

# Chapter 12: Abatement

| ABATE                            | MENT – HOW TO DO IT                                                                                                                                                                                                                                                                                                                                                                                                              | 12–5                             |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| BUILD                            | ING COMPONENT REPLACEMENT – HOW TO DO IT                                                                                                                                                                                                                                                                                                                                                                                         | 12–6                             |
| ENCLO                            | OSURE METHODS – HOW TO DO IT                                                                                                                                                                                                                                                                                                                                                                                                     | 12–7                             |
| PAINT                            | REMOVAL METHODS – HOW TO DO IT                                                                                                                                                                                                                                                                                                                                                                                                   | 12–8                             |
| SOIL A                           | AND EXTERIOR DUST ABATEMENT – HOW TO DO IT                                                                                                                                                                                                                                                                                                                                                                                       | 12–9                             |
| A.<br>B.<br>C.<br>D.<br>E.<br>F. | nciples of Lead-Based Paint Hazard Abatement  Longevity of Abatement  Prohibited Abatement Methods  Vacuum Cleaning  Periodic Monitoring and Reevaluation  Types of Abatement  Encapsulation  Relationship to Renovation, Repainting, Remodeling, Rehabilitation, Weatherization, and Other Construction Work                                                                                                                    | 12–1112–1312–1412–1412–14        |
| A.<br>B.<br>C.                   | ilding Component Replacement  Worksite Preparation  1. Security  2. Planning for Waste Storage  General Procedures for Building Component Replacement  Removal and Replacement Procedures for Specific Components  1. Baseboards, Casings, and Other Trim  2. Windows  3. Interior and Exterior Doors  4. Kitchen and Bathroom Cabinets  5. Railings  6. Exterior Siding  7. Interior Walls  Transportation and Storage of Waste |                                  |
| A.<br>B.                         | Closure Methods  Definition  Longevity of Enclosures  1. Labeling of Surfaces to be Enclosed  2. Unsound Substrates  3. Ongoing Monitoring and Reevaluation  Interior Surface Enclosure Materials                                                                                                                                                                                                                                | 12-24<br>12-24<br>12-25<br>12-25 |



|     |     | 1. Wood Paneling                                                            | 12–26          |
|-----|-----|-----------------------------------------------------------------------------|----------------|
|     |     | 2. Laminated Products                                                       | 12–26          |
|     |     | 3. Rigid Tile and Brick Veneers                                             | 12–26          |
|     |     | 4. Drywall and Fiberboard                                                   | 12–27          |
|     | D.  | Interior Building Components Suitable for Enclosures                        | 12–28          |
|     |     | 1. Wood Trim and Drywall                                                    | 12–28          |
|     |     | 2. Electrical Outlets and Vents                                             | 12–28          |
|     |     | 3. Ceilings                                                                 | 12–28          |
|     |     | 4. Floors                                                                   | 12–29          |
|     |     | 5. Stairs                                                                   | 12–30          |
|     |     | 6. Pipes                                                                    | 12–30          |
|     |     | 7. Door Frames                                                              | 12–30          |
|     |     | 8. Plywood Enclosures                                                       | 12–31          |
|     | E.  | Exterior Enclosure Systems                                                  | 12–31          |
|     |     | 1. Siding                                                                   | 12–31          |
|     |     | 2. Windows                                                                  | 12–32          |
|     |     | 3. Exterior Walls                                                           | 12–32          |
|     | F.  | Summary                                                                     | 12–32          |
| IV. | Pai | int Removal Methods                                                         | 12–33          |
|     |     | Introduction                                                                |                |
|     | В.  | Prohibited Methods                                                          | 12–33          |
|     |     | 1. Open Flame Burning or Torching                                           |                |
|     |     | Machine Sanding or Grinding Without a HEPA Exhaust Tool                     |                |
|     |     | 3. Abrasive Blasting or Sandblasting                                        |                |
|     |     | 4. Heat Guns Above 1100° F                                                  |                |
|     |     | 5. Dry Scraping                                                             |                |
|     |     | 6. Chemical Paint Stripping in a Poorly Ventilated Space                    | 12–35          |
|     | C.  | Recommended Methods of Paint Removal                                        | 12–36          |
|     |     | 1. Heat Guns                                                                | 12–36          |
|     |     | 2. Mechanical Removal Methods                                               | 12–37          |
|     |     | 3. Chemical Removal Methods                                                 | 12–39          |
|     | D.  | Waste Disposal                                                              | 12–43          |
| V.  | Soi | il and Exterior Dust Abatement                                              | 12–43          |
|     | A.  | Introduction                                                                | 12–43          |
|     | В.  | Soil Abatement Methods                                                      | 12–44          |
|     |     | 1. Soil Removal and Replacement                                             | 12–44          |
|     |     | 2. Soil Cultivation                                                         | 12–48          |
|     |     |                                                                             |                |
|     |     | 3. Paving                                                                   |                |
|     |     | Paving      Other Soil Treatment Methods Under Study  Exterior Dust Control | 12–49<br>12–49 |



| i. Types o          | of Equipment                                                                                       | 12–50 |
|---------------------|----------------------------------------------------------------------------------------------------|-------|
| 2. Evaluat          | tion of Equipment                                                                                  | 12–50 |
| 3. Remov            | al of Heavy Accumulation                                                                           | 12–51 |
| 4. Vacuun           | n Cleaning                                                                                         | 12–51 |
| REFERENCES          |                                                                                                    | 12–52 |
| FIGURES             |                                                                                                    |       |
| Figure 12.1         | Removing and Replacing Trim: interior (left), exterior (right)                                     | 12–19 |
| Figure 12.2         | Protecting the interior of a unit for exterior window abatement                                    | 12–20 |
| Figure 12.3         | Replacement window system                                                                          | 12–20 |
| Figure 12.4         | Pre-and post-abatement interior doors.                                                             | 12–21 |
| Figure 12.5         | A metal railing before abatement                                                                   | 12–22 |
| Figure 12.6         | Installation of replacement siding.                                                                | 12–22 |
| Figure 12.7         | Certified workers are needed to replace siding when the project's intent is lead abatement         | 12–22 |
| Figure 12.8         | Line surfaces with plastic in the work area (left) and pathways (right)                            | 12–23 |
| Figure 12.9         | Example of a Diagram Showing the Location of Lead-Based Paint Enclosures.                          | 12–25 |
| Figure 12.10        | Install underlayment and new flooring as a suitable LBP enclosure method                           | 12–29 |
| <b>Figure 12.11</b> | Enclosed stairs                                                                                    | 12–30 |
| <b>Figure 12.12</b> | Seal All Seams for Enclosure.                                                                      | 12–31 |
| Figure 12.13        | Prohibited work practices (traditional abrasive blasting (left) and grinding without HEPA exhaust) | 12–34 |
| <b>Figure 12.14</b> | Using a heat gun to remove paint is labor-intensive                                                | 12–36 |
| Figure 12.15        | HEPA-filtered power tools                                                                          | 12–37 |
| Figure 12.16        | Wet scraping (left)                                                                                | 12–38 |
| <b>Figure 12.17</b> | Scraping tools (right)                                                                             | 12–38 |
| Figure 12.18        | Vacuum blasting is not often used on housing.                                                      | 12–39 |
| <b>Figure 12.19</b> | Needle Gun with HEPA Exhaust Ventilation.                                                          | 12–39 |
| Figure 12.20        | Workers should wear protective clothing when using chemicals                                       | 12–40 |
| Figure 12.21        | Eye- and body-wash stations are required when working with corrosive or irritant chemicals.        | 12–41 |
| Figure 12.22        | Replacing resident pathway after soil removal.                                                     | 12–47 |
| Figure 12.23        | Preparing to pave high traffic area                                                                | 12–49 |

## CHAPTER 12: ABATEMENT -



| TA | BI | _ES |
|----|----|-----|
|----|----|-----|

| Table 12.1 | Prohibited Lead-Based Paint Abatement Methods.                            | 12–13 |
|------------|---------------------------------------------------------------------------|-------|
| Table 12.2 | Comparison of Lead-Based Paint Abatement, Component Removal and Enclosure | 12–17 |
| Table 12.3 | Steps To Install Drywall and Fiberboard on Interior Walls.                | 12–27 |



# Chapter 12: Abatement

#### Abatement - How To Do It

- Arrange for risk assessment or paint inspection. Have a lead hazard risk assessment or lead-based paint inspection performed by a certified risk assessor or a certified inspector who is independent of the abatement contractor.
- 2. Develop hazard control plan. Develop a site-specific lead hazard control plan based on the hazards (risk assessment) or lead-based paint (inspection) identified and financing available. Prepare the work area (see Chapter 8); avoid high-dust jobs and procedures.
- 3. Obtain waste permits. Have the contractor obtain any necessary building or waste permits; notify local authorities if the local jurisdiction requires it.
- 4. Select needed materials. Together with the contractor (or designer or risk assessor), select specific building component replacement items, enclosure materials, paint removal equipment and/or chemicals, tools, and cleaning supplies. Consider waste management and historic preservation implications of the selected treatment.
- 5. Develop specifications. Develop specifications (usually for large projects only).
- 6. Schedule other construction work. Schedule other construction work so that leaded surfaces are not inadvertently disturbed and unprotected workers are not placed at risk. Include time for clearance examinations and laboratory dust sample analysis in the scheduling process (see Chapters 3 and 15).
- 7. Select a contractor. Select a certified abatement contractor using the lowest qualified bidder.
- **8. Conduct preconstruction conference**. Conduct a preconstruction conference to ensure the contractor fully understands the work involved (for large projects only).
- 9. Notify residents. Notify residents of the dwelling and adjacent dwellings of the work and the date when it will begin. Implement relocation (if appropriate).
- 10. Correct housing conditions that might impede work. Correct any existing conditions that could impede the abatement work (e.g., trash removal, structural deficiencies).
- 11. Post warning signs. Post warning signs and restrict entry to authorized personnel only. Implement the worksite preparation procedures.
- 12. Consider a pilot project. For large projects only, consider conducting a pilot project to determine if the selected abatement method will actually work (pilot projects are sometimes completed before step 4).
- 13. Consider collecting soil samples as an option. As an optional quality control procedure, consider collecting pre-abatement soil samples, which may not have to be analyzed until post-abatement soil samples have been collected, analyzed, and compared to clearance standards. If post-abatement soil levels are below applicable limits, the pre-abatement samples need not be analyzed (see Chapter 15). Soil sampling is not required by EPA regulations as part of clearance. This is an optional activity (see Chapter 15).



- 💸
- 14. Execute construction work. Execute abatement work. See the other sections of this chapter for stepby-step summaries for building component replacement, enclosure, paint removal, and soil abatement methods. See Chapter 13 for encapsulation methods. Observe local or State regulations if applicable.
- 15. Store waste. Store all waste in a secure area (see Chapter 10).
- 16. Cleanup. Conduct daily and final cleanup (see Chapter 14). Execute waste disposal procedures.
- 17. Arrange for clearance. Have an independent certified inspector technician or risk assessor conduct a clearance examination after waiting at least 1 hour after cleanup has been completed to let dust settle (see Chapter 15).
- 18. Repeat cleaning if clearance fails. If clearance is not achieved, repeat cleaning and/or complete abatement work. Repeat clearance examination and, if clearance is achieved, obtain any required formal release or, if required by the U.S. Department of Housing and Urban Development (HUD) or local authorities, owner's certification that the project has been completed required.
- 19. Pay contractors. Pay contractor and clearance examiner.
- 20. Conduct periodic monitoring. Conduct periodic monitoring and reevaluation of enclosure or encapsulation systems (if applicable) or lead-based paint that was not abated as indicated in Chapter 6. Maintain records of all abatement, monitoring, reevaluation, and maintenance activities, and turn them over to any new owner upon sale of the property as part of lead disclosure. Provide proper disclosure and notification to tenants. See Appendix 6 for more information.

## Building Component Replacement - How To Do It

- Prepare work area and plan new component installation. Prepare the work area (see Chapter 8); avoid high-dust jobs and procedures. Plan how the new component will be installed. Whenever possible, use new, energy efficient window, door, and insulating systems.
- 2. Prepare building component for removal. Prepare the building component for removal. Turn off and disconnect any electrical circuits inside or near the building component to be removed.
- 3. Mist component. Lightly mist the component to be removed (unless electrical circuits are nearby).
- **4. Score seams**. Score all painted seams with a sharp knife.
- 5. Remove screws. Remove any screws, nails, or fasteners.
- **6. Pry component**. Use a flat pry instrument (crowbar) and hammer to pry the component from the substrate.
- 7. Remove nails. Remove or bend back all nails.
- **8. Wrap component**. Wrap and seal bulk components in plastic and take them to a covered truck or secured waste storage area along pathways covered with plastic. Shovel any debris; see Chapter 10 for proper disposal methods.
- 9. Vacuum dust. Vacuum any dust or chips in the area where the component was located.



- 10. Replace component (optional).
- 11. Cleanup. Conduct cleaning (see Chapter 14).
- 12. Conduct clearance. Conduct clearance and reclean if necessary.

## Enclosure Methods - How To Do It

- Post warnings on affected components. Stamp, label, or stencil all lead-based painted surfaces
  that will be enclosed with a warning approximately every 2 feet both horizontally and vertically on all
  components. The warning should read: "Danger: Lead-Based Paint." Deteriorated paint should not be
  removed from the surface to be enclosed.
- 2. Determine whether low- or high-dust job. Prepare the worksite in accordance with guidance in Chapter 8; avoid high-dust jobs and procedures.
- 3. Identify enclosure. Attach a durable drawing to the utility room or closet showing where lead-based paint has been enclosed in the dwelling.
- 4. Plan for monitoring. Plan for annual monitoring of the enclosure by the owner.
- 5. Repair substrates. Repair unsound substrates and structural members that will support the enclosure, if necessary.
- **6. Select enclosure material**. Select appropriate enclosure material (drywall or fiberboard, wood paneling, laminated products, rigid tile and brick veneers, vinyl, aluminum, or plywood).
- Prepare electrical fittings. Install extension rings for all electrical switches and outlets that will penetrate the enclosure.
- 8. Clean floors. If enclosing floors, remove all dirt with a vacuum to avoid small lumps in the new flooring.
- **9. Seal seams**. Seal and back-caulk all seams and joints. Back-caulk means applying caulk to the underside of the enclosure.
- 10. Anchor enclosures. When installing enclosures directly to a painted surface, use adhesive and then anchor with mechanical fasteners (nails or screws).
- 11. Conduct cleanup.
- **12. Arrange for clearance**. Have a certified risk assessor or inspector technician conduct clearance testing and provide documentation.



## Paint Removal Methods - How To Do It

- Use only approved removal methods. Be sure all paint-removal methods are not prohibited methods.
   Avoid the following:
  - a. Open flame burning or torching.
  - b. Heat guns operating above 1100 °F.
  - c. Machine sanding or grinding without a HEPA vacuum exhaust tool.
  - d. Abrasive blasting or sandblasting without a HEPA vacuum exhaust tool.
  - e. Paint stripping in a poorly ventilated space using volatile stripper.
  - f. Dry scraping (except for limited areas).
- 2. Determine whether low- or high-dust job. Prepare the worksite in accordance with guidance in Chapter 8; avoid high-dust jobs and procedures.
- 3. Ensure safe use of heat guns. For heat gun work, provide fire extinguishers in the work area and ensure that adequate electrical power is available. Use for limited areas only. Train workers to avoid gouging or abrading the substrate.
- 4. When using mechanical tools, USE only HEPA-equipped tools. Be sure workers keep the shroud against the surface being treated. Vacuum blasting and needle guns should not be used on wood, plaster, drywall, or other soft substrates. Observe the manufacturer's directions for the amount of vacuum airflow required.
- 5. Wet scrape. For wet scraping, use a spray bottle or wet sponge to keep the surface wet while scraping. Apply enough water to moisten the surface completely, but not so much that large amounts run onto the floor or ground. Do not moisten areas near electrical circuits.
- 6. Use off-site chemical stripping facilities, if feasible. For chemical paint removers, determine if the building component can be removed and stripped off-site. Off-site stripping is generally preferred to on-site paint removal. Observe all manufacturers' directions for use of paint removers.
- 7. Remove components carefully. For off-site stripping, determine how to remove the component. Score the edges with a knife or razor blade to minimize damage to adjacent surfaces. Punch or tag the building component if similar building components are also being stripped off-site (e.g., doors). This will ensure that the individual component is reinstalled in the original location. Inform the off-site paint remover that lead-based paint is present before shipping. Wrap the component in plastic and send to the off-site stripping location. Clean all surfaces before reinstallation to remove any lead residues by vacuuming all surfaces, cleaning with other lead specific or all-purpose cleaners detergents, and vacuuming again. Conduct cleanup and clearance.
- 8. Test effectiveness of on-site stripper, if used. For on-site paint removal, first test the product on a small area to determine its effectiveness. Chemical paint removers may not be effective or desirable on exterior, deteriorated wood surfaces, aluminum, and glass. Provide neoprene, nitrile, rubber, or polyvinyl chloride (PVC) gloves (or other type of glove recommended by the manufacturer); face shields; respirators with combination filter cartridges for leaded-dust and organic vapors (if appropriate); and



chemical-resistant clothing. Be sure to select the right type of organic vapor filter cartridge, gloves, and clothing for the specific chemical being used. Portable eyewash stations capable of providing a 15-minute flow must be on-site. Apply the chemical and wait the required period of time. Maintain security overnight to prevent passersby from coming into contact with the chemical. For caustic chemical paint removers, neutralize the surface before repainting using glacial acetic acid (not vinegar). Repaint and conduct cleanup and clearance.

- 9. Dispose of waste properly (see Chapter 10).
- 10. Conduct cleanup.
- 11. Arrange for clearance. Have a certified risk assessor or lead-based paint inspector conduct a clearance examination and provide documentation (see Chapter 15).

## Soil and Exterior Dust Abatement - How To Do It

- 1. Identify any soil hazard. Determine if a soil-lead hazard exists. For a hazard to exist, a total of at least 9 square feet of soil in a single yard or area must be bare and soil concentrations must be equal to or exceed either 1,200 μg/g of lead for the yard or building perimeter or 400 μg/g of lead for small, high-contact play areas. Bare soil above these levels should be treated by either interim controls or abatement. Soil abatement is most appropriate when levels of lead are extraordinarily high (equal to or greater than 5,000 μg/g) and when use patterns indicate contact frequency and exposure will be high.
- 2. Optionally, collect pre-abatement soil samples. As an option, collect pre-abatement soil samples to determine baseline levels. These samples need not be analyzed if post-abatement soil samples are below applicable clearance levels.
- Determine soil abatement method. Determine the method of soil abatement (soil removal and replacement, soil cleaning, or paving). Soil cultivation (rototilling or turning over the soil) is not recommended.
- 4. Prepare carefully for paving. If paving, use a high-quality concrete or asphalt. Observe normal precautions associated with traffic load weight and thermal expansion and contraction. Obtain any necessary permits. Keep soil cultivation to a minimum.
- 5. Plan soil removal carefully. If removing and replacing soil:
  - Determine if waste soil will be placed in an on-site or off-site burial pit. Prepare vehicle operation and soil movement plan. Test new replacement soil (should not contain more than 400 μg/g lead).
  - Contact the local information source to determine location of underground utilities, including water, gas, electric, cable TV, and sewer, or contact each utility individually. Mark all locations to be avoided.
  - Remove fencing if necessary to allow equipment access and define site limits with temporary fencing, signs, or yellow caution tape.
  - ◆ Tie and protect existing trees, shrubs, and bushes.
  - ◆ Have enough tools to avoid handling clean soil with contaminated tools.



- 🔕

- ♦ Remove soil.
- ♦ Clean all walkways, driveways, and street areas near abatement area.
- ◆ Replace soil at proper grade to allow drainage.
- ◆ Replacement soil should be at least 2 inches above existing grade to allow for settling.
- ♦ Install new soil covering (grass or sod) and maintain it through the growing season.
- ♦ Have enough workers and equipment available to complete the job in 1 day.
- 6. Manage disposal of soil waste carefully (see Chapter 10).
- 7. Conduct final cleanup and visual inspection for clearance (see Chapter 15).
- **8. Provide walk-off mat(s) for residents**. Provide walk-off doormats to residents and educate them on the benefits of removing shoes at the dwelling entryway.



## I. Principles of Lead-Based Paint Hazard Abatement

## A. Longevity of Abatement

There are several approaches to abatement. Abatement is either: the removal of the building component, the removal of the paint itself, or the long-lasting – at least 20 years – enclosure or encapsulation of lead-based paint hazards. (For enclosure, see Section III of this chapter, and for encapsulation, see Chapter 13.) From a public health perspective, properly conducted abatement is the preferred permanent or long-lasting response to lead hazards. Abatement has two principal advantages: it provides a long-term solution, and little (if any) monitoring or reevaluation of the treated surface is necessary because failure is less likely to occur. Abatement treatments provide longer-lasting safe conditions than interim controls because the effectiveness of the work is less dependent on resident action, maintenance of housing stock, the conscientiousness of property managers, and the attention of maintenance workers during repair.

As used in this chapter, abatement can mean either correction of lead-based paint hazards (as defined in Title X) or removal, "permanent" encapsulation or "permanent" enclosure of all lead-based paint, as describe below. The methods explained in this chapter apply to abatement of both lead-based paint hazards and lead-based paint. From the Federal perspective, construction activities intending only to remodel, renovate or paint, are not considered abatement. Abatement does include work intending to permanently eliminate lead-based paint or lead-based paint hazards.

Interim controls, abatement, or a combination of the two are acceptable methods of addressing lead-based paint hazards. In contrast to interim controls, lead-based paint abatement refers to a group of measures that can be expected to eliminate or reduce exposures to lead hazards for at least 20 years under normal conditions. As 20 years is the expected lifespan of many commonly used building components, abatement is the closest one can get to a "permanent" solution in housing. The abatement methods described in this chapter should be capable of lasting 20 years under typical conditions. Any methods developed in the future that also last 20 years will be acceptable as abatement methods. This orientation toward performance standards should provide owners and the abatement industry with opportunities for innovation and flexibility, ensuring that the abatement method selected is the one that is most cost effective for a particular component.

The term "abatement" also includes a number of other activities that are not directly related to the work itself, but that must be included in the overall effort for the abatement to be successful. These activities include lead hazard evaluation, planning, cleaning, clearance, and waste disposal and are covered elsewhere in these *Guidelines*. The reader must study and understand the material in these other chapters prior to undertaking an abatement project. This chapter alone does not provide all the information necessary to complete a successful abatement job. When abatement is performed inadequately, or without sufficient protection, lead exposures to children increase (Amitai, 1987; Chisholm, 1985; Farfel, 1990; Rabinowitz, 1985a). When performed properly, abatement is known to be effective (Amitai, 1991; Staes, 1994; HUD, 1991; Jacobs, 1993a; Farfel, 1994a; Staes and Rinehart, 1995).

Abatement refers to any measure designed to permanently eliminate lead-based paint or lead-based paint hazards in accordance with standards established by the U.S. Environmental Protection Agency (EPA) pursuant to Title IV of the Toxic Substances Control Act (TSCA). Abatement strategies include removal of lead-based paint; enclosure of lead-based paint; encapsulation of lead-based paint (according to the standards and procedures set forth in Chapter 13); replacement of building



components coated by lead-based paint; removal of lead-contaminated dust; removal or covering of lead-contaminated soil with a durable covering (not grass, gravel, or sod, which are considered interim control measures); and preparation, cleanup, disposal, post-abatement clearance testing, recordkeeping, and monitoring (if applicable).

More than any other abatement method, on-site paint removal involves the greatest degree of disturbance and dust generation. Therefore, on-site removal of lead-based paint from a substrate should be carried out only if abatement rather than interim control is required and no other abatement method is feasible. For example, removal of paint from metal doorframes may be the only feasible abatement option, especially if the frames cannot be removed or enclosed and the paint cannot be stabilized. Paint removal may increase the level of lead in household dust and make effective cleaning more difficult. Even if dust clearance standards are met, any increase in leaded-dust levels over baseline levels means some increase in exposure. Furthermore, all paint removal methods leave behind some residues embedded in the substrate, which could continue to pose a hazard if the surface from which the paint is removed is later disturbed. Therefore, paint removal is the most invasive of abatement methods and should be avoided if possible.

Abatement also offers the greatest challenge to planning, since it is often performed in the context of other building construction work, while interim controls are more likely to be performed alone or as part of other maintenance work.

In fact, many forms of abatement require special construction skills in addition to protective measures and dust control techniques. For example, one of the most common forms of lead-based paint abatement is window replacement. Abatement contractors need to possess adequate carpentry skills to install (for example) new windows, as well as the demolition, dust containment, and cleaning skills held by abatement contractors. While providing some guidance, this chapter is not intended to impart carpentry, painting, resurfacing, and other construction knowledge required for most types of abatement. Abatement contractors should either subcontract this type of construction work or acquire the necessary construction skills before the job begins. Of course, all construction work must be performed in accordance with local code requirements and all abatement work must be done by certified firms and individuals.

Many forms of abatement can be integrated into construction work, which provides an opportunity to install systems that will have long-term impact. For example, whenever building components, such as doors and windows, are replaced, the *Guidelines* recommend that they be replaced with products that are more energy efficient. This will help reduce energy consumption and increase cost efficiency.

EPA has established standard training curricula and regulations for the training and certification of all individuals engaged in lead-based paint risk assessment, inspection, and abatement, and minimum performance standards for the purpose of certifying individuals who supervise lead abatement projects and conduct clearance examinations. EPA's regulations are generally implemented through State, Tribal, or territorial programs. All abatement contractors and firms must be certified to perform this type of work, and all abatement workers and supervisors must be trained and certified. Certification of abatement contractors and completion of clearance examinations by independent, certified risk assessors, lead-based paint inspectors or sampling technicians, ensures that abatement work is conducted properly and safely.

For exterior work, as an optional quality control procedure, consider collecting pre-abatement soil samples, which may not be analyzed until post-abatement soil samples have been collected,



analyzed and compared to clearance standards. If post-abatement soil levels are below applicable limits, the pre-abatement samples need not be analyzed. Soil sampling is not required by EPA regulations as part of clearance. This is an optional activity (see Chapter 15).

#### **B.** Prohibited Abatement Methods

HUD and EPA prohibit certain techniques (see 24 CFR 35.140, and 40 CFR 745.227(e)(6), respectively) because they are known to produce extremely high levels of lead exposure and make dwellings difficult to clean up. In addition, for abatement in federally-owned and assisted residences, HUD prohibits an additional technique if toxic volatile chemical stripping compounds are used, in order to prevent hazardous levels of the chemicals in the air of the residence being abated. See Table 12.1. State and local regulations may also prohibit some or all of these techniques or other techniques.

These *Guidelines* recommend strongly against the use of uncontained hydroblasting. Removal of paint using this method can spread paint chips, dust, and debris beyond the work area. Pressure washing is also discouraged. Contained pressure washing at less than 5,000 pounds per square inch (PSI) can be done within a protective enclosure to prevent the spread of paint chips, dust, and debris. Water runoff should also be contained (see Chapter 8).

#### Table 12.1 Prohibited Lead-Based Paint Abatement Methods.

- 1. Open flame burning or torching (includes propane-fueled heat grids).
- 2. Machine sanding or grinding without HEPA local vacuum exhaust tool.
- 3. Abrasive blasting or sandblasting without HEPA local vacuum exhaust tool.
- 4. Heat guns operating above 1100° F or charring the paint.
- 5. Dry scraping (except for limited surface areas).
- 6. Paint stripping in a poorly ventilated space using volatile stripper.

#### C. Vacuum Cleaning

In this chapter, vacuum cleaning is recommended a number of times. These *Guidelines* recommend that a HEPA-filtered (high-efficiency particulate air) vacuum should be used if possible, but that a high-quality household or commercial vacuum should be used if a HEPA vacuum is not available. (Note that, for RRP work, EPA's RRP Rule requires that any vacuum cleaners used be HEPA-filtered; see Chapter 11.) See Section III.A of Chapter 14 for a discussion of factors in choosing an effective vacuum cleaner and Section V of Chapter 11 for cleaning of carpets.



## D. Periodic Monitoring and Reevaluation

Among the advantages of abatement compared to interim controls is that ongoing monitoring by the owner is either unnecessary (in the case of complete lead-based paint removal) or relatively simple (in the case of enclosure or encapsulation). Failures of enclosures and encapsulations are relatively easy to observe visually. (Failures should be repaired immediately. See Chapter 6.) Also, whereas professional independent reevaluation may be required at 2-year intervals for some federally assisted multi-family properties that have been treated with interim controls or standard treatments, such reevaluation is not necessary for properties that have had all lead-based paint abated. This is true even if lead-based paint has been enclosed or encapsulated, *provided* ongoing visual monitoring and lead-safe maintenance are performed by the owner in assisted units as recommended in Chapter 6. (Also see Chapter 5 on reevaluation.)

Abatement can be undertaken after lead-based paint inspections or risk assessments determine the presence of lead-based paint or other lead hazards (see Chapters 3, 5 and 7 for a description of the differences between risk assessments and inspections). If this initial evaluation phase is not completed, then all painted surfaces must be presumed to contain lead-based paint. This presumption may be cost-effective if it is likely that all surfaces that might be treated contain lead-based paint or if the housing unit is to be rehabilitated and all surfaces and components will be either covered or replaced.

The cost of a carefully conducted lead-based paint inspections or risk assessments, however, is usually recovered by a more focused abatement effort, especially when component replacement or enclosure is considered. The cost savings of a more targeted abatement effort based on complete testing are noteworthy in the case of abatement as opposed to interim controls, because the costs of abatement are initially much higher than interim controls.

#### Recordkeeping

Recordkeeping is essential for all abatement methods. The location of enclosed or encapsulated lead-based paint must be made known to future residents and owners, who may undertake remodeling or repair efforts that could disturb the remaining lead-based paint and thereby create a lead-based paint hazard. Depending on the jurisdiction, the location of enclosed or encapsulated lead-based paint may need to be filed with the appropriate municipal agency for future reference when the agency needs to issue construction permits for renovation. Provide proper disclosure and notification to current tenants as well (see Appendix 6).

#### E. Types of Abatement

This chapter covers four types of abatement:

- ◆ Building component replacement.
- ◆ Enclosure systems (this section does not include encapsulation, which is addressed in Chapter 13).
- ♦ On-site and off-site paint removal.
- ◆ Soil removal or covering.



The available information on paint abatement methods is summarized in Table 12.2. The reader should not conclude that a particular method is not permitted simply because it is not discussed here. With the exception of the prohibited techniques listed above, new techniques should be developed, studied, and reported to HUD, the Centers for Disease Control and Prevention (CDC), EPA, and other Government agencies for distribution to the public.

## F. Encapsulation

Encapsulants are coatings or rigid materials that rely on adhesion to a lead-based painted surface and are not mechanically fastened to the substrate. Encapsulants are considered separately in Chapter 13. Enclosures (not to be confused with encapsulants) are defined as durable, rigid construction materials that are mechanically fastened to the substrate with screws, nails, or other mechanical fastening system that can be expected to last at least 20 years under normal conditions. (See Section III of this chapter on enclosures.) These Guidelines do not consider encapsulation to be the same as enclosure. Depending on the particular circumstances and product, encapsulation can be either a form of paint stabilization (an interim control) or abatement (see Chapter 13).

## G. Relationship to Renovation, Repainting, Remodeling, Rehabilitation, Weatherization, and Other Construction Work

Many forms of abatement involve the same physical work as other types of construction often performed in housing. In many cases, only the intent of the work differs. Lead-based paint abatement is intended to produce conditions that prevent lead poisoning. Other construction work is intended, among other things, to improve aesthetic living conditions, bring the dwelling up to code, preserve historical evidence, and promote energy efficiency. For example, depending on its intent, window replacement could be considered to be a lead-abatement method, renovation work, or energy conservation/weatherization work.

HUD's Lead Safe Housing Rule requirements vary depending on the type and amount of federal housing assistance (see Appendix 6) (HUD, 1999). The Rule applies to certain private owners and specific federally-funded housing activities. Individuals at the State or local level who are responsible for making determinations about weatherization or rehabilitation projects must have a clear understanding of the federal requirements applicable to specific funding sources. DOE-funded weatherization work is considered to be "renovation" under EPA's RRP rule (See Chapter 4; see also DOE, 2002).

It is well known that lead-based paint-disturbing activities have the potential to create dust-lead hazards. Therefore, regardless of funding source, HUD strongly recommends that all activities disturbing known or presumed lead-based paint use trained workers, lead-safe work practices and undergo a clearance examination.

While the intentions of each of these activities differ, experience shows that many of them can be combined in order to yield savings. In the public housing program, for example, most of the abatement occurs in the context of housing modernization or rehabilitation work. This approach has proven to be feasible and cost effective.

Congress recognized the wisdom of combining lead abatement with rehabilitation work. Under Title X, any residential construction job receiving more than \$25,000 per dwelling unit in Federal rehabilitation funds is *required* to have all lead-based paint hazards on the property abated. If \$5,000 to \$25,000 per dwelling unit in Federal rehabilitation funding is received, either interim controls or abatement must be implemented (HUD, 2009).



- 💸

Finally, lead abatement procedures cannot guarantee that children will not be exposed to lead in the future. Enclosure systems or encapsulants could fail, exposing the hazard again. Soil coverings could also fail, or other sources of lead could recontaminate the soil, resulting in exposures. Surfaces that were made cleanable may deteriorate or may not be kept clean, allowing leaded dust to re-accumulate to hazardous levels. Nevertheless, abatement constitutes the most extensive and protective intervention currently available. If practiced properly, abatement will greatly reduce the risk of lead poisoning.

## II. Building Component Replacement

Building component replacement is defined as the removal of doors, windows, trim, and other building items that contain lead-based paint hazards and their replacement with new lead-free components. Component replacement is the most desirable abatement method because it offers a permanent solution to the lead-based paint problem for the particular component(s); but it may not be feasible for all of the LBP present. If done properly, it also minimizes contamination of the property and exposure of the workers. In addition, building component replacement can be integrated into general building rehabilitation activities. Components, such as doors and windows, should be replaced with more energy efficient models, which will help to reduce energy consumption and increase cost efficiency. In some cases, component replacement may cost less than abatement, especially when ongoing maintenance and energy costs are considered. Component replacement may be more expensive, however, especially for historic preservation projects, as new building components that match the originals may have to be custom made. For some historic preservation projects, replacement may not be permitted (see Chapter 18).

The skills required to perform building component replacement properly are similar to those of the skilled carpenter. For example, it is important to know how the various building components were joined so that they can be taken apart with minimal contamination and damage to adjoining surfaces.

The owner may choose to simply remove certain types of components without replacement. This is acceptable as long as applicable codes are observed. HUD does not recommend reinstalling salvaged building components containing lead-based paint in other properties unless the lead-based paint is removed.

## A. Worksite Preparation

The appropriate worksite preparation level should be selected based on the size of the building component, its state of deterioration, and the ease of removal. The more deteriorated the component and the larger the surface area to be disturbed, the higher the worksite preparation level should be. Certified risk assessors or certified abatement supervisors or trained project designers may determine the appropriate worksite preparation for a project (see Chapter 8).

#### 1. Security

Security of the premises is an important issue. If windows and doors are removed but not replaced on the same day, it may be necessary to install temporary barriers over window and door openings to prevent vandalism and theft over night. Therefore, every effort should be made to remove and replace doors and windows on the same day.

Comparison of Lead-Based Paint Abatement, Component Removal and Enclosure Table 12.2

|                                      | Abatement and Removal                     | noval                                  |                                       |                                |                                        |                                    | Enclosure           |                                |                                     |                              |
|--------------------------------------|-------------------------------------------|----------------------------------------|---------------------------------------|--------------------------------|----------------------------------------|------------------------------------|---------------------|--------------------------------|-------------------------------------|------------------------------|
| Attributes                           | HEPA Needle Gun                           | Heat Gun                               | HEPA Sanding                          | Remove/<br>Replace             | Caustic Paste/<br>Solvent              | Off-site Stripping                 | Plywood<br>Paneling | Gypsum                         | Prefab Metal                        | Wood, Metal,<br>Vinyl Siding |
| Skill Level                          | High                                      | Moderate                               | Moderate                              | High                           | Moderate                               | Moderate                           | Moderate            | Moderate                       | High                                | Moderate                     |
| Aesthetics (1)                       | Erodes surface                            | Gouges                                 | Gouges/<br>roughens                   | Good                           | Gouges                                 | Good                               | Good                | Good                           | Poog                                | Good                         |
| Applicability                        | Very low, limited to<br>metal and masonry | Wide, can<br>damage some<br>components | Low, limited<br>by surface<br>contour | Wide,<br>dependent<br>on skill | Wide, can<br>damage some<br>components | Low, components<br>only            | Wide,<br>walls      | Wide,<br>walls and<br>ceilings | Varied,<br>limited by<br>components | Wide, walls                  |
| Lead Presence                        | Largely removed                           | Largely<br>removed                     | Largely<br>removed                    | Removed                        | Largely<br>removed                     | Largely removed                    | Remains             | Remains                        | Remains                             | Remains                      |
| Generation of<br>Hazardous Waste (2) | Low to moderate                           | Low to<br>moderate                     | Low to<br>moderate                    | Low                            | High                                   | High, but maintained<br>off-site   | Low                 | Low                            | Low                                 | Low                          |
| Weather Limitations                  | Moderate                                  | High                                   | Moderate                              | Minimal                        | High                                   | None                               | Minimal             | Minimal                        | Minimal                             | Minimal                      |
| Applicable to<br>Friction Surface    | Some                                      | Yes                                    | Some                                  | Yes                            | Yes                                    | Yes                                | o<br>N              | o<br>N                         | Yes                                 | o<br>Z                       |
| Surface Speed of<br>Methodology      | Slow                                      | Slow                                   | Slow                                  | Moderate                       | Slow                                   | Can be slow, requires coordination | Moderate            | Moderate                       | Moderate                            | Moderate                     |
| Training Required                    | High                                      | Moderate                               | Moderate                              | High                           | Moderate                               | Moderate                           | High                | High                           | High                                | High                         |
| Capital Required                     | High                                      | Low                                    | Moderate                              | Moderate                       | Low                                    | Low                                | Low                 | Low                            | High                                | Moderate                     |
| Worker Protection<br>Required (3)    | High                                      | High                                   | High                                  | Moderate                       | High                                   | Moderate                           | Low                 | Moderate                       | Low                                 | Low                          |
| Finish Work<br>Required              | Tentatively                               | Moderate                               | Moderate                              | Low                            | Moderate                               | Moderate                           | Wide                | Wide                           | Limited                             | Wide                         |
| Product Availability                 | Limited                                   | Moderate                               | Limited                               | Wide                           | Moderate                               | Limited                            | Moderate            | Moderate                       | Wide                                | Wide                         |
| Durability                           | Long                                      | Long                                   | Long                                  | Long                           | Long                                   | Long                               | Moderate            | Moderate                       | Moderate                            | Moderate                     |
| Labor Intensity                      | High                                      | High                                   | High                                  | High                           | High                                   | Moderate                           | High                | High                           | High                                | High                         |
| Overall Safety (3)                   | Moderate                                  | Moderate                               | Moderate                              | Very high                      | Moderate                               | High                               | High                | High                           | High                                | High                         |
| Surface Preparation                  | None                                      | None                                   | None                                  | None                           | Minimal-<br>adjacent areas             | Minimal-hardware<br>removal        | Minimal             | Minimal                        | Minimal                             | Minimal                      |
| Cost                                 | High                                      | High                                   | High                                  | High                           | High                                   | High                               | Moderate            | Moderate                       | High                                | Moderate                     |

(1) – The degree of damage to the surface will depend on the expertise of the operator. Notes:

(3) – Any construction work involves increased safety risks.

<sup>(2) –</sup> Concentrated lead-based paint waste or sludges from paint removal using caustic or organic solvent removers have to be TCLP tested to determine if they are hazardous waste. See Chapter 10.



## 2. Planning for Waste Storage

While most lead hazard control work in housing is exempt from hazardous waste regulation, discarded architectural components must still be properly managed (see Chapter 10). All building components coated with lead-based paint should be stored in a secure, locked area, as should all lead-contaminated waste until it is disposed of. They should not be sold or released to anyone who might reinstall them in another dwelling unless all of the lead-based paint is removed first. Therefore, it is important to identify where waste will be stored and how it will be secured during the project. (See Section II.D, Transportation and Storage of Waste, below.)

#### B. General Procedures for Building Component Replacement

- ◆ Using a garden sprayer or atomizer, lightly mist the component to be removed with water to help keep the dust down during the removal process. Before applying the water, be sure there are no electrical circuits inside the component. (If electrical circuits are present inside the component, they must be turned off and disconnected before removal. No water mist should be applied even if electrical circuits are turned off or de-energized.)
- Using a utility knife or other sharp instrument, carefully score all affected painted seams. This
  will provide space for a pry instrument and will minimize paint chipping and dust generation
  during removal.
- ◆ Remove any screws or other fasteners. Using a flat pry instrument and a hammer, carefully pry the affected building component away from the surface to which it is attached. The pry bar should be inserted into the seam at the nail (or other fastening device) at one end of the component and pressure applied. This process should be repeated at other fastening locations until the end of the component is reached. The component will be removed intact and chip and dust generation will be minimized when prying is done this way. A pry point pad or softener may be required to minimize damage to adjoining substrates. Wider replacement trim can sometimes be used to cover adjacent area damage.
- ◆ As there is often a considerable amount of leaded-dust underneath or behind the component being removed, begin cleanup immediately after the individual component has been removed.
- ◆ Carefully remove or bend back all nails (or other fastening devices) and wrap the component in durable, puncture-resistant plastic sheeting and seal with duct tape. Wrapping components in plastic may not be necessary if the dwelling is vacant and if the truck and the pathway to the truck are lined with plastic. Use a vacuum to remove any dust that may have accumulated behind the components as soon as they have been removed. Vacuuming may be performed by another person while the removal is underway. Preparing the area for the new component (e.g., squaring, reducing, or enlarging openings) may also release accumulated dust that should be removed. Dispose of wrapped components properly.
- ◆ Bring new lead-free components into the work area only after all dust-generating activity is complete and the dust has been cleaned up by at least one vacuuming.



## C. Removal and Replacement Procedures for Specific Components

## 1. Baseboards, Casings, and Other Trim

The term "other trim" applies to such components as window casings, interior sills (stools), aprons, door casings, baseboards (including caps and shoe moldings), chair rails, exterior fascia, soffits, shutters, and crown moldings (see Figure 12.1). Components with lead-based paint should be removed as described in the previous section.





FIGURE 12.1 Removing and Replacing Trim: interior (left), exterior (right).

New lead-free components should be installed in a professional manner using standard carpentry practices. In situations where trim is being applied to lead-based painted walls, ceilings and floors that were enclosed, or casings for windows or doors where the jambs have been enclosed, the trim should be back-caulked before installation as an added precaution. Back-caulking refers to the application of caulk to the perimeter of the back-side of rigid building materials to seal them before installation, preventing leaded-dust from entering the living space through cracks and crevices. Use a high quality caulk that is warranted for at least 20 years.

#### 2. Windows

The term "window" applies to the sash, the stop and parting beads, window jambs, door frame and trim. Affected components should be removed as described in Section B. Window replacement can involve the removal of a wooden or metal unit and the installation of a wood, vinyl, or metal unit in its place (see Figure 12.2 and 12.3). If the jamb is not removed, it can often be enclosed by the new window frame system, which should be caulked and fastened. The remaining exterior portion of the jamb, if any, can be wrapped with coil stock (aluminum or vinyl or equivalent) after back-caulking. In situations where window units must be replaced in kind (e.g., historic preservation), the jambs should be removed and replaced also to make sure that no friction surfaces coated with lead-based paint remain. Generally, friction surfaces should not be painted.







FIGURE 12.2 Protecting the interior of a unit for exterior window abatement.



FIGURE 12.3 Replacement window system.

Depending on the building construction, it may be possible to remove the entire window system. The new lead-free components should be installed in a professional manner using standard carpentry practices. Windows may be replaced from the interior or exterior of the property. If windows are replaced from the exterior and only exterior clearance is planned, the interior of the unit must be protected by polyethylene sheeting.

## 3. Interior and Exterior Doors

Interior and exterior doors include the doorstops, door jambs and door frame (see Figure 12.4). Affected components should be removed as described above. Typical door replacement usually involves the removal of a wooden unit and the installation of a pre-hung wooden unit in its place. In this type of door replacement, the jamb is rarely removed, but is usually saved and enclosed with the new doorjamb after back-caulking. Wooden jamb extensions or coil stock, properly back-caulked, can be used to enclose any remaining portion of the jamb. In situations where pre-hung door units are not permissible (e.g., code requirements, historic preservation regulations), the original jamb should also be removed and replaced, if possible, to make sure that no friction surfaces coated with lead-based paint remain. If the jamb cannot be replaced, the stop should be removed and replaced with new material after the old jamb is carefully stripped.

#### **Primers on Metal Components**

In regard to whether lead-containing primers applied at the factory to metal doors, door frames, railings and other metal building components could create a hazard to people, if it can be determined that the lead on metal doors and frames resides only in the primers, and that the primers were factory applied and are in sound condition, then the primers themselves need not be abated or removed. This is an exception to the general lead hazard control requirement, However, finish coats of paint that cumulatively contain lead of 1 milligram per square centimeter or greater, or the alternative standard of 0.5 percent by weight or greater, are treated as lead-based paint. If laboratory analyses of samples of the field-applied finishes are negative (no lead-based paint), the metal doors and frames do not require abatement but should be









FIGURE 12.4 Pre-and post-abatement interior doors.

monitored to ensure that the lead-bearing primer does not become defective. If the base metal is exposed while sampling the field-applied finish paint, then the existence of a permanent bond cannot be assumed and the entire sample should be analyzed for presence of lead. Any damage to the primer resulting from sample collection should be repaired immediately in a manner that restores the integrity of the primer coat.

For the metal doors and frames under this exception, primers should be intact and doors should be operating properly, free from impact or abrasion between moving parts that will damage any surfaces. If this exception for factory-applied primers is used, risk assessors should advise property owners or building managers of the importance of continued

monitoring of the paint surfaces to ensure that subsequent surface deterioration or other factors do not result in exposing defective lead-based paint surfaces (the primers). Under this exception, property owners or building managers must commit to a plan for ongoing monitoring of the condition of the painted surfaces. The subsequent appearance of rust indicates a failure of the paint and primer, and the component must be abated.

Although unlikely, adhesion of the primer could be a problem. A simple "x" cut or crosshatch test will show if this is a problem. If adhesion is poor, the paint will tend to flake away from a cut. An adhesion test should also give an indication of the number of coats; color of finish versus primer (which would be orange if pigmented with red lead or bright colors such as yellow if pigmented with lead chromate); and thickness of layers. Of course, other colors of lead-based paint may also be present. Any damage resulting from an adhesion test should be repaired immediately in a manner that restores the integrity of the primer and finish coats to prevent subsequent deterioration.

When it can be determined that lead-based paint is present in a field-applied coating over an intact factory-applied primer, and paint removal is the abatement method of choice, only the field-applied finish coatings need to be removed. An intact primer need not be removed.

#### 4. Kitchen and Bathroom Cabinets

Old lead-based painted kitchen and bathroom cabinets can be removed and replaced. Affected cabinets should be removed as described above. Lead-based paint on walls to which cabinets are attached should not be disturbed during cabinet removal. Applying masking tape around the cabinet perimeter and vacuuming immediately after removal will help to control leaded-dust.



## 

## 5. Railings

Railings include the railing caps, banisters, posts and spindles (balusters), and newel posts that can be removed and replaced (see Figure 12.5). Railings may or may not be part of a stair system. Affected components should be removed as described in Section B. New lead-free components should be installed in a professional manner using standard carpentry practices. Metal railings and other grillwork can be removed and taken off-site for contained abrasive blasting or other forms of paint removal, then reinstalled after repainting. See Section II.C.3, above, regarding lead-containing factory-applied primers.

## 6. Exterior Siding

Many materials are used on a dwelling's exterior walls. Materials of concern are generally painted wood or brick. Under most conditions, deteriorated siding identified as a lead hazard will be abated through enclosure without removing the original material. However, in restoration or historically significant projects, it may be replaced. Siding is now available that closely resembles wood. If the siding is to be replaced, the affected siding should be removed. Care must be taken to avoid contamination of soil walkways, window air conditioners, and the building interior (see Figures 12.6 and 12.7).



FIGURE 12.5 A metal railing before abatement.



FIGURE 12.6 Installation of replacement siding.



FIGURE 12.7 Certified workers are needed to replace siding when the project's intent is lead abatement.



#### 7. Interior Walls

If abatement is performed along with gut rehabilitation, old lead-based painted interior walls and ceilings may be removed and replaced. This activity, unlike those previously described, is more like demolition work. In addition to the layers of heavy duty plastic used to protect the floors from contamination, sheets of plywood should be placed over the plastic to protect it from damage during aggressive demolition, and to make cleanup of debris easier. Prior to demolition, affected areas should be sprayed lightly with water. Workers should wear ribbed rubber boots when walking on slippery, wet plastic. If ladders must be used, the plastic should be punctured to provide secure anchoring of the footings to the surface underneath. Ladder footings should not be placed on top of the plastic because this will create a slip hazard. Excessive water should not be applied, and the creation of puddles and streams that may flow through breaks or gaps in the containment should be prevented.

Removing plaster walls as a means to remove all of the old lead-based paint generates a great deal of dust. Unless this is required as part of a renovation occurring at the time of the abatement, the option of enclosure should be considered when determining abatement strategies.

## D. Transportation and Storage of Waste

Building component replacement and demolition generate a considerable amount of waste material. Lead-contaminated building components and demolition debris should be handled carefully (see Chapter 10). Bulk debris such as doors, windows, and trim should be wrapped in durable puncture resistant plastic sheeting and sealed with tape. Smaller debris should be swept into heavy duty plastic bags after spraying. Exterior ground surfaces must also be protected. Outside storage needs to be secure and protect the ground (see Figure 12.8)

All debris should be removed from the site as soon as possible. In larger jobs where a dumpster is being used, it may be possible to eliminate the wrapping and bagging of bulk debris as long as the dumpster has a lockable lid and is lined with plastic and secured with a fence and signs.





FIGURE 12.8 Line surfaces with plastic in the work area (left) and pathways (right)



- 💸

Contaminated building components and demolition debris should be transported in covered vehicles to an appropriate disposal facility. Old building components coated with lead-based paint should not be recycled unless the paint is removed beforehand. See Chapter 10 for a full discussion of waste disposal.

## **III. Enclosure Methods**

#### A. Definition

Enclosure is the installation of a rigid, durable barrier that is mechanically attached to building components, with all edges and seams sealed with caulk or other sealant. Surfaces with lead-based paint are enclosed to prevent access and exposure and to provide a dust-tight system. Unlike encapsulation, the enclosure system is not dependent on the painted surface of the substrate for its durability. Enclosures should have a design life of at least 20 years. While adhesives are frequently used for initial mounting purposes and for assistance in covering the lead-based painted surface with the enclosure material, it is primarily mechanical fasteners that give enclosures their longevity.

Standard construction materials are employed to create a solid and relatively rigid end product (see Appendix 7.2 for a description of materials commonly employed for lead-based paint enclosure). The primary differences between enclosure for lead-based paint and ordinary construction include careful sealing of all edges, joints, and seams to create a dust-tight (not necessarily air-tight) enclosure; site containment; worker safety (particularly during any needed surface or substrate repairs); and special cleanup. There is generally little or no hazardous waste disposal and little degradation of the lead-based paint as part of the enclosure process, unless substrate repairs are necessary. The hazard and expense of removing deteriorated paint can be avoided when the enclosure material is mounted flush to a structurally sound lead-based painted substrate and all the seams are sealed. This method produces little leaded-dust (HUD, 1991). These advantages hold down labor costs compared to paint removal and building component replacement, although cleanup and clearance are still required. A lower level of containment can often be used as less dust is generated.

For broad surfaces such as walls, ceilings, floors, and siding, enclosure is often considerably cheaper and less hazardous than building component replacement and paint removal. However, enclosure does not remove lead-based paint from the property; instead, it makes the dwelling lead-safe.

#### **B.** Longevity of Enclosures

There is little doubt that hurricanes, earthquakes, tornados, and flooding can substantially compromise an enclosure's viability. Less dramatic but more common events can also increase the risk of lead exposure, such as damage to the enclosure by the occupant or water damage from a leaking roof, overflowing tubs, or broken pipes. Any type of enclosure is potentially vulnerable to water damage. Future occupants can also be threatened by remodeling endeavors that break through the enclosure.

#### Labeling of Surfaces to be Enclosed

A few simple procedures should be followed to promote lead safety in case an enclosure is breached. The surface to be enclosed should be labeled with a warning, "Danger: Lead-Based




Paint." The label, spray-paint, or stamp lettering should be in permanent ink.

A durable drawing of the property floor plan should be mounted on a sturdy metal or wood base and affixed with screws to a wall in the utility room next to the electrical panel or at any other closet location that can be easily seen by maintenance personnel (see Figure 12.9). The drawing should be covered with plastic for protection. Enclosures should be highlighted on the diagram and identified as hazardous. (For a multi-family property, another copy of the drawing should be maintained in the property management office's file.)

#### 2. Unsound Substrates

Any substrate material can be enclosed, including plaster, concrete block, brick, and concrete. All soft, moveable, or otherwise structurally unsound structural members should be repaired prior to enclosure if they are needed to support the enclosure. If repair is not feasible, then the defective area will need to be removed and enclosure will not be possible. Hazards associated with preparing the site for enclosure increase as more remedial work is needed. Structural repairs may require leadbased paint removal or component replacement, with all the accompanying safety protocols these prac-



Denotes Lead-Based Paint Enclosures in the Bathroom and Baby's Nursery

FIGURE 12.9 Example of a Diagram Showing the Location of Lead-Based Paint Enclosures.

tices entail. If the substrate is sound but the paint is deteriorating, stabilization or removal of deteriorated paint before the enclosure is installed should *not* be done because it will generate dust.

## 3. Ongoing Monitoring and Reevaluation

Because the building components used for enclosure may be impacted during building use, or may shift or deteriorate, the property owner or manager must arrange for regular monitoring



and repairs, as needed. Visual monitoring should be performed no less often than every two years. If signs of wear or deterioration are apparent from visual assessments or other observations by maintenance and repair workers or during any reevaluation examination, the enclosure should be repaired using lead-safe work practices using a certified firm and workers, followed by clearance. In addition, residents should be instructed to notify management of the need for repairs on a timely basis. For HUD-assisted housing that is subject to periodic reevaluation, the monitoring of the performance of the enclosure should be part of that reevaluation to determine if deterioration or failure of the enclosure has occurred since the previous reevaluation.

#### C. Interior Surface Enclosure Materials

## 1. Wood Paneling

Wood paneling is an appropriate enclosure material, except for ceilings. It is of limited use, however, because of the difficulty of sealing seams around electrical outlets, switch boxes, and heating, ventilation, and air conditioning (HVAC) registers. There should be no gaps in the seams, outlets, boxes, and registers, which should all be screwed directly to the paneling and to any framing behind the panels. All seams should be caulked. Paneling made of composite board backing materials is vulnerable to dampness, particularly in below-grade situations such as basements. In some instances, the use of these materials may violate building and/or fire codes. On the other hand, plywood paneling may be stronger, more impact resistant, and more water resistant than other enclosure materials, such as drywall.

Paneling can be glued and mechanically fastened directly to the substrate, but the appearance is improved when the area to be covered is first furred or framed out and the paneling is anchored to these braces. The paneling should not extend past the depth of door or window frames or other trim pieces. Baseboards can be removed and the new cove base then glued directly to the paneling. Even heavy grades of paneling flex and vibrate when receiving mild impact. Over time, this could compromise the seal of the seams that join the paneling with other building components. Joints and edges must be fully supported; furring strips should be installed at the appropriate distance from each other, usually 12 inches apart. All seams at these transition points should be caulked before panel trim and corner moldings are installed as finish pieces.

#### 2. Laminated Products

Laminated wall sheeting products, such as Marlite™, are designed to withstand surface moisture and are commonly used in bathrooms and kitchens. Their surfaces have a high sheen and clean easily. However, they may become defective when moisture gets behind the board's placement. This can occur from a leaking pipe or a seam opening in the bathtub/ shower area. When a significant leak is detected, the enclosure must be reexamined.

## 3. Rigid Tile and Brick Veneers

Plastic and ceramic tile, synthetic brick and stone veneers, and other similar products are either glued or cemented directly to the painted surface. These products qualify as rigid encapsulants rather than enclosures because they are not mechanically fastened to the substrate. Regardless of whether they are enclosures or encapsulants, they tend to be inappropriate for broad application: The cost associated with labor and materials is often prohibitive for anything more than incidental use.



## 4. Drywall and Fiberboard

The steps to install drywall and fiberboard are shown in Table 12.3 and detailed specifications are provided by the Gypsum Association in Washington, DC (202-289-5440) Application and Finishing of Gypsum panel Products (GA-216-04). Available at <a href="http://www.gypsum.org/download.html">http://www.gypsum.org/download.html</a>.

Gypsum drywall or fiberboard is a very common and cost-effective interior finish. It is not difficult to locate skilled workers to install this product. Training materials are available from trade groups (Gypsum Association, 2004). When applied directly to a surface, the drywall is generally glued in place with construction adhesives and then mechanically fastened to the studs or structure behind the plaster. The screws must be long enough to go through the drywall, the plaster, and the wire mesh or lath and extend an inch into the stud or structure. To avoid having dust escape from the screw hole as the drilled screw displaces plaster, a dab of shaving cream can be applied to the area to be drilled.

Moisture-resistant greenboard should be installed in damp areas. It is difficult to completely control the long-term damaging effects of a severe moisture problem without invasive water-proofing and/or water diversion from the exterior of the property. Any type of enclosure is potentially vulnerable to water damage.

# Table 12.3 Steps To Install Drywall and Fiberboard on Interior Walls.

- ◆ Check to make sure the depth of the trim will accommodate the thickness of the drywall (minimum of 3/8 inch preferred). If it does not, this method may not be suitable.
- ◆ Set up the plastic containment of the work area (see Chapter 8).
- Remove any trim being disposed of, and install the drywall over any cavity left by the removed moldings, except large cavities over 16 inches in any direction. Repair any structural deficiencies.
- ◆ Repair or remove any "soft" wall areas. Removal of painted plaster generates a great deal of leaded-dust.
- ◆ Use construction adhesive to glue the drywall directly to the surface being enclosed.
- ◆ Screw the drywall to the studs behind the existing wall. Caulk all seams that meet molding.
- ◆ Use extension rings to bring out electrical devices flush with the new gypsum based drywall and retrofit any HVAC registers. Caulk all seams.
- ◆ Tape and finish the drywall.
- Prime and paint the finished area, as well as the unenclosed surfaces in the same room so that all walls match the new installation. (See specifications and recommendations from the Gypsum Association.)



Quarter-inch thick drywall tends to conform to the contours and imperfections of the original substrate or wall, compromising the appearance of the finished product. To avoid this, use of 3/8-inch thick (minimum) drywall is recommended. The enclosed wall may in fact look much improved over the original wall. If the original wall surface is highly irregular, it may be necessary to install furring strips 12 inches apart and use 1/2-inch thick drywall to improve the appearance. If 1/4-inch thick drywall is used, it must be applied in accordance with the manufacturer's specifications (Gypsum Association, 2004).

#### D. Interior Building Components Suitable for Enclosures

All joints between drywall pieces should be taped and spackled with joint compound. Wherever the drywall meets wood framing or any other finish material (including electrical devices and HVAC registers), the seams should be sealed with a caulk or other sealant that has at least a 20 year warranty. Similarly, where sealed pipes penetrate an enclosure, the opening around the pipe must be sealed. Drywall is painted when installation is complete. Fastening schedules are available from industry trade groups (Gypsum Association, 2004).

## 1. Wood Trim and Drywall

The profile of the wood trim on windows and doors must be evaluated before overlaying an adjacent wall with drywall; the wall finish should protrude past the depth of the moldings. In homes built before 1960, this problem is less frequent because the trim tended to be more ornate and generally of thicker wood. Regardless of age, the problem is more likely to occur in multi-family public housing and institutional settings where the construction is basic and trim is thin.

If the drywall overlay is too thick, it may be possible to remove the baseboard and run the drywall to the floor. The baseboard can then be reinstalled over the new drywall (unless the baseboard itself presents a lead hazard, in which case it should be replaced). Obviously, care must be taken to avoid breaking the original baseboard during its removal. The seam at the bottom of the drywall should be sealed with caulk prior to the installation of the baseboard or cove base.

#### 2. Electrical Outlets and Vents

All electrical devices, including switches and outlets, will need extension rings to bring those fixtures out flush with the new drywall overlay. A sealant or caulk should be used at cutouts for electrical boxes. Similarly, all grillwork at openings for heat vents and cold air returns should be retrofitted. These are minor but necessary steps in the drywall enclosure process.

#### 3. Ceilings

Ceilings are more difficult to enclose than walls. Drywall applied directly to the ceiling will frequently result in an uneven appearance because there may not be a smooth transition from one board edge to the next. The solution is to draw a chalk line, usually every 16 inches on center, so that metal hat channels (or metal furring channels) or wood furring strips can be screwed into each ceiling joist. Three- to four-inch screws should be used to ensure that the screw penetrates the hat channel, plaster (or other substrate), and the wire mesh holding the plaster enough to bite firmly into the joist. The hat channel may be shimmed to get a perfectly level finished surface.



Next, the drywall should be affixed to the hat channel for an excellent finished product. An extension ring will be needed for ceiling light fixtures. Prior to lowering the ceiling slightly, the contractor should be confident that there is no interference with the top of ornate, oversized window frames, pipes, vent covers, or crown moldings. The overall height of the lowered ceiling should conform to building code clearances.

All screws for furring channels or strips must penetrate into the ceiling joists prior to installation of the drywall. On occasion, some multi-family housing or commercial buildings converted to residential use may have cast-in-place, reinforced concrete ceilings. Anchoring supports for the new ceiling may not be practical in these instances. Though this construction is generally very strong, a structural engineer should be consulted about attaching a drywall system to the concrete. On-site architectural or engineering advice is needed on a case-by-case basis to determine if this approach is appropriate.

Acoustical lay-in panels (drop-in ceilings) do not constitute lead-based paint enclosures; they will not adequately guard against the escape of leaded-dust into the living space and cannot be sealed.

#### 4. Floors

Lead-based painted floors should be enclosed with 1/2-inch or thicker plywood or other underlayment (see Figure 12.10). The joints in underlayment should be flash patched. Shoe molding running along the baseboard should be removed before plywood installation and reinstalled when the finished floor is completely in place. If the shoe molding contains lead-based paint, new shoe molding should be installed since new molding is inexpensive and







FIGURE 12.10 Install underlayment and new flooring as a suitable LBP enclosure method. The personal protective equipment is for a high-dust project.

more cost effective than removing the paint from the old shoe molding. This will ensure that all floor covering runs tight to the baseboard and the joints at vertical surfaces are covered by the quarter-round molding. The plywood should be covered with vinyl tile or sheet goods to provide a cleanable surface. Covering the plywood with wall-to-wall carpeting is generally not recommended because the carpet does not provide a sealed top cover and is harder to clean. Vinyl floor coverings should be finished off with a metal threshold at all doorways or at any access to an uncovered open floor to protect the exposed edge. When placing tile over old flooring, a row of nails (preferably screws) should be run a few inches apart in a straight line over each joist before the plywood is put down. Old floor nails often lose much of their grip, which results in squeaky floorboards. This movement can in turn cause the edges of floor tile to lift in spite of the plywood underlayment that was installed. It is most important to remember that all the plywood sheets must be installed flush with each other. Gaps must be filled with flash patching cement. Also, a bead of caulk should be run at the edge of every board before it is set in place. All nails must be hammered flush and all dirt vacuumed thoroughly; otherwise small lumps will eventually appear in the soft vinyl finish goods.

If the floor to be enclosed is poured slab or cast-in-place concrete, the surface will have to be predrilled to accept each screw that anchors the plywood enclosure. A structural engineer should be consulted for





situations other than slab-on-grade construction. Floor adhesive can offer an added measure of reinforcement and sealant. Each screwhead should be just below the level of the underlayment top surface and, along with the seams, should be covered with a smooth coat of flash patching cement to prevent dimples in the vinyl top cover.

#### 5. Stairs

Dirt and loose paint should be removed prior to enclosure. Defective paint should be wet scraped and vacuumed; protective gear should be worn by the workers; and the work area should be contained with 6-mil plastic (or equivalent). In multi-family housing, common stairways must be accessible to residents and workers during the construction work to avoid a fire code violation.

Wooden steps with lead-based paint should be completely covered with vinyl or rubber treads and risers. These materials should have a minimum specification that would qualify for Federal Housing Administration (FHA) product approval or should be commercial grade. The vinyl should be stapled as well as glued with floor adhesive to avoid sagging. Long staples are preferred to reinforce the tread cover at this critical point and prevent the vinyl from being pulled up by the toe of a shoe. Metal bull nosing can also be used at this wear point.

In addition, long staples or metal bull nosing should be used at the end of the vinyl that butts up tight to the wood riser of the next step.



FIGURE 12.11 Enclosed stairs.

Plywood can be used to cover step risers and squared-off treads. Plywood is also useful as additional protection, supplementing the vinyl covers mentioned above. Precast concrete steps will have to be drilled, screwed, and glued to anchor the covers in place.

## 6. Pipes

Painted pipes can be enclosed with the same tape used to make plaster casts, which provides a hard-finished end product. Loose paint and dirt should be safely removed first. The wrapped tape should overlap itself so that it is not dependent on adhering to the painted surface.

Pipes can also be enclosed with drywall. However, this type of enclosure will insulate and limit the ability of radiator pipes carrying steam or hot water to contribute to household heating.

#### 7. Door Frames

Preformed metal door buck or frame covers come in standard sizes to accommodate most components, and as such they can be used to enclose both wood and metal door frames, either interior or exterior. All seams must be caulked. Primers on such bucks should be lead-free.



## 8. Plywood Enclosures

Knee walls, painted structural supports, and trim such as baseboards, skirt boards, and stringers can be enclosed with plywood that is cut to fit tightly. These items should be sealed with adhesive and nailed. All joints should be caulked.

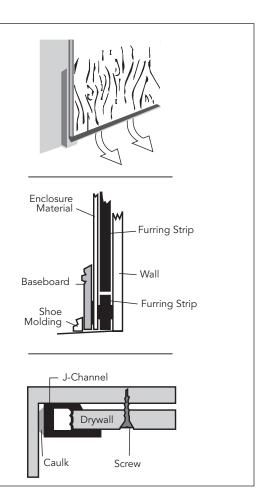
## E. Exterior Enclosure Systems

## 1. Siding

Vinyl or aluminum siding may be used to enclose painted exterior surfaces. In addition, porch columns (both square and round) and porch ceilings can be enclosed with these materials. Aluminum coil stock can be used on soffits, fascia, bargeboard, decorative crown moldings (though original detailing will be lost), door and window frames, parapets, and other moldings. All seams need to be caulked and back-caulked. Soffit coverings under roof areas often need to be vented to prevent dry rot (see Figure 12.12). However, as old paint degrades behind this covering, a small amount may migrate through the vents. Breathable cloth materials such as Tyvek<sup>TM</sup> or an equivalent are available in rolls for this purpose and can be installed before the aluminum covering is put in place. The breathable cloth materials will help prevent leaded-dust from escaping through gaps in the new siding, although it will be necessary to leave attic vents

## Create a dust-tight seal

Paint deteriorates more quickly behind an enclosure. All edges of an enclosure—especially the bottom—must be sealed well.


## Seal the bottom edge

- ◆ Caulk the enclosure material at the bottom
- Back-caulk the nail and baseboard in place.
- Back-caulk, bottom-caulk, and nail the shoe molding in place.

## Seal the seams and other edges

- ◆ Back-caulk all the seams that aren't taped and spackled. Use a high quality adhesive caulk.
- Use a "J-channel" where drywall meets a finished surface. A J-channel is a final strip attached to the rough edge of drywall to make a finished edge. It's called a "J-channel" because of its shape. Caulk the outside edge so it seals with the finished surface. Screw the drywall in place.

FIGURE 12.12 Seal All Seams for Enclosure.





uncovered to permit adequate ventilation. Vent openings should not be covered with Tyvek™ or other similar covering. Because siding may not provide an airtight enclosure, rigid or flexible dust barriers like Tyvek™ should be installed before broad surface enclosure. Perforated metal stock should not be used to enclose soffits, fascia, or eaves as the enclosure is not dust tight. Rotten or loose wood and any other defective substrate must be repaired or replaced to provide a sturdy foundation for the siding installation and edges.

#### 2. Windows

For standard sized windows, snap-in replaceable aluminum and vinyl tracks are available. These devices help eliminate the painted friction point (and thus the generation of leaded-dust) where the moving sash abrades the painted surface. The track covers should be pressed into a bead of caulk at each joint. Painted sashes should be planed to remove lead-based paint and then reinstalled (see Chapter 11, Section IV). Friction surfaces on windows should not be painted.

Window troughs should be covered with fitted metal and screwed into place. Again, the metal should be pressed into a bead of caulk at the joints and edges.

#### 3. Exterior Walls

Board products made of various materials (e.g., synthetic fiberboard, wood byproduct composites, and cementitious materials) are commonly used in the construction industry for exterior purposes. These heavy, sometimes brittle coverings often have resins, fiberglass, or other durable ingredients that make them resistant to weathering and may require little maintenance, including painting. An added benefit of using these products is that they may have thermal insulation value. The products are best installed over flat surfaces that are not soft, crumbling, unstable, or otherwise defective. A defective substrate must be repaired prior to enclosure. All joints need to be sealed after installation.

Properly installed, natural or synthetic brick and stone veneers can be used to enclose exterior walls. In addition, stucco can be used as a covering material using wire mesh to physically anchor the cement to solid building components. A defective, weak surface needs to be stabilized before covering. Vinyl and aluminum siding are usually the least expensive options.

#### F. Summary

Enclosures are solid materials that are physically anchored to building components and that cover lead-based paint. Enclosure usually involves common construction techniques and has a 20-year design life. The enclosure abatement option is an effective, stable remedy for minimizing the danger of lead-based paint exposure. Because any barrier can be breached, annual monitoring by the owner and reevaluation by a certified risk assessor or inspector technician are necessary.

Enclosure may be less hazardous and cheaper than paint and building component removal. There is less dust generated and little hazardous waste disposal. Unlike encapsulation, the enclosure is not dependent on the adhesion of the underlying coats of paint on the substrate surface for its durability, nor does it require deteriorated paint removal or surface cleaning and deglossing before installation.



Drywall is often a cost-effective interior finish, and aluminum or vinyl siding provides an acceptable exterior barrier. Aluminum coil stock is effective for enclosing outside trim. Floors require underlayment and vinyl or other sheet finish goods. Vinyl or rubber tread and riser coverings are recommended for steps.

## IV. Paint Removal Methods

#### A. Introduction

Paint removal means the separation of the paint from the substrate using heat guns, chemicals, or certain contained abrasive measures, either on-site or off-site. As an abatement technique, paint removal is usually reserved for limited areas and for those surfaces where historic preservation requirements may apply.

While paint removal can be performed safely and effectively, it also demands the highest level of control and worker protection for several reasons. Paint removal usually creates the greatest hazard for the worker, either from the hazards associated with the removal process (e.g., heat, chemicals, and sharp tools) or from the lead that becomes airborne or is left as a residue on the surface after removal. On-site paint removal will usually be a high-dust job. Prepare the worksite in accordance with the guidance in Chapter 8. Lower levels are possible if the size of the area to be treated is small (see Chapter 8). Because of the lead residues left behind by all paint-removal methods, particularly on porous surfaces such as wood or masonry, more extensive cleaning is usually required to meet clearance criteria. Paint removal methods also generate a significant amount of waste and may be the most costly of all lead abatement methods (HUD, 1991).

All work involving lead-based paint should be performed in a manner that minimizes all dust production. All high-dust paint removal operations should be avoided, and all work be planned and designed to reduce all dust generation. Using work practices and procedures such as wet work practices and the use of tools with attached HEPA-vacuum exhaust will help protect children, workers and residents.

In spite of these limitations, paint removal has the benefit of a low reevaluation failure rate. If some lead-based paint is left in the dwelling, its condition will need to be monitored by the owner (see Chapter 6).

## **B.** Prohibited Methods

Certain methods of lead-based paint removal are absolutely prohibited, either because of unacceptably high worker exposures to lead or release of lead into the environment through production of dust or fumes or both.

## 1. Open Flame Burning or Torching

Burning, torching, fossil fuel-powered heat plates, welding, cutting torches, and heat guns operating at temperatures greater than 1100°F are prohibited as a means of paint removal because of the high temperatures generated in the process. So-called heat plates (those using propane to heat a grid, which in turn heats the paint) are also prohibited because of the high temperatures generated. At these temperatures, lead fumes may be produced.



Lead fumes are formed when lead is heated into a gas. The gas cools when it comes into contact with the cooler surrounding air and condenses into very small particles. These particles travel easily, are readily inhaled and absorbed into the body, and are difficult to cleanup. Several researchers have found that worker exposures are extraordinarily high when doing this kind of work (NIOSH, 1992a; Jacobs, 1991b; Rekus, 1988). The fumes may also travel throughout the dwelling, contaminating all surfaces with which they come into contact. Other hazardous substances may be released from the paint film using heat.

Using cutting torches to remove fire escapes, railings, or other metal components coated with lead-based paint is also prohibited unless the paint is removed first. Similarly, welding of painted metal components (such as pre-primed structural steel) is prohibited by Occupational Safety and Health Administration (OSHA) regulations (29 CFR 1926.354(d)).

## 2. Machine Sanding or Grinding Without a HEPA Exhaust Tool

Machine sanding or grinding is prohibited (regardless of the grit used) because of the large volume of leaded-dust generated (see Figure 12.13). As a result of these methods, workers have been exposed to extremely high leaded-dust levels, and blood-lead levels in resident children have increased (Amitai, 1991; Farfel, 1990; Jacobs, 1991b). However, machine sanding with a HEPA abatement exhaust tool *is* permitted and is discussed further below. Extensive dry hand sanding is not recommended, but wet sanding can be done if no electrical outlets are nearby. Limited dry sanding or scraping near electrical circuits is permitted.





FIGURE 12.13 Prohibited work practices (traditional abrasive blasting (left) and grinding without HEPA exhaust).

## 3. Abrasive Blasting or Sandblasting

Traditional abrasive blasting or sandblasting is prohibited in residential structures, regardless of whether the abrasive material is recycled or if the area is fully contained. These methods produce widespread dust contamination; full containment is nearly impossible to maintain and guarantee in a residential environment. Abrasive blasting should only be done using HEPA vacuum local exhaust equipment, discussed below.



If abrasive blasting must be done in a residential structure, the area must be sealed and placed under negative pressure with enough clean fresh air so at least 10 times the volume of air in the contained space is brought in to the space and, after filtration, exhausted from it each hour (i.e., the ventilation rate is at least 10 air changes per hour) to ensure the dust can be controlled. If the exterior must be blasted, the entire building must be covered with a tent and placed under negative pressure with at least 10 air changes per hour. In both cases, all exhaust air must be passed through a HEPA filter. Fresh air should be provided to the containment zone at a lower rate than the exhaust airflow to maintain the negative pressure zone.

## 4. Heat Guns Above 1100° F

Heat guns operating above 1100° F or charring the paint should not be used. See discussion of operating heat guns below 1100° F in section IV.C below.

## 5. Dry Scraping

Dry scraping is not recommended because of the large volume of particulate matter that is generated (including high levels of leaded-dust).

The two situations where dry scraping is appropriate are scraping surfaces near electrical outlets, which cannot be wet scraped because of the obvious electrocution hazard, and scraping when using a heat gun as this cannot be done wet. For both of these cases, dry scraping is only appropriate for limited surface areas.

## 6. Chemical Paint Stripping in a Poorly Ventilated Space

Workers should not remove paint in poorly ventilated space when using a volatile stripper that is a hazardous substance in accordance with regulations of the Consumer Product Safety Commission (CPSC) at 16 CFR 1500.3 and/or a hazardous chemical in accordance with the OSHA regulations at 29 CFR 1910.1200 or 1926.59, as applicable to the work. (This practice is prohibited by HUD regulations but not explicitly by EPA regulations as of the publication of the second edition of these *Guidelines*.)

Paint strippers with methylene chloride should be avoided. OSHA has found that adults exposed to methylene chloride "are at increased risk of developing cancer, adverse effects on the heart, central nervous system and liver, and skin or eye irritation. Exposure may occur through inhalation, by absorption through the skin, or through contact with the skin." (62 FR 1493, January 10, 1997). OSHA's permissible exposure limit for methylene chloride in air was reduced in 1997 from 500 to 25 parts per million (29 CFR 1910.1052 for general industry, and the identical 29 CFR 1926.1152 for construction). Methylene chloride cannot be detected by odor at the permissible exposure limit, and organic vapor cartridge negative-pressure respirators are generally ineffective for personal protection against it.

Alternative paint strippers may be safer, but have their own safety and/or health concerns, so all paint strippers must be used carefully. Always follow precautions provided by the manufacturer. It is especially important that people who use paint strippers frequently not use such chemicals in a poorly ventilated area. If good ventilation is not possible, professionals equipped with protective equipment should perform the work in accordance with



CPSC regulations (16 CFR 1500.3) and/or OSHA's hazard communications standards (29 CFR 1910.1200 or 29 CFR 1926.59, which are identical) and with any substance-specific standards applicable to the work.

CPSC and EPA recommend that people who strip paint provide ventilation by opening all doors and windows and making sure there is fresh air movement throughout the room ("What You Should Know About Using Paint Strippers," CPSC Document 4423, and EPA Document EPA 747-F-95-002). (www.cpsc.gov/CPSCPUB/PUBS/423.html)

#### C. Recommended Methods of Paint Removal

#### 1. Heat Guns

Open flame burning is prohibited, so removal methods using heat are limited to electric powered flameless heat guns (see Figure 12.14).

Before beginning work, fuses and an adequate electrical supply should be verified. Larger fuses should not be installed because of the possibility of creating a fire hazard. A portable electric generator may be needed, especially if several heat guns will be required. Care should be exercised around wallpaper, insulation, and other flammable materials. An accessible garden hose with a pressure-release spray nozzle, a crowbar to remove smoldering wood, and a long-handled sledgehammer to open up walls exposed to smoldering insulation should be readily available. Under OSHA regulations (29 CFR 1926.150), a fully charged ABC-type 20-pound (minimum) fire extinguisher must be available within 100 feet of the work area.



FIGURE 12.14 Using a heat gun to remove paint is labor-intensive.

Work should be conducted only in well-ventilated spaces. Other hazardous materials may be released when old painted surfaces are heated (NIOSH, 1992a).

While there is little risk that dangerous levels of lead fumes will be produced at temperatures below 1100°F, significant airborne particulate lead is generated by the accompanying scraping of the paint. Also, significant amounts of potentially harmful organic vapors can be released from the action of the heat upon the paint, even at temperatures below 1100 °F. For this reason, air-purifying respirators should be outfitted with both a HEPA-filtered cartridge and an organic vapor cartridge. Organic vapor cartridges may not be available for some powered air-purifying respirators.

Depending on the size of the area and the substrate, paint removal by heat gun can be a slow, labor-intensive process and may result in a high final clearance failure rate if used extensively and without proper cleanup. Removing paint completely, particularly from crevices, requires attention to detail. Significant leaded residue may remain on surfaces unless cleanup is thorough. Heat guns do not appear to be particularly effective on metal or masonry substrates, which are too porous to be scraped effectively; the heat may cause small particles to fly up and hit the worker, causing burns or eye damage. Although heat guns work well on wood, they will usually damage drywall and plaster.



Workers may tend to place the nozzle of the heat gun too close to the surface, burning out the heating elements prematurely, sometimes inadvertently even if they have been trained not to do so. One way to prevent this is to attach a small metal wire cage or extension tube to the end of the heat gun to prevent it from being placed too close. For most heat guns, the optimal distance from the surface is 3 to 6 inches. The heat gun is recommended only for limited surface areas in well-ventilated spaces. Other problems with heat guns include additional fire hazards from dry rot, insulation, and dust, especially in window troughs, roof areas, and hollow porch columns. Scraping often leaves the substrate very rough and may singe adjacent wallpaper. Telephone wires mounted on baseboards can melt, and heat can crack glass with a cold exterior or dry glazing.

To use heat guns properly, allow the heat stream leaving the gun to merely soften the paint. Do not allow the paint film to scorch or smoke. Scrape the loose paint off the surface at the very first sign of paint softening, blistering, or bubbling.


#### 2. Mechanical Removal Methods

#### **HEPA Sanding**

HEPA sanders are valuable for surface preparation prior to repainting. As chemical stripping sometimes raises the grain of the wood and some removal methods are not effective at removing all visible traces of paint, some sanding prior to repainting may be needed. Manual sanding can generate significant levels of airborne and settled lead-dust; airborne levels more than 10 times OSHA's permissible exposure limit, have been observed (Zhu, 2012). Therefore, HEPA-assisted sanders are recommended whenever sanding must be done. HEPA sanders do not work well on detailed moldings.

In such situations, chemical stripping, use of a heat gun or offsite removal may be suggested.

HEPA sanding uses traditional electric sanders, such as disc sanders or orbital or vibrating sanders, equipped with specially designed shrouds or containment systems that are placed under a partial vacuum (also known as local exhaust ventilation). All exhaust air is passed through a HEPA filter (often using an ordinary HEPA vacuum) to reduce the amount of airborne particulate lead (see Figure 12.15). The HEPA vacuum must be correctly sized to provide adequate airflow to permit the system to operate properly. If hoses are longer than normal, a larger HEPA vacuum may be needed to handle the increased pressure drop.





- 💸

There are two main types of HEPA sanders. The first uses a flexible shroud to surround the sanding head, with the HEPA vacuum hose attached to the shroud. The shroud must be in constant contact with the surface to be effective. If the shroud extends beyond the surface being sanded, large amounts of particulate lead will be released into the air. In addition, this configuration makes it impossible to sand to the edge of protruding surfaces, such as baseboards or window and door casings.

The second type of HEPA sander pierces the sandpaper with holes through which the vacuum draws the dust. This allows the instrument to be used to the edge of protruding surfaces. However, care must be exercised to keep the sandpaper flat on the surface. Neither one of these methods is completely effective; respirators are always recommended. Worker fatigue can also prevent the worker from holding the tool flush with the surface, making it necessary to provide frequent breaks or rotate workers.





FIGURE 12.16 Wet scraping (left) FIGURE 12.17 Scraping tools (right).

#### Wet Scraping

Wet scraping is feasible on most surfaces and results in lower lead exposures than dry scraping. Since surfaces near electrical outlets should never be moistened (due to the electrocution hazard), these areas should be dry scraped.

Wet scraping can be performed by using a spray bottle or sponge attached to a paint scraper (see Figure 12.16 and 12.17). Wet scraping is often used to remove loose and flaking paint before paint film stabilization or encapsulation. If wet scraping is employed as an abatement technique, a more durable covering than new

paint is needed. Working a few square feet at a time, the worker should mist the surface lightly using a garden sprayer or plant mister. Loose material should be scraped from the surface and deposited on the containment plastic with a paint scraper. Damp paint chips should be cleaned up as soon as possible so that they are not tracked throughout the work area or crushed beneath the feet of workers.

Scraper blades should be kept sharp to minimize abrasion and gouging. Additional scraper blades should be on hand and should be selected for the type of surface being scraped. To obtain a smooth finish, it may be necessary to follow wet scraping with wet sanding. A variety of scraping tools are available from hardware and paint supply stores.

# **HEPA Vacuum Blasting**

HEPA vacuum blasting is simply abrasive blasting with a shroud under a vacuum that is attached to the blast head. All exhaust air is passed through a HEPA filter, using a properly sized HEPA vacuum system. Vacuum blasting is appropriate for metal, brick, concrete, and







FIGURE 12.18 Vacuum blasting is not often used on housing.



FIGURE 12.19 Needle Gun with HEPA Exhaust Ventilation.

other masonry surfaces. To date, attempts to use the process on wood, plaster, and other soft materials have not been successful, as they usually cause severe substrate damage.

Various blasting media can be used (e.g., aluminum oxide, metal shot, walnut shells) depending on the type of substrate. Blast heads, usually a brush-type arrangement, come in various sizes and shapes. The blast head must remain in continuous contact with the surface to avoid dispersal of both the blast medium and particulate lead (see figure 12.18). The equipment can be outfitted with a device that separates the blast media from the paint, effectively recycling the blast material, and dramatically reducing the volume of waste. This is particularly important because the blast material should be disposed of very carefully (see Chapter 10).

Use of the equipment for long periods of time can result in worker fatigue, particularly if working with the arms above the head. Fatigue can cause a worker to momentarily lose contact with the surface, resulting in the release of leaded dust, so the goal is to minimize the degree to which workers must reach above their shoulders. Scaffolding and platforms should be constructed to minimize such stress, and frequent work breaks should be taken. Vacuum blasting is not typically used in interior residential work.

#### **HEPA Vacuum Needle Gun**

The HEPA vacuum needle gun is similar to vacuum blasting in concept but avoids the use of a blast medium (see Figure 12.19). In the vacuum needle gun, metal needles rapidly pound against the painted surface, dislodging the paint. The HEPA vacuum, which is connected to the gun head, draws paint chips and dust into the vacuum, minimizing the dispersion of the particulate.

The needle gun is appropriate for metal surfaces but may cause significant damage to masonry. Problems of worker fatigue are similar to those encountered in vacuum blasting. Losing shroud contact with the surface can cause the deposition of significant amounts of chips onto the containment surface. Chips should be cleaned up as soon as possible following the work to avoid tracking.

One way of maintaining the seal with the surface is to select the proper shroud for the shape of the surface treated. At least one manufacturer (Penntek) has developed different shrouds for corners, edges, and flat surfaces. Needle guns are not effective in capturing large paint chips, so use of plastic sheeting underneath is required.

#### 3. Chemical Removal Methods

Chemical removal may result in less leaded dust generation than other removal methods. It is often used in situations where historic preservation requirements apply. However, it may leave leaded residues on porous surfaces, which may pose a hazard to resident children in the future.



One study has demonstrated that windows treated with chemical paint removers had high leaded-dust levels a few months after treatment, even though cleanup and clearance had been conducted properly (Farfel, 1992).

Other drawbacks to chemical removal include high cost and potential harm to workers from splashes and chemical burns if proper gloves, face shields, and clothing are not provided and used (see Figure 12.20).

Proper ventilation is necessary when using chemical paint removal. Plastic may not be effective in protecting floors and may have to be augmented by paper or cardboard. Chemical residues can be tracked into other areas on workers' shoes if proper



FIGURE 12.20 Workers should wear protective clothing when using chemicals.

decontamination is not conducted. Adjacent surfaces, especially plaster, can also be damaged. High humidity may retard the chemical remover's effectiveness. If protective clothing is penetrated and becomes matted against the skin, it must be removed *immediately*. A full shower is strongly recommended.

#### Off-site Paint Removal

Off-site paint removal is preferred so that most of the contamination and residues are generated away from the dwelling. The general approach is as follows.

Building components to be stripped must first be removed from the building. Misting with water prior to removal will help minimize the amount of airborne lead. The painted seam between the component and the wall should first be cut with a utility razor knife to minimize damage to the adjacent plaster. If there is more than one similar component, each component should be labeled to identify exactly where the component came from, eliminating the need for changing doors or other retrofitting problems.

Potential damage to components during stripping includes damage to hardware (this should be removed before stripping), broken glass, loss of glue joints and fillers, damage to wood fibers (wood swelling), and raising of the wood grain. The component may even fall apart and have to be blocked and re-glued. Old glazing compounds on windows may also be weakened. The stripping firm should be instructed to *thoroughly* wash and neutralize the components after stripping.

Before materials are returned from the paint stripper, they should be wrapped in heavy duty plastic and sealed with tape. This will minimize contamination of those handling the materials (leaded residue may remain on the surface). Materials should remain sealed until other on-site dust-generating activities are concluded and the dust cleaned up.

Before reinstallation, the treated components should be cleaned using the standard vacuum/ wet clean/vacuum cycle to remove any residues left by the paint stripper. Components must





be completely dry before repainting. Always check the pH (acidity or alkalinity) after cleaning and before repainting.

#### **On-site Paint Removal**

Many paint removers must be allowed to remain on the surface anywhere from 1 hour to a day or more to accomplish effective stripping.

Most paint removers are efficient within a limited temperature range and may be completely ineffective in cold weather. The contractor must therefore be certain of weather conditions before outdoor application. Also, rain or snow can cause environmental contamination from the lead and the chemical remover.

Paint removers are either caustic (corrosive) or non-caustic. The non-caustic chemical removers are generally safer to use than the caustic ones (assuming they do not contain methylene chloride). Material Safety Data Sheets should always be consulted to determine potential chemical hazards.

When using chemical strippers, securing the area where the strippers are used and the areas where they are stored is important, particularly with caustics, to prevent injuries to people who may gain access to the work area. Caustic paint removers can cause severe skin burn and eye damage to workers, other adults and children who may gain access to the work area. Pain receptors in the eyes are not as sensitive to caustic substances as they are to acids, so workers may suffer damage without immediately realizing it.

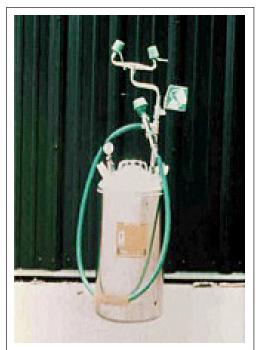



FIGURE 12.21 Eye- and body-wash stations are required when working with corrosive or irritant chemicals.

Personal protective equipment should be appropriate to the chemical paint stripping work being done; see Chapter 9, Worker Protection.

An abundant source of water within the abatement area for quick drenching or flushing injurious corrosive chemicals from skin or eyes is required by OSHA regulations (29 CFR 1910.151(c)). The water can come from a tap or portable eyewash station(s) (see Figure 12.21).

If contact with the eyes occurs, a full 15-minute rinse of the eyes is necessary on-site before the individual leaves to seek medical attention because permanent damage to the eyes occurs quickly. While 15 minutes may seem excessive, a quick rinse is ineffective, and permanent damage usually occurs on the way to seek medical attention.

Usually, non-caustic strippers are not as effective at removing multiple layers of paint in a single application compared to the caustic products. When using non-caustic removers, small areas should be tested before full-scale treatment to determine their efficacy. For vertical surfaces, adhesion of the liquid or gel type paint removers should also be tested to determine runoff potential (particularly a problem in warm weather). Most caustic paint removers work best on nonporous surfaces such as steel. They generally should not be used on aluminum or glass surfaces.

Paint removers that contain volatile substances should be used only in areas equipped with mechanical ventilation and only when workers are properly equipped with gloves, face shields, protective clothing, and respirators, as needed.



The paint remover should be applied with a spatula, trowel, brush, or spray gun. Spray gun use should be minimized because they increase worker exposures. The time the remover must stay on the surface will depend upon the number of layers of paint, the type of paint, the temperature, and the humidity, and can range from a few hours to a day or more. The paint remover should not be allowed to dry out. Some manufacturers provide a polyethylene or paper blanket that is pressed into the surface to retard drying; others contain a film that is formed on the surface of the paint remover as it sits to prevent drying. Caution must be used when applying the paint remover overhead to avoid its dripping onto workers below.

After the appropriate period of time, the softened paint should be removed using a scraper or putty knife and the material deposited in a watertight and corrosion-proof container (usually supplied by the manufacturer). The waste should be managed and disposed of in accordance with the guidance in Chapter 10.

With wood surfaces, it is important to complete the entire neutralization and cleaning process without letting the surface dry. If the wood dries before cleanup is complete, the pores in the wood may close, locking potentially significant leaded residues inside. When repainting, some of the leaded residue may leach into the new paint.

Alkali neutralization and residue removal are accomplished as follows. Immediately after paint removal (while wood surfaces are still damp), the surface should be thoroughly scrubbed with a solution of glacial acetic acid. Use of vinegar to neutralize the alkali should be avoided because vinegar may be inadequate as a neutralizing agent and will also result in a significantly larger volume of liquid (and potentially hazardous) waste.

Glacial acetic acid is hazardous and can cause skin burns and eye damage. It should be used carefully and only with neoprene, nitrile, rubber, or PVC gloves; chemical-resistant clothing; eye shields; a NIOSH-approved acid gas cartridge; and a HEPA filter on air-purifying respirators.

The damp, stripped surface should be thoroughly scrubbed with the acetic acid solution. The solution should be monitored with pH litmus paper and discarded if the pH exceeds 6. After use, the solution should be placed in corrosion proof containers and treated as potentially hazardous waste. Sponges and other cleaning materials should not be reused but deposited in heavy duty (double 4-mil, or single 6-mil) trash bags that are sealed, labeled, and put in a secure waste storage area.

Following neutralization, the damp surface should be thoroughly scrubbed with a detergent and water. Scrubbing should continue until no residues are visible. The cleaning solution should be changed when it becomes dirty. Following the detergent scrub, a clean water wash should be performed to remove residue. The pH of the water wash should be checked after use. If the pH exceeds 8, further neutralization of the surface with the acetic acid solution is necessary prior to repainting since an alkaline surface will cause the new paint to fail in a matter of days or weeks.

Surfaces should be completely dry before repainting. For wood surfaces, this may take several days to a week. If the moisture has raised the grain and sanding of wood surfaces is required before repainting, a HEPA sander should be used.



Since porous surfaces such as wood or masonry may still have slight alkali residues, some types of oil paints should not be used after caustic paint remover application. To do so may result in saponification (a "soap-making" reaction between the paint and the substrate, leading to rapid paint failure). Therefore, latex paints are probably most appropriate. Wood surfaces (especially exterior ones) can deteriorate after paint removers have been applied, making new paint difficult to apply. Also, the new paint may not last long on deteriorated substrates. Some old plasters with a high pH (that is, highly alkaline) may require primers that are no longer manufactured, so a special sealant may be needed on such surfaces. The specific paint remover manufacturer should be contacted for further guidance on appropriate paints to use.

High-pressure water removal of caustic paint removers should be avoided because control of solid and liquid contamination is difficult. Release of solids or liquids into the soil is likely to result in costly cleanup. Care must be used when applying caustic paint removers to friction surfaces, such as window jambs. Such surfaces are often weathered, making residue removal even more difficult. If these residues are embedded in a coat of new paint, the friction caused by opening and closing the windows can lead to the release of leaded-dust.

## D. Waste Disposal

Wastes produced during paint removal may be highly concentrated, but low in volume. The toxic characteristic leaching procedure (TCLP) test should be used to determine if the waste is hazardous. See Chapter 10, Housing Waste, and the EPA regulations. Many local jurisdictions pick up small amounts of hazardous waste on certain days. If off-site paint removal is performed, the waste is the responsibility of the facility performing the removal.

#### V. Soil and Exterior Dust Abatement

#### A. Introduction

Lead-contaminated soil and exterior dust have been shown to cause elevations in blood-lead levels of children in a number of studies (EPA, 1993c). Exposure to lead in soil and exterior dust can occur both outside during play and inside from soil and dust carried into houses on shoes, clothing, pets, or by other means.

Soil can become contaminated over a period of years from the shedding of lead-based paint on nearby buildings, windblown leaded-dust from adjacent areas, and fallout of leaded-dust from the atmosphere (either from a local point source or from leaded gasoline emissions in the past). Uncontrolled paint removal from nearby houses or painted steel structures can also result in contaminated soil (controlling soil lead levels should be a consideration in every exterior lead-based paint abatement project).

Soil lead hazards are determined by measuring the concentration of lead in the soil, examining the location and use of the soil, and determining the degree to which the soil is "bare" (see Chapter 5). For a yard or area to require hazard control, a total of at least 9 square feet of bare soil must be present. Any size bare area in a play area containing more than 400  $\mu$ g/g of lead is a hazard. Appendix 13.3 contains details on a sampling method to measure lead in soil. When assessing the condition of the surface cover, it is important to determine why the soil is bare. Bare soil is common in the following areas and circumstances:



- 💸

- Heavily used play areas.
- ◆ Pathways.
- Areas shaded by trees or buildings.
- Areas with damaged grass.
- ◆ Drought conditions.

Measuring the lead content of soil will aid in the selection of an appropriate abatement method that has a reasonable likelihood of being maintained. Soil abatement (as opposed to interim controls) is generally appropriate when lead is present in extraordinarily high concentrations (more than 5,000  $\mu$ g/g), use patterns indicate exposures are likely, or interim controls are likely to be ineffective (e.g., planting grass in high-traffic areas). Soil interim controls are covered in Chapter 11, Section VI. This section describes soil treatments that should be effective for at least 20 years.

Pre-abatement soil samples should be collected but not necessarily analyzed until post-abatement soil samples have been collected, analyzed, and compared to clearance standards. If post-abatement soil levels are below applicable limits, the pre-abatement samples need not be analyzed (see Chapter 15).

#### **B.** Soil Abatement Methods

Soil abatement methods include:

- ◆ Soil removal and replacement followed by off-site or on-site disposal; including covering with clean soil (Mielke, 2006; Mielke, 2011).
- ♦ Soil cultivation (rototilling).
- ◆ Soil treatment (e.g., organic matter, chemical, phytoremediation) and replacement.
- ◆ Paving with concrete or asphalt.

Soil removal is discussed in detail below; however, before choosing to remove contaminated soil, other treatment options should be considered. The advantages of using soil treatment methods (as opposed to soil removal) are three-fold (Elias, 1988):

- The costs of hauling large quantities of contaminated soil are eliminated or greatly reduced.
- Disposal sites for soil are not needed except for a much smaller volume of wastes generated during the treatment process.
- ◆ The need for uncontaminated replacement soil is greatly reduced.

## 1. Soil Removal and Replacement

For most soil removal projects, removal of 6 inches of topsoil is adequate. The depth of soil lead contamination is usually restricted to the top of the soil, with contamination decreasing markedly below the top few inches. However, in urban areas it is not uncommon for the contamination to extend to up to 1 or 2 feet in depth. This may be because these areas were



once the location of buildings contaminated with lead-based paint. Alternatively, past practices may have resulted in a gradual buildup of the elevation of the soil grade over time. In such circumstances, the removal of the top layer of soil may leave behind contaminated soil at lower depths. In mixed residential/ industrial areas, or where industry once existed, the depth of the contamination may vary widely. The desired decision on the depth of removal should also consider the depth of soil disturbance during the course of usual activities, such as gardening. If the top layer of soil will not be penetrated, then it should not be necessary to remove lead-contaminated soil at deeper levels, since there will be no exposure.

For practical purposes, properly conducted soil removal to a depth of 6 inches should suffice in urban residential areas that are restricted to grass, shrubs, or shallow gardens. However, the depth of soil contamination should be assessed at each site, and the decision regarding depth should be made based on the results of the soil sampling and anticipated use of the land. For most residential areas, the depth of removal will not exceed 6 inches (Jones, 1987; Ontario, 1987; Stokes, 1987 and 1988). Records of the soil sampling and abatement that occurs should be maintained with the permanent records of the property. These records will alert property owners who are planning excavations to depths below the abatement depth, such as for water or sewer line work, to use caution to avoid contaminating the surface soil with excavated soil. The owners should be advised to sample the soil below the abatement depth to determine the lead concentrations so that procedures can be implemented to segregate this deeper soil, if contaminated, and to use it as fill for the deeper areas of the excavation when the work is completed. With EPA's standard for the maximum allowable lead concentration in replacement soil being that it is less than 400  $\mu$ g/g, the lead concentration in the replacement soil must be less than that concentration; it is advisable that, where feasible, it be half or less than that, i.e., 200 µg/g or less, to provide a precautionary safety factor.

- 1. Types of Equipment Removal and replacement of soil in residential abatement situations may take place in both large and small sites. Some urban yards are very small, consisting of only a few square feet; others are larger, but are sometimes surrounded by buildings. Therefore, residential soil abatement will often require the use of extensive manual labor in addition to mechanical soil removal. When soil is removed by hand, it generally can be loaded into wheelbarrows and then off-loaded to other vehicles to be transported to the disposal site. Rather than off-load the wheelbarrows to dump trucks, it is usually more efficient to dump the soil directly into roll off containers, which are then loaded onto trucks for transport to the disposal site.
- 2. Sod and Seeded Grass Maintenance All grass sod planted as part of the abatement process should be maintained until the end of the growing season. This maintenance should include initial frequent watering to establish the rooting of the sod and germination of the grass seed, followed by watering on a regular basis to keep the grass in a healthy state. Under some conditions, seeding the soil may be practical, but often it is not realistic to restrict use of the soil area for the length of time needed to establish newly seeded grass.
- 3. Identify Utilities The owner or contractor should contact the local coordinated information source for all utilities before beginning work to obtain exact locations of all underground utility lines. If a utilities information service does not exist in the community, the individual utilities should be contacted directly. In addition, the Common Ground Alliance's (CGA's) One Call Systems International committee maintains an 811 telephone number which will notify local



utility companies about the intent to dig so that, within a few days, they can "send a locator to mark the approximate location of your underground lines, pipes and cables, so you'll know what's below – and be able to dig safely" (<a href="http://www.call811.com/how-811-works/default.aspx">http://www.call811.com/how-811-works/default.aspx</a>). CGA also maintains an on-line interactive map (<a href="http://www.cga-onecall.com/map/">http://www.cga-onecall.com/map/</a>) and a state-by-state listing (<a href="http://www.call811.com/state-specific.aspx">http://www.call811.com/state-specific.aspx</a>) of contact information for "one call" centers for each U.S. state and Canadian province that should be able to help with finding underground service lines.

- 4. Protect Utilities Care should be taken to protect existing utilities during abatement to prevent any damage to existing underground and overhead utilities and to prevent any harm to human life and property. If a contractor is used, the owner should require the contractor to protect the existing utilities and to make good any damage to these utilities as quickly as possible.
- 5. Existing Fences Care should be taken while removing existing fencing for worksite access. Such fencing should be salvaged and reinstalled (if it does not contain lead-based paint) to the satisfaction of the owner. In some cases, fencing may have to be replaced.
- 6. Protection of Adjacent Areas When working adjacent to excluded areas, including sidewalks, fences, trees, and patios, the soil should be excavated at a slope away from the excluded areas of less than 2 percent so that contamination does not wash or roll into the excluded area.
- 7. Inclement Weather Removal and/or replacement operations should be suspended at any time when satisfactory control of the overall operation cannot be maintained on account of rain, wind, or other unsatisfactory weather or ground conditions. Determination of such conditions should be made by the owner or project consultant. When such conditions exist, the work area should be cleaned up immediately and work suspended. High winds can disperse contaminated soil and dust to off-site areas and runoff from rain can carry contamination outside the abatement area.
- 8. Vehicle Operation Prior to hauling contaminated soil, a vehicle operation plan should be prepared for the equipment and hauling vehicle operators, which includes but is not limited to information on the cleaning of vehicles, securing of tarps and tailgates, ticketing of trucks, unloading of material, and handling of spilled soil.

All trucks, hauling vehicles, and containers loaded with contaminated soil should be inspected for loose material adhering to the outside of the body, chassis, or tires before departure from the worksite. Such material should be cleaned up before the vehicle leaves for the disposal site. If the truck tires made contact with the contaminated soil, they should be cleaned before the trucks leave the work area. The tires should be brushed off on a plastic sheet and the contaminated soil loaded onto the truck or returned to the lot being excavated.

Soil should be loaded directly into dump trucks or disposal containers from the worksite. If possible, there should be no "double- handling" of contaminated material, such as shoveling the soil into a wheelbarrow, moving it to another location, dumping it, and shoveling it again into another container. This double handling not only wastes time but also increases the likelihood of spreading the contamination and tends to make site cleanup more difficult. The trucks should have secure fitting tarps and sealed tailgates to reduce leakage as much as possible.







FIGURE 12.22 Replacing resident pathway after soil removal.

9. Soil Replacement and Cleanup – Prior to soil replacement, all walks, driveways, lanes, and streets adjacent to the excavation area should be cleaned of all contaminated soil (see Figure 12.22). All loose soil should be scraped, washed, and swept from the above-mentioned surfaces. No clean soil should be placed down until all contamination has been removed from these areas.

At the completion of the workday, all loose contaminated soil within the limits of the work area should be collected. The collected soil should be transferred to a dump truck or other container for subsequent disposal.

All hard surfaces, such as sidewalks, paved driveways, and patios, should be cleaned at the completion of each workday. This daily cleanup should consist of scraping, washing, vacuuming, and wet sweeping all soil from the above-mentioned surfaces.

Cleanup procedures should begin early enough so that they can be completed before the end of the workday.

- 10. Prevention of Contamination from Underlying Soil Regardless of the depth of removal, the possibility of contamination of the replacement soil from the underlying unexcavated soil exists, particularly from future activities. One way to minimize this occurrence is by laying a water-permeable fabric (geotextile) or similar lining at the bottom of the excavated areas to provide a visual demarcation between replaced soil and original soil (Weitzman, 1993). This liner can serve as a warning for persons digging in the future to exercise caution so that contaminated soil beneath the liner does not become mixed with the replacement soil.
- 11. Contaminated Soil Load Manifest System In order to keep track of the contaminated soil being hauled away from the site, a load manifest system should be used to keep an exact record of the time and location of disposal. The manifest should consist of a two-part ticket, with one ticket given to the owner at the time of truck departure and the other held by the hauler. The disposal site ticket should be presented to the site owner or inspector technician before the end of the workday on which the material was deposited in the dump site. The purpose of the manifest system is to ensure that the contaminated soil is not used as fill in other residential areas. Soil waste should be managed and disposed of carefully; it may be considered hazardous as a result of a TCLP test (see Chapter 10, Housing Waste).
- **12. Final Grade** The final grades of replaced soil should be 2 inches above existing grades to allow for settling and to ensure that all drainage is away from existing structures.
- 13. Existing Vegetation A number of precautions are needed to protect existing vegetation, such as bushes and trees. It is advisable to tie trees and shrubs to ensure stability. Hand tools are needed to scrape soil from around roots without undermining or damaging them. Any large roots should be left undisturbed.



14. Tool Contamination – To minimize the cross-contamination between excavation and replacement worksites, separate tools should be provided for the excavation and replacement activities. A less-expensive alternative is to employ an acceptable method for decontamination of tools, workers' clothing, and footwear. The decontamination should include physically removing as much soil as possible and then washing and rinsing the contaminated items with water.

All workers should clean their boots thoroughly before leaving the work area. The soil removed from boots should be disposed of either in a truck used for hauling contaminated soil or left in the worksite.

15. Prevention of Off-site Movement of Contaminated Soil – Contaminated soil should be removed from the site as soon as possible to prevent wind and water erosion. To prevent off-site migration and to avoid the possibility of tampering by children, piles of contaminated soil should not be left on-site overnight. Wind erosion can occur on any site. Water erosion is more likely on hilly sites or during heavy precipitation. Exposed sites can be covered with plastic and secured in place to prevent off-site migration of contaminated soil. An alternative method is to wet down the site at the end of the workday to prevent wind erosion. Similar problems will be encountered when contaminated soil is stockpiled during the day prior to disposal at the end of the day. In this case, wind and water erosion should be controlled by using a combination of plastic sheeting and silt fencing.

# **16. Site Control** – The following precautions should be taken:

- ◆ To prevent the spread of contaminated soil, secure working limits should be defined for each area of excavation. Access to this area should be restricted to authorized personnel with entrances and exits controlled.
- The abatement work area should be enclosed with temporary fencing or adequate barricades to prevent unauthorized personnel or animals from entering the work area.
- ♦ Yellow caution tape should be installed across doors leading to abatement areas.
- ♦ Access routes to homes should be maintained at all times. Such routes should not require passing through the area of excavation.
- ◆ The removal of a partial grass cover in preparation for the laying of sod or grass seeding may temporarily increase the amount of bare contaminated soil. On-site exposure could result when children play on the exposed soil. Abatement workers can control this during the day by means of adequate site control. However, control is difficult, if not impossible, after the end of the workday. Lead hazard warning signs should be posted to warn residents.
- In order to minimize inconvenience to residents and neighbors and to minimize exposure, abatement of a particular site should be completed within 1 workday.

## 2. Soil Cultivation

Soil lead concentration often decreases with increasing depth, so soil mixing can be considered to be an abatement strategy. If the average lead concentration of the soil to be abated is below 1,200  $\mu$ g/g, thorough mixing is an adequate abatement method. Pilot testing may be necessary to determine the type of mixing process needed. Rototilling may not be effective.





FIGURE 12.23 Preparing to pave high traffic area.

# 3. Paving

If contaminated soil is present in high-traffic areas, the soil can be covered by a high-quality concrete or asphalt (see Figure 12.23). In this case, contaminated soil need not be removed before paving. Normal precautions associated with thermal expansion or contraction and traffic load should be considered. Hard surfaces are not appropriate in play areas where falls are possible from slides, jungle gyms, etc. The Consumer Product Safety Commission has developed recommendations for fall surfaces in public play areas (e.g., addressing the need for impact attenuating protective surfacing under and around equipment, installation and maintenance procedures, and general hazards presented by protrusions, etc. CPSC, 2008; www.cpsc.gov/CPSCPUB/PUBS/325.pdf).

# 4. Other Soil Treatment Methods Under Study

HUD has funded studies to investigate other potential methods to reduce soil lead hazards. Plants can reduce the soil lead level (phytoremediation) but their use has not been widely tested or applied. The use of chemical additives (e.g. phosphate) to reduce the biological availability of lead appears to be attractive, but studies are continuing.

#### C. Exterior Dust Control

Lead in exterior dust can be a source of exposure to children because it can be tracked inside and carried on the skin, especially the hands (Bornschein, 1986). For example, in older urban areas in Cincinnati, exterior leaded-dust concentrations are on average about four times higher than interior leaded-dust concentrations, and exterior lead surface loadings are much higher than for interior dust (Clark, 1993). Just as children can be directly exposed to leaded-soil, they can also be exposed to exterior leaded-dust. Exterior dust can also migrate by various means (children, adults, pets, or wind) to the interior of homes where there are many opportunities for exposure to children. Exterior leaded-dust concentrations up to  $50,000 \,\mu\text{g/g}$  (equivalent to 5 percent lead in dust) have been measured in urban areas in the EPA Soil Lead Abatement Demonstration Project (EPA, 1993c).

If only an individual property is involved in the exterior dust-control activity, the type of equipment that can be used will be limited by the size of the area involved and the person responsible for the area. Owners are not required to clean streets, for example. Because of the mobility of exterior dust, the length of time that the dust cleanup remains effective will be limited by the size of the abatement area and therefore may need to be repeated periodically.

Exterior dust control consists of two components:

- ◆ Controlling sources of lead-contaminated dust.
- Removing lead-contaminated dust from paved areas.



Without adequate control of the sources of lead in exterior dust, recontamination of the exterior areas will occur. Studies of a schoolyard area indicated that leaded-dust concentrations equaled pre-abatement levels within 1 year in Winnipeg, Ontario (Stokes, 1988). Recontamination of some paved areas in Cincinnati occurred within a few days (Clark, 1991), indicating that repeated cleaning and control of the *sources* of the lead are necessary.

# 1. Types of Equipment

Exterior dust cleanup consists of removing as much dust and dirt as possible from all paved surfaces on the property or properties involved. Lead-contaminated dust can be found on paved surfaces such as sidewalks, patios, driveways, and parking areas. For multiple adjacent proper ties that are being abated, cleanup of streets, alleys, or other common areas should be considered, although this is normally a municipal responsibility. Brick paved areas present the biggest challenge in removing exterior dust because they contain numerous cracks. For individual properties, hosing off walkways and play areas periodically may reduce exterior leaded-dust levels.

In order to meet this cleaning challenge, it is necessary to have available the most efficient hard-surface vacuum cleaning equipment. Many commercial contract cleaning firms located in urban areas have such equipment.

There are several different types of suitable paved-surface cleaning machines:

- → Hand-pushed vacuum cleaners.
- Vacuum-assisted sweepers, which are similar to the traditional broom sweeper, with the added feature of a slight vacuum that assists in controlling dust and transporting material from the broom bristles to the hopper.
- Vacuum sweepers, which lift material from paved surfaces some are equipped with curb brushes to assist in transporting the material from the edge of the cleaning area to the vacuum head and into the hopper.
- ◆ Trucks equipped with strong vacuums and large HEPA filters for the exhaust.

EPA research has found that regenerative air machines, which depend on rapidly moving air to capture particles from the surface of the pavement, frequently remove only a small fraction of the dust and thus may not be suitable for lead abatement work (Pitt, 1985).

# 2. Evaluation of Equipment

A number of pavement-cleaning machines were tested as part of the Cincinnati Soil Lead Abatement Demonstration Project (Clark, 1993). The machines tested were the vacuum-assisted sweeper, the vacuum sweeper, and the regenerative air machine. Initial tests demonstrated that several machines operated above the 90 percent efficiency level. A machine performing at the 90 percent efficiency level will pick up 90 percent of the available dirt after two passes. Equipment tested involved both large machines suitable for streets and parking lots and some walk-behind, vacuum-assisted broom sweepers suitable for sidewalks and other smaller areas. Several larger machines performed at or above the 90 percent efficiency rate. Some of the smaller walk behind sweepers did not perform at an acceptable level of efficiency.



Care must be taken when emptying the collected dust from the machines. The most appropriate method to minimize dust release is to dampen the contents of the hopper using an accessible hose. If water is to be used for dust control, it will be necessary to devise a means of containing excess water. This can be achieved by placing 6-mil polyethylene plastic on the ground where the equipment is being emptied and carefully collecting the water after the hopper has been emptied. It is also necessary to perform this activity in a secure area so that children are not exposed.

# 3. Removal of Heavy Accumulation

The first step in cleaning an area should be the removal of heavy accumulations of dust and debris. The heavily accumulated areas can be cleaned either by manually removing the material with scrapers, shovels, or brooms, or by vacuuming the heavily accumulated areas if vacuuming proves to be adequate in removing the contamination. Just as in handling lead-contaminated soil, the heavy accumulations of exterior dust should be dampened.

# 4. Vacuum Cleaning

Small areas, such as sidewalks and patios that are inaccessible to larger cleaning machines, may be cleaned with an acceptable vacuum cleaner (see Chapter 14 for discussion of vacuum cleaners). Surfaces should be vacuumed continuously until no additional visible dust is being removed by further vacuuming.



# References

Amitai, 1987. Amitai, Y., J.W. Graef, M.J. Brown, R.S. Gerstle, N. Kahn, and P.E. Cochrane. "Hazards Of 'Deleading' Homes Of Children With Poisoning," *American Journal of Diseases of Children*, 141: 758-760.

Amitai, 1991. Amitai, Y., M.J. Brown, J.W. Graef, and E. Cosgrove. "Residential Deleading: Effects on the Blood Lead Levels of Lead Poisoned Children," *Pediatrics*, 88(5): 893–897.

Bornschein, 1986. Bornschein, R.L., P.A. Succop, K.M. Krafft, C.S. Clark, B. Peace, and P.B. Hammond, "Exterior Surface Dust Lead, Interior House Dust Lead, and Childhood Lead Exposure in an Urban Environment," in *Trace Substances in Environmental Health II*, ed., D.D. Hemphill, University of Missouri, Columbia, Missouri.

Chisolm, 1985. Chisolm, J.J., E.D. Mellits, and S.A. Quaskey, "The Relationship Between the Level of Lead Absorption in Children and the Age, Type, and Condition of Housing," *Environmental Research* 38: 31–45.

City of Toronto, 1990. City of Toronto Department of Public Health in conjunction with Ontario Ministry of the Environment, *Lead Reduction Program House Dust Cleaning: Final Report*, Concord Scientific Corporation and Gore & Storrie Limited in association with South Riverdale Community Health Centre, Toronto, Montreal, Canada.

Clark, 1991. Clark, C.S., R. Bornschein, P. Succop, S. Roda, and B. Peace, "Urban Lead Exposures of Children in Cincinnati, Ohio," *Journal of Chemical Speciation and Bioavailability*, 3(3/4): 163–171.

Clark, 1993. Clark, C.S., R.L. Bornschein, J. Grote, W. Menrath, W. Pan, S. Roda, and P. Succop. *Cincinnati Soil Lead Abatement Demonstration Project Final Report*, August 1993.

CPSC, 2008. Consumer Product Safety Commission, Handbook for Public Playground Safety, Recommendations for Surfacing Materials, Washington, DC, 1991 revised 2008. www.cpsc.gov/CPSCPUB/PUBS/325.pdf

DOE 2002, Weatherization Program Notice 02-6, Effective Date – July 12, 2002, <a href="http://www.waptac.org/data/files/technical\_tools/wpn02-6.pdf">http://www.waptac.org/data/files/technical\_tools/wpn02-6.pdf</a>

Elias, 1988. Elias, R.W., "Soil-Lead Abatement Overview: Alternatives to Soil Replacement," in *Lead in Soil: Issues and Guidelines*, eds. B.E. Davies and B.G. Wixson, Science Reviews Ltd., Northwood, Canada, pp. 301–305.

EPA, 1990b. U.S. Environmental Protection Agency, "Soil Washing Treatment," *Engineering Bulletin*, Office of Research and Development, EPA/540/2–90/017, Cincinnati, Ohio, 1990.

EPA, 1992a. U.S. Environmental Protection Agency, *Training Course for Lead-Based Paint Abatement Project Supervisors*, Washington, DC.

EPA, 1992b. U.S. Environmental Protection Agency, *Environmental Equity: Reducing Risk for All Communities*, Report to the Administrator from the EPA Environmental Equity Workgroup, Office of Policy, Planning, and Evaluation (PM–221), 230–DR–92–002, Washington, DC.



EPA, 1993c. U.S. Environmental Protection Agency, Environmental Criteria and Assessment Office, *Urban Soil Lead Abatement Demonstration Project*, Integrated Report, 600/AP–93–001, Research Triangle Park, North Carolina.

Farfel and Chisolm, 1990. Farfel, M., and J.J. Chisolm, Jr., "Health and Environmental Outcomes of Traditional and Modified Practices for Abatement of Residential Lead-Based Paint," *American Journal of Public Health*, 80(10):1240–1245.

Farfel, 1992. Farfel, M., Paper presented at Centers for Disease Control Conference, December 8, 1992.

Farfel, 1994a. Farfel, M., Briefing at EPA headquarters, Washington, DC, February 1994.

Farfel, 1994b. Farfel, M., J.J. Chisolm, Jr., C.A. Rhode, "The Long-Term Effectiveness of Residential Lead Paint Abatement," *Environmental Research*, 66: 217–221.

Gypsum Association, Application And Finishing Of Gypsum Panel Products, GA-216-2004, June, 2004. Available at <a href="https://www.gypsum.org/download.html">www.gypsum.org/download.html</a>

HUD, 1991. U.S. Department of Housing and Urban Development, *The HUD Lead-Based Paint Abatement Demonstration (Federal Housing Administration)*, prepared by Dewberry & Davis, HC–5831, Washington, DC.

HUD, 1999, Lead-Safe Housing Rule, 24 CFR 35, Regulation on Lead-Based Paint Hazards in Federally Owned Housing and Housing Receiving Federal Assistance.

Jacobs, 1991b. Jacobs, D.E., "A Review of Occupational Exposures to Lead in Residential Renovation and Structural Steel Demolition Work," delivered before EPA Lead in Adults Symposium, Durham, North Carolina, December 10, 1991, and submitted for publication to *Environmental Research* in 2004.

Jacobs, 1993a. Jacobs, D.E., "Lead-Based Paint Abatement in Murphy Homes," Georgia Institute of Technology Report for the Macon Housing Authority, Macon, Georgia, (unpublished data).

Jones, 1987. Jones, A.R., South Riverdale Soil Lead Levels: An Explanation for the Recontamination of Some Residential Properties in the Vicinity of Canada Metals Co., Ltd., Technical Report, Ontario Ministry of the Environment—Central Region, Toronto, Canada, 1987.

Mielke, 2006, Mielke, H.W., Powell, E.T., Gonzales, C.R., Mielke, P.W., Jr., Ottesen, R.T., Langedal M. 2006. New Orleans Soil Lead (Pb) Cleanup Using Mississippi River Alluvium: Need, Feasibility and Cost, *Environmental Science and Technology* **40**(08):2784-9. DOI 03/10/2006

Mielke, 2011, Mielke, H.W., Covington, T.P., Mielke P.W., Jr. Wolman, F.J., Powell E.T., Gonzales, C.R. 2011. Soil intervention as a strategy for lead exposure prevention: The New Orleans lead-safe childcare playground project. *Environ. Poll.* 159: 2071-2077. doi:10.1016/j.envpol.2010.11.008.

NIOSH, 1992a. National Institute for Occupational Safety and Health, *Health Hazard Evaluation Report, HUD Lead Based Paint Abatement Demonstration Project*, Centers for Disease Control, , DHHS Publication No. 90–070–2181, U.S. Department of Health and Human Services, Cincinnati, Ohio.

Pitt, 1985. Pitt, R., Characterizing and Controlling Urban Runoff Through Street and Sewerage Cleaning, EPA Document No. EPA/600/52–85/038, U.S. Environmental Protection Agency, Washington, DC, June 1985.



Rabinowitz, 1985a. Rabinowitz, M., A. Leviton, and D. Bellinger, "Home Refinishing, Lead Paint, and Infant Blood Lead Levels," *American Journal of Public Health*, 75(4): 403–404.

Rekus, 1988. Rekus, J.F., "Structural Steel Hot Work: A Serious Lead Hazard in Construction," Welding Journal, September 1988: 25–32.

Staes, 1994. Staes, C., T. Matte, C.G. Copley, D. Flanders, and F. Binder, "Retrospective Study of the Impact of Lead-Based Paint Hazard Remediation on Children's Blood Lead Levels in St. Louis," *American Journal of Epidemiology*, 139(10): 1016-26

Staes, 1995. Staes C., and Rinehart R., "Does Residential Lead-Based Paint Hazard Control Work? A Review of the Scientific Evidence." National Center for Healthy Housing, Columbia, Maryland.

Stokes, 1988. Stokes, P., "Canadian Case Studies and Perspectives," in *Lead in Soil: Issues and Guidelines*, eds. B.E. Davies and B.G. Wixson, Science Reviews Ltd., Northwood, Canada, pp. 7–25.

Weitzman, 1993. Weitzman, M., A. Aschengrau, D. Bellinger, and R. Jones, "Lead Contaminated Soil Abatement and Urban Children's Blood Lead Levels," *Journal of the American Medical Association*, 269(13): 1647–1654.

Zhu, 2012. Zhu, J., Franko, E., Pavelchak, N., and DePersis, R., "Worker Lead Poisoning during Renovation of a Historic Hotel Reveals Limitations of the OSHA Lead in Construction Standard," Journal of Occupational and Environmental Hygiene, DOI:10.1080/15459624.2012.700273, Accepted author version posted online: 07 Jun 2012.