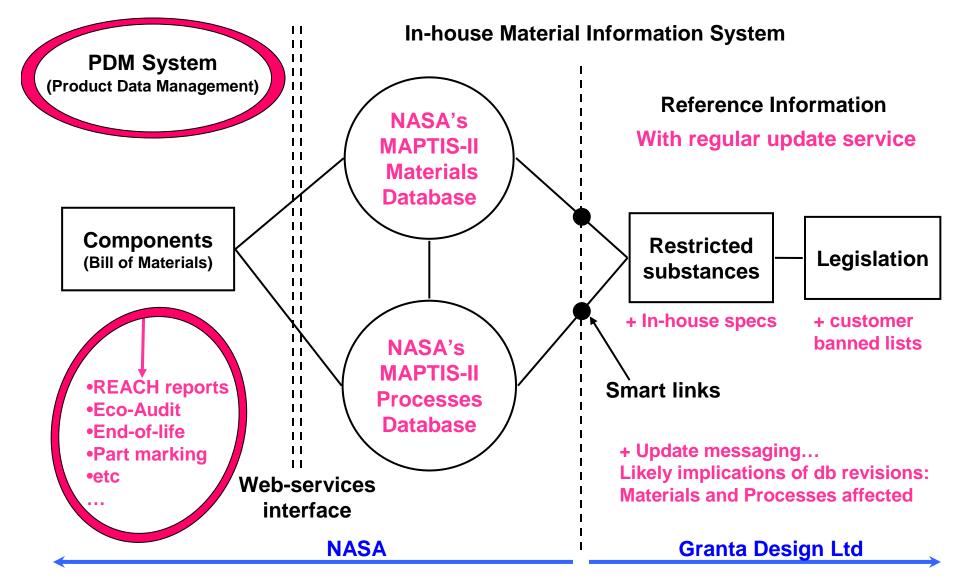
D. Darst (2007) Mastering the Art of Asset Allocation






* MAPTIS = Materials and Processes Technical Information System

DEMONSTRATION PROJECT WITH INDIVIDUAL MEMBERS OF THE MDMC*


* Materials Data Management Consortium – Aerospace, Defense, Energy			
MDMC	Project	Project Participant	<u>Remarks</u>
Member?	<u>Participant</u>	<u>Expertise</u>	
Yes	Granta Design, Limited	1) Materials Science, 2) Materials Engineering, 3) Materials Information Systems	http://www.grantadesign.com/ 1) Dr. M. Ashby: world renowned Materials expert ("bubble diagrams"), 2) Academia-Education: Materials Science, Materials Engineering, Design- Engineering, 3) Developer of Materials Information Systems for Project Life-cycle Management (PLM), 4) REACH
Yes	ASM- International	1) Materials Information, 2) Distribution of Materials Information	http://asmcommunity.asminternational.org/portal/site/asm/ 1) Professional Society of Materials Scientists & Materials Engineers, 2) Distributes "Granta MI"
Yes	NASA-Glenn Research Center	NASA: 1) Materials Science, 2) Coordination through MDMC	http://www.mdmc.net/ Chair of the MDMC
Yes	NASA- Marshall Space Flight Center	NASA: 1) Materials Engineering, 2) Design- Engineers, 3) NASA Distribution of Materials Information	http://maptis.nasa.gov/index.asp Distribution of Materials information to the NASA community (including its OEMs) – MAPTIS-II
Indirectly	NASA-HQ (Environmental Management Division)	Liaison & Coordination	Mission Critical Materials-Chemicals [At-Risk Materials-Chemicals (including REACH and EPA "list of lists" plus)]

Deployment Architecture

Environmental Considerations in Systems Acquisition Process: A Handbook for Program Managers*

*A joint publication of Sweden and the United States: U.S. Department of Defense and the Armed Forces for the Kingdom of Sweden (1999)

Ozone-Depleting Substances

Lead

Berry Amendment (DOD Procurement Restriction):

C-5 Reliability Enhancement & Reengineering Program (C-5 RERP)

"The program resolved complications related to a requirement that certain specialty metals be bought only from American sources.

[T]he Air Force granted a permanent *waiver* from the specialty metals provisions of the Berry Amendment, permitting the use of non-U.S. sources for certain specialty materials."

(2/99)

(11/01)

(4/04)

GAO

Marris 2040

DALWARD DOT

Programs

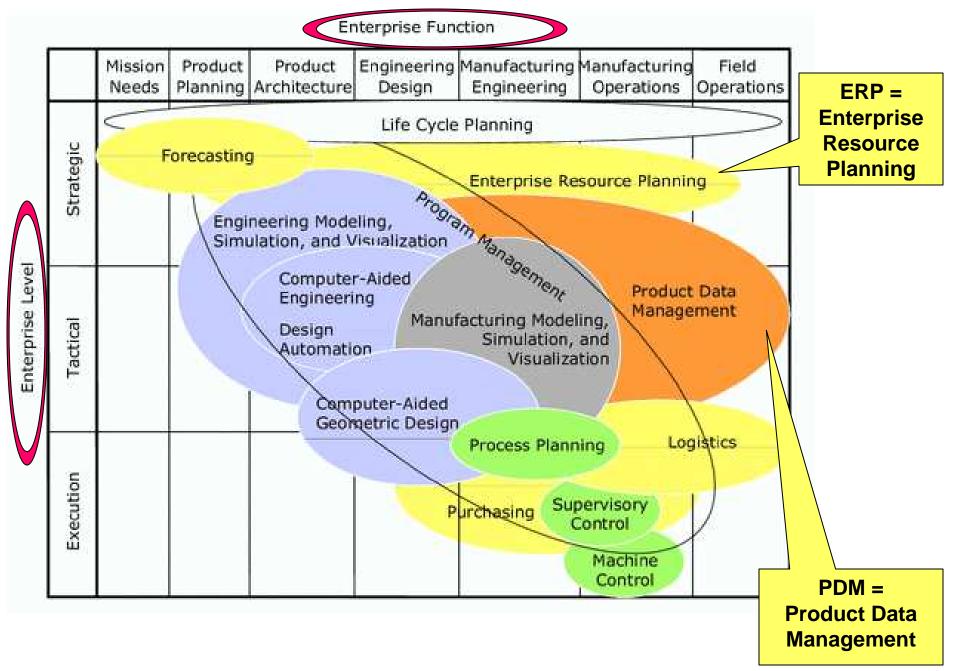
G A O

(1/08)

(3/08)

GAO (2008) "Defense Acquisitions: Assessment of Selected Weapon Programs": GAO-08-467SP

A-model


(10/13)

(FY 2019)

B-model

(12/10)

Manager's Perspective

Grand Challenge 4: Environmental Compatibility

Grand Challenge 4 is to reduce production waste and product environmental impact to "near zero." The goal of manufacturing enterprises will be to develop cost-effective, competitive products and processes that do not harm the environment, use as much recycled material for feedstock as possible, and create no significant waste, in terms of energy, material, or human resources. Access to, and a working knowledge of, the global database on environmentally harmful materials will be a key element in meeting this challenge.

Visionary Manufacturing Challenges for 2020

"Access to ... [a] global database on environmentally harmful materials ... [is] a key element"

National Research Council (1998) <u>Visionary Manufacturing</u> <u>Challenges for 2020</u>

MATERIALS SCIENCE

Recommendation 3. Materials Science: The Department of Defense should create, manage, and maintain open-source, accessible, and peerreviewed tools an databases of material properties be used in product and process design simulations.

CIntegrated tools and databases for materials design, materials selection rocess simulation, and process optimization are key to virtual manufacturing. Data gathered from manufacturing and materials processing using a variety of sensors can validate and improve design, modeling, simulation, and process control.

LIFE-CYCLE ASSESSMENT

Recommendation 5. Life-Cycle Assessment: The Department of Defense should develop tools and databases that enable life-cycle costs and environmental impact to be quantified and integrated into design and manufacturing processes.

Establishing and maintaining peer-reviewed databases for environmental emissions and impacts evarious materials and manufacturing processes will be critical for the government to integrate these factors into acquisition processes. Environmental performance metrics that combine multiple impacts are most useful for design decisions. The development of high-level optimization methods can allow analysis of the trade-offs between cost, performance, schedule, and environmental impact. <u>The Industrial College of the Armed</u> <u>Forces – AY 2005-2006 Industry Study:</u> <u>Final Report:</u>

Strategic Materials

AY 2005-2006 Industry Study

Final Report Strategic Materials

The Industrial College of the Armed Forces National Defense University Fort McNair, Washington, D.C. 20319-5062

<u>Cultural Attachment to Traditional</u> <u>Materials</u>

Efforts to transition new materials ... face significant obstacles. *** [T]his tendency stems from difficulties engineers face ... with [using] existing tools [such as handbooks and printed data sets].

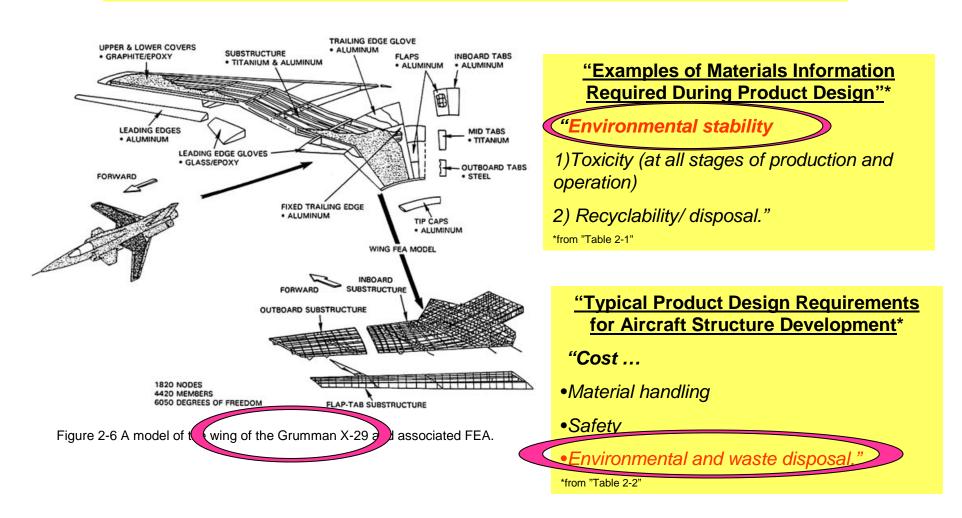
Improved databases ... would help overcome this ... resistance to new materials.

The government can play a significant role in ... by supporting the development of [electronic versions] ... of [new] engineering tools [such as, a comprehensive suite of materials software and verified data].

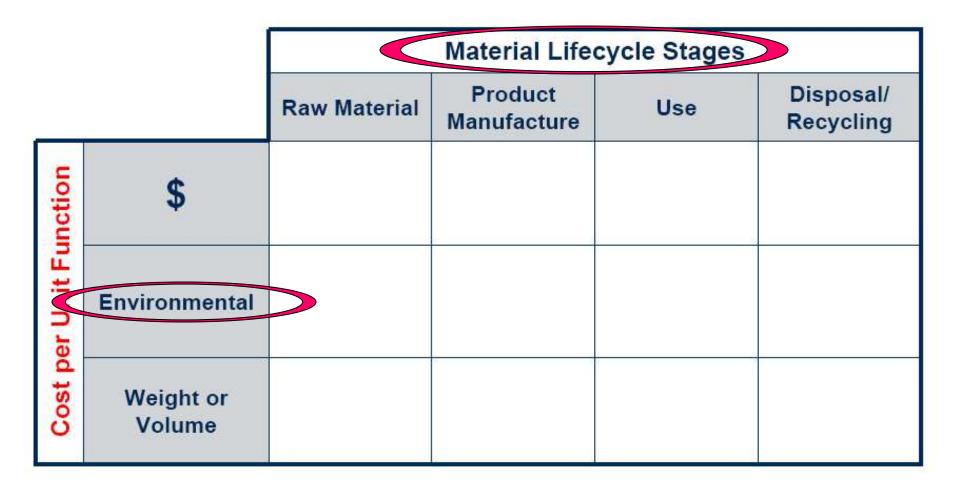
TOOLS FOR VIRTUAL DESIGN AND MANUFACTURING*

* From National Research Council (2004) Retooling Manufacturing: Bridging Design, Materials, and Production; Chapter 3.

CONCEPT DEV INTEGRATION DEMONSTRATION LRIP RATE SUSTAINMENT DISPOSAL **3D Product Definition Database** CONCEPT EXPLORATION RATE Analysis of Alternatives Establish Manufacturing Capability **Operational Analysis** Low Rate Initial Production **Business Process Reengineering Initial Operational Test and Live Fire Test** Full Rate Production Deployment COMPONENT ADVANCED DEVELOPMENT Advance Concept Tech Demonstration Systems Architecture Developed SUSTAINMENT **Block Modifications Component Technology Demo** Engineering Change Proposals **Evolutionary Requirement Development** SYSTEM INTEGRATION Test and Evaluation System Definition Effort **Tech Manual Development Preliminary Design Effort Functional Baseline** DISPOSAL Allocated Baseline **Environmental Compliance** SYSTEM DEMONSTRATION **Product Baseline Detail Design Effort**

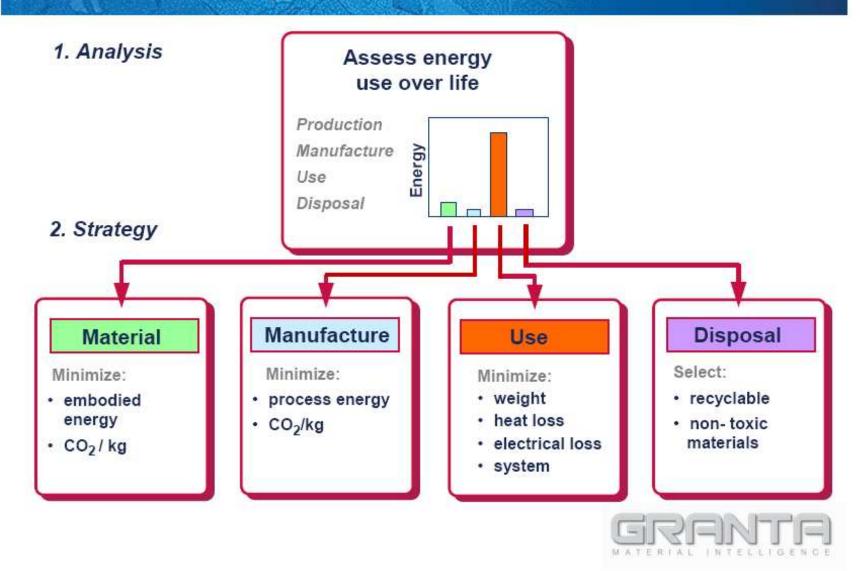

Figure 3-4 Life-cycle phases expanded into the eight indicated at the top of the figure.

Computer-Aided Materials Selection During Structural Design*


*National Research Council (1995)

"Materials Selection Capabilities Required - Summary"*

"Routine Materials Selection -- Senvironmental impact consideration of material production, use, and disposal/ recycling, and suggestions for product improvements." *from "Table 3-1 Summary of the Materials-Specific Information Technologies and Some Primary Computer Technologies Required"



The Materials Strategy space

Strategy for material selection

